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We model the generation of coherent acoustic beams in a homogeneous solid from the interference of two op-
positely propagating, detuned optical laser beams. This configuration is reciprocal to Brillouin light scattering in
the backward interaction arrangement. Generation of a confined ultrasound beam is predicted, close to the
Brillouin frequency. Optoacoustic gain spectra and beam shapes are obtained numerically using a finite element
model. The acoustic spectra are non-symmetrical, i.e., non-Lorentzian, and result from excitation of the
continuum of bulk elastic waves. The acoustic beam width correspondingly varies with detuning frequency
and optical beam waist. © 2018 Optical Society of America
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1. INTRODUCTION

The mixing of two frequency-detuned optical waves in a solid
medium offers a means of generating coherent hypersound in
the bulk [1]. Such an electrostriction process relies on the
photoelastic effect [2,3], whereby the square of the optical field
induces a mechanical stress in the medium. When the stress
distribution is phase matched with a particular elastic wave
in the medium, i.e., when the interference wavelength and
the detuning frequency satisfy the relevant dispersion relation,
optoacoustic generation is in principle at a maximum.

Electrostriction is known to be intimately related to Brillouin
light scattering (BLS) by acoustic phonons of thermal origin, or
elastic waves, e.g., produced by a transducer. Actually, both ef-
fects can be described in a unified manner in energetic terms,
using either a Lagrangian or a Hamiltonian for the coupled op-
tical and elastic wave fields [4–6]. In BLS experiments, the back-
ward scattering configuration is often used, as it allows imposing
very precisely the acoustic wavevector direction and magnitude.
BLS spectra can then be obtained by observing the backscattered
light amplitude as a function of frequency. Shear and longi-
tudinal phonons appear as Lorentzian peaks centered on the
Brillouin frequencyωB � 2nV ∕λ, with n the effective refractive
index, V the acoustic phase velocity, and λ the vacuum wave-
length of light. The factor 2 is typical of backscattering, and
the phonon wavenumber is twice the optical wavenumber in
the medium, or q � 4πn∕λ. The same backscattering configu-
ration is used for BLS measurements in optical fibers and

waveguides. In this case, n is the effective index of a guided
optical mode, andV is generally interpreted as the phase velocity
of an elastic mode of the waveguide.

In this paper, we consider photoelastic generation of hyper-
sound in the backward interaction arrangement. This arrange-
ment has been considered in recent years in optical fibers and
waveguides, and many fascinating observations have been
made, including the existence of hybrid phonons in photonic
crystal fibers [7], nanoscale optical waveguides [8–10], surface
acoustic waves in microwires [11], or light storage in integrated
photonic circuit waveguides [12,13]. The specificity of our
work is that we consider optoacoustic generation in the bulk
of homogeneous media, i.e., in the absence of any waveguide
for the generated elastic waves. The absence of a waveguide im-
plies the non-existence of a basis of guided elastic modes, and
hence the non-applicability of descriptions of optoacoustic gain
relying on overlap integrals [14,15].

In the following, we propose a photoelastic generation model
adapted to the case of bulk homogeneous media, in the case in
which the interaction length of the two counterpropagating
optical Gaussian beams can be considered very long. We find
that electrostriction leads to the generation of confined beams
of elastic waves, centered on the optical stress distribution
and whose lateral extension depends on the angular-spectrum
contents of the optical beams and on the frequency detuning.
Optoacoustic spectra are argued to be formed from the con-
tinuum of bulk elastic waves of the propagation medium.
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2. ELECTROSTRICTION MODEL

We consider a homogeneous dielectric, solid medium. For sim-
plicity, the medium is considered to be optically isotropic
though anisotropic for elastic waves. In the Results section,
we consider either silica or silicon. The magnetic fields of
the two optical beams are linearly polarized and have a trans-
verse Gaussian dependence, according to

Hi�x; y; z; t� � H 0hi exp�−�x2 � y2�∕w2� exp�j�ωi t − kiz��;
(1)

with i � 1; 2,H 0 the magnetic field magnitude, hi a transverse
unit vector, and w the beam waist. ωi and ki are the angular
frequency and wavevector, respectively, with jkij � nωi∕c and
c the vacuum velocity of light. The power transported by the
Gaussian beam is in the paraxial approximation

P0 �
πw2

4nε0c
H 2

0: (2)

The two optical beams are counterpropagating and have a
relatively small adjustable detuning ω � ω1 − ω2—hence, the
difference of their wavenumbers q � k1 − k2 ≈ 2k1. The
square of the optical field thus contains a term proportional
to exp�j�ωt − qz�� that can be phase matched with an elastic
wave providing q ≈ ω∕V with V the phase velocity of the
elastic wave. The relevant term in the electrostriction stress
tensor is T es

kl � − 1
2 ε0pijklD

�1�
i D�2��

j with D the electric dis-
placement vector and pijkl the photoelastic tensor. Note that
all indices of tensors run from 1 to 3 and that we use the no-
tation �x1; x2; x3� � �x; y; z�. The electric displacement vector
is easily obtained from the magnetic field vector by ∂D

∂t �∇×H.
Figure 1(a) illustrates the interference of the two optical
Gaussian beams.

Given the particular form of the driving electrostriction
stress, the displacement of the forced elastic wave can be as-
sumed to be of the form [16]

ui�x; y; z; t� � ûi�x; y� exp�j�ωt − qz��: (3)

This equation looks similar to a guided mode but actually
describes a different situation: the driving stress oscillates in
time and space along a preferred direction, and the forced sol-
ution follows those oscillations while adapting its shape in the
transverse plane to satisfy the appropriate boundary conditions.

We obtain the displacements ûi�x; y� by solving the elasto-
dynamic equation using finite element analysis. The weak form
of the equation is [5]

−ω2

Z
Ω
ρv̂�i ûi �

Z
Ω
S�v̂��I cIJS�û�J �

Z
Ω
S�v̂��I T es

J ; (4)

with cijkl the elastic tensor and ρ the mass density. Ω is the
domain on which ûi�x; y� is defined, v is a set of test functions
that satisfy the decomposition of Eq. (3), and I � �ij� and J �
�kl� are contracted indices for pairs of symmetric indices run-
ning from 1 to 6. The strains are defined as

S1�û� �
∂û1
∂x1

; (5)

S2�û� �
∂û2
∂x2

; (6)

S3�û� � −jqû3; (7)

S4�û� �
∂û3
∂x2

− jqû2; (8)

S5�û� �
∂û3
∂x1

− jqû1; (9)

S6�û� �
∂û1
∂x2

� ∂û2
∂x1

: (10)

If the domain considered is closed by an external boundary
σ, the previous equations can be solved by imposing boundary
conditions. In the following, we will consider the domain de-
picted in Fig. 1(b), terminated by a free-boundary condition. In
order to represent a piece of homogeneous material, the solu-
tion should then decay spatially fast enough not to reach the
external boundary, or otherwise reflections will occur. Of
course, this condition is not taken for granted, and the absence
of reflections in the solution must be checked carefully. In order
to approach better the case of an infinite space, for which the
actual solution should satisfy radiation conditions at infinity,
one can use a perfectly matched layer (PML) [17,18]. As de-
picted in Fig. 1(c), the PML surrounds the useful computation
domain and is intended to absorb outgoing waves without re-
flecting them. PML for time-harmonic wave equations [19] can
be defined as a coordinate transform from a complex infinite
domain to the real finite domain [20]. The PML implemen-
tation we use is summarized in the Appendix A. Note that
the PML may fail for waveguide-type problems in elastic media

(a)

(b) (c)

Fig. 1. Schematic representation of the model of photoelastic gen-
eration of hypersound in a homogeneous dielectric medium. (a) Two
counterpropagating, detuned optical Gaussian beams interfere and
create a moving spatial stress distribution. In the plot, the waist is
w � 5 μm, and the period of the interference pattern is 0.5 μm.
(b) Simple 2D disk-shaped domain in the transverse plane. (c) 2D
disk-shaped domain terminated by a perfectly matched layer (PML)
approximating an open medium.
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[21], and hence also in the case of our optoacoustic model. For
this reason, we use a PML in the following for the case of longi-
tudinal waves, but we have to revert to the free computation in
the case of shear waves, due to numerical instabilities.

3. RESULTS

All computations are performed for a vacuum optical wave-
length of 1.55 μm, for silica and for silicon. There is a notice-
able optoacoustic response only when the phase-matching
conditions of a bulk elastic wave are met. We first present re-
sults for longitudinal waves and then for shear waves. For the
free model (shear waves and all acoustic beam cross sections),
we set R � 100 μm. For the PML model (longitudinal waves),
we set R1 � 10 μm and R2 � 5 μm.

A. Longitudinal Elastic Waves
We first consider silica (n � 1.458). Material constants are
taken from Ref. [22]. Figure 2 shows the computed optoacous-
tic spectrum for co-polarized optical beams, for three different
waists, as obtained with the PML model. Note that the power
of the optical beams is normalized to 1 W in all cases. As a
result, the intensity (in W∕m2) is larger for smaller waists,
enhancing the optoacoustic response. The phonon energy
per unit length is computed from the solution as

1

2
ω2

Z
Ω
ρû�i ûi �

1

2

Z
Ω
S�û��I cIJS�û�J : (11)

The longitudinal velocity for silica is 5969 m/s, so that the
Brillouin frequency in this case is 11.23 GHz, as indicated by
the red line in Fig. 2. It can be seen that the response is not
centered on the Brillouin frequency and is not symmetrical
with respect to its maximum. This is in contrast to what is ob-
served in the case of guided elastic modes, in optical fibers, and
nanoscale optical waveguides, in which case Lorentzian peaks
are centered on a resonance frequency. Figure 2 further shows a
selection of five acoustic beam cross sections, for the 2-μm
waist. Away from the peak, the response is weak and strongly
confined around the optical stress distribution. As the peak
maximum is approached from lower frequencies, the acoustic
beam width grows, but remains finitely distributed around the
excitation. After the maximum, the beam width keeps on in-
creasing, and a bright center appears on top of a more extended
background.

Figure 3 shows information similar to Fig. 2, but for the
case of silicon (with crystallographic axes aligned with the refer-
ence frame). Material constants are again taken from Ref. [22].
The refractive index is n � 3.6, and the longitudinal velocity is
8431 m/s, so that the Brillouin frequency in this case is
39.16 GHz. Apart from the change in frequency range, the

Fig. 2. Optoacoustic generation of longitudinal elastic waves in
silica. The two optical beams are co-polarized. The phonon energy
per unit length is plotted as a function of optical detuning for three
different optical beam waists. Representative acoustic beam cross
sections (A–E) are shown.

Fig. 3. Optoacoustic generation of longitudinal elastic waves in sil-
icon. The two optical beams are co-polarized. The phonon energy per
unit length is plotted as a function of optical detuning for three differ-
ent optical beam waists. Representative acoustic beam cross sections
(A–E) are shown.
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characteristics of the optoacoustic response are very similar to
the case of silica.

B. Shear Elastic Waves
In the case of shear elastic waves, a stronger optoacoustic re-
sponse is obtained for cross-polarized optical beams compared
to co-polarized beams. As a consequence, we present results for
cross-polarized beams. The shear velocity in silica is 3763 m/s,
so that the Brillouin frequency in this case is 7.08 GHz. It can
be seen in Fig. 4 that the optoacoustic response is again not
centered on the Brillouin frequency and is not symmetrical
with respect to its maximum. The enhancement of the response
with smaller waists is even more important. Actually, as the
beam waist becomes very large, i.e., as it tends to a plane wave,
the response tends toward zero. As a result, it can be said that
the response is due only to the finiteness of the optical beams.
For the 2-μm waist, undulations are observed on the high-
frequency side of the response; these are caused by reflections
on the external boundary of the computation domain and in-
dicate that the beam size has exceeded a radius of 100 μm.
Figure 4 further shows a selection of five acoustic beam cross
sections, for the 3-μm waist. The same phenomenon of increas-
ing beam width is observed as in the case of longitudinal waves,
but the increase is even more pronounced.

The case of shear waves in silicon, in Fig. 5, shows novel
features. The shear velocity is 5844 m/s, so that the Brillouin

frequency in this case is 27.15 GHz. For the larger beam waist,
5 μm, the response is almost centered on the Brillouin
frequency and symmetrical. However, as the beam waist be-
comes smaller, the response becomes wider, and two maxima
appear before and after the Brillouin frequency. The five
selected acoustic beam cross sections, for the 2-μm waist, in-
dicate that the acoustic beam shape strongly depends on the
anisotropy of the elastic tensor of silicon (cubic symmetry)
and varies rapidly with frequency.

4. DISCUSSION

The most remarkable feature of the optoacoustic responses is
that the generated acoustic beams remain confined around the
optical stress distribution. We emphasize that there is no struc-
tural guidance, as would be provided if some region of space (a
core) had a lower elastic wave velocity compared to the sur-
rounding medium (a cladding). Instead, the finite acoustic
beams are composed of a continuous superposition of the bulk
elastic waves of the homogeneous medium. The Gaussian dis-
tribution of the optical beams, which translates into a Gaussian
distribution of the electrostriction stress, plays an important
role in this respect. Indeed, if we consider a Fourier transform
in the transverse direction, the plane wave spectrum of the ex-
citation is also a Gaussian function of the lateral wavenumber.

Fig. 4. Optoacoustic generation of shear elastic waves in silica. The
two optical beams are cross-polarized. The phonon energy per unit
length is plotted as a function of optical detuning for three different
optical beam waists. Representative acoustic beam cross sections (A–E)
are shown.

Fig. 5. Optoacoustic generation of shear elastic waves in silicon.
The two optical beams are cross-polarized. The phonon energy per
unit length is plotted as a function of optical detuning for three differ-
ent optical beam waists. Representative acoustic beam cross sections
(A–E) are shown.
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Hence, the distribution of wavevectors is continuously
distributed around its center, �0; 0; q�, and decays rapidly away
from it.

The solution of the elastodynamic Eq. (4) can be written
formally as u � R�ω�T es, with R�ω� the resolvant operator.
The resolvant is well behaved, except when a mode is present
in the spectrum. The bulk elastic modes of homogeneous me-
dia form slowness surfaces [23,24], which are surfaces of rev-
olution in wavevector space, as depicted in Fig. 6. Optoacoustic
phase matching imposes kz � q, but otherwise leaves the value
of �kx; ky� free. For a detuning frequency smaller than the
Brillouin frequency, ω < ωB , there is no intersection of the
slowness surface with the �kx; ky; q� plane, and no bulk elastic
wave can be resonantly excited. For ω � ωB, there is a single
osculating intersection point, whose contribution is negligible.
For ω > ωB, the intersection of the slowness surface with the
�kx; ky; q� plane defines a continuous curve describing the pos-
sible leakage of elastic energy to bulk waves, away from the ex-
citation center. This leakage explains the asymmetry of the
optoacoustic response: a smaller optical beam waist implies a
larger plane wave spectrum and hence the excitation of bulk
waves slightly away from the Brillouin frequency.

The model we have presented assumes very long optical
Gaussian beams that retain the same waist along the propaga-
tion axis. This assumption is only approximate, as it is known
that Gaussian beams have smoothly varying waists; taking this
variation into consideration would require an extended 3D
model. An alternative is the use of non-diffracting beams that
can retain a constant width over rather long distances [25].

5. CONCLUSION

We have described a model for the generation of coherent
beams of hypersound in a homogeneous solid that result from
the interference of two oppositely propagating, detuned optical
Gaussian laser beams. Numerical simulations for silica and sil-
icon predict the generation of confined hypersound beams, at
frequencies close to the Brillouin frequency. The computed
optoacoustic spectra are non-symmetrical, i.e., they do not
affect the usual Lorentzian shape that is usually observed when
modes are excited. We have explained their appearance as

resulting from the excitation of a continuum of bulk elastic
waves forming a slowness surface in wavevector space. The
acoustic beam widths were found to vary with detuning fre-
quency and optical beam waist. In particular, a stronger
response is found for small waists, for a constant optical power.

APPENDIX A: RADIAL PERFECTLY MATCHED
LAYER

The perfectly matched layer (PML) is introduced to transform
an infinite, or open, problem into a finite problem. The idea is
to seek a solution to the dynamical equations by using a coor-
dinate transform from a complex infinite space, which admits
evanescent waves as eigenfunctions instead of plane waves, to
the real finite space. If there are only evanescent waves and they
have sufficiently decayed, then the additional boundary condi-
tion terminating the PML becomes less important; a Dirichlet
boundary condition is usually enforced.

Given coordinates x of real space, we introduce coordinates
y of complex space via a transform yi � yi�x�. Introduce the
Jacobian matrix

Jij �
∂yi
∂xj

: (A1)

In an integral, the integration element (volume) changes
proportionally to det�J�. Consider a function u�x� � ũ�y�.
Then the gradient transforms as

∇ũ � ∂ũ
∂yi

� ∂xj
∂yi

∂u
∂xj

� J−t∇u: (A2)

The inverse Jacobian has elements J−1ij � ∂xi
∂yj
. Note the trans-

pose operator when transforming the gradient, i.e., J−tij � ∂xj
∂yi
.

In the case of the elastodynamic equation, the weak form
becomes

−ω2

Z
Ω
ρv̂�i ûi det�J� �

Z
Ω
S�v̂��I cIJS�û�J det�J�

�
Z
Ω
S�v̂��I T es

J ; (A3)

with the modified definition of the strains

S1 � J−1m;1u1;m; (A4)

S2 � J−1m;2u2;m; (A5)

S3 � J−1m;3u3;m; (A6)

S4 � J−1m;2u3;m � J−1m;3u2;m; (A7)

S5 � J−1m;1u3;m � J−1m;3u1;m; (A8)

S6 � J−1m;1u2;m � J−1m;2u1;m: (A9)

Let us suppose we want to attenuate waves in an angular sec-
tor, as depicted in Fig. 1(c). The PML is entered at the circular
boundary satisfying r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
� R1. We consider a se-

quence of three coordinate transforms: Cartesian to polar coor-
dinates, complexification of the radial coordinate, polar back to
Cartesian coordinates. The complex polar transform is given by

(a) (b) (c)

Fig. 6. Intersections of the slowness surface of a bulk elastic wave
with the phase-matching condition kz � q. (a)–(c) Three cases are
shown, depending on the magnitude of detuning frequency ω with
respect to the Brillouin frequency ωB. (a) ω < ωB . (b) ω � ωB .
(c) ω > ωB .
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r 0 � r � j
ω

Z
r

R1

σ�s�ds; (A10)

with σ�s� � βV js − R1j∕R2
2, where β is a numerical coefficient

whose value can be tuned to optimize absorption. Performing
the three transforms, we obtain

det�J� � 1� j
ω
σ�r� � α−1;

J−t �
� �αx2 � y2�∕r2 �α − 1�xy∕r2

�α − 1�xy∕r2 �αy2 � x2�∕r2
�
: (A11)
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