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ABSTRACT

The propagation of acoustic or elastic waves in artificial crystals, including the case of phononic and sonic crystals, is inherently anisotropic.
As is known from the theory of periodic composites, anisotropy is directly dictated by the space group of the unit cell of the crystal and the
rank of the elastic tensor. Here, we examine effective velocities in the long wavelength limit of periodic acoustic and elastic composites as a
function of the direction of propagation. We derive explicit and efficient formulas for estimating the effective velocity surfaces based on the
second-order perturbation theory, generalizing the Christoffel equation for elastic waves in solids. We identify strongly anisotropic sonic
crystals for scalar acoustic waves and strongly anisotropic phononic crystals for vector elastic waves. Furthermore, we observe that under spe-
cific conditions, quasi-longitudinal waves can be made much slower than shear waves propagating in the same direction.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0045827

I. INTRODUCTION

Artificial crystals, when considered in the long wavelength
limit, can be considered a sub-class of composite materials1 to
which the property of spatial periodicity and the existence of a
space group are added, describing the symmetries of their unit cell.
Composite materials can be assigned effective properties obtained
by a limiting process in the frame of the homogenization theory.
Homogenization has a long history and has been considered from
various physical and mathematical viewpoints.2 Composite struc-
tural mechanics often relies on the representative volume element
(RVE) approach, relating the internal strain and stress fields to
certain assumed boundary conditions.3,4 Two-scale homogeniza-
tion5,6 has a solid mathematical foundation and has been applied
successfully in various physical fields. As a framework, it is valid
for a general partial differential equation (PDE) and ultimately
gives the limiting or homogenized PDE and hence, directly the
effective material constants.

In the case of periodic composites, a direct approach is to con-
sider the dispersion relation, i.e., the band structure. Indeed, when
both the frequency ω and the wavenumber k tend to zero, propaga-
tion becomes non-dispersive and the function ω(k) ¼ ceffk is
linear. Starting from the Γ point of the first Brillouin zone, there is

one non-dispersive band for sonic crystals and three non- disper-
sive bands for phononic crystals. Then, one can fit the dispersion
relation to the form of the elastic tensor deduced from the symme-
tries described by the space group of the crystal. This is the
approach of choice for elastic composites.7–9 A related empirical
approach is to observe Fabry–Pérot oscillations in the transmission
through a finite crystal to estimate the effective velocity10,11

Elaborating upon the plane wave expansion (PWE) method
that is used to compute the band structure of phononic crystals,
Alevi et al. obtained the long wavelength limit for periodic elastic
composites.12 In the case of periodic acoustic composites, or sonic
crystals, Krokhin et al. similarly obtained a PWE formula that they
used to discuss the dependence of the effective velocity with the
filling fraction.13 For periodic elastic composites, Nemat-Nasser
et al. proposed a more general variational approach where an
appropriate functional basis satisfying Bloch boundary conditions
is considered.14 All these works did not consider explicitly anisot-
ropy as the direction of propagation does not appear in the derived
expressions. Moreover, an issue is that there is a full matrix to be
inverted for each direction, which does not make the formulas
obtained more efficient than a direct dispersion relation computa-
tion. The PWE homogenization method was tentatively extended

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 129, 215106 (2021); doi: 10.1063/5.0045827 129, 215106-1

Published under an exclusive license by AIP Publishing

https://doi.org/10.1063/5.0045827
https://doi.org/10.1063/5.0045827
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0045827
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0045827&domain=pdf&date_stamp=2021-06-04
http://orcid.org/0000-0001-8930-8797
http://orcid.org/0000-0002-5646-4475
http://orcid.org/0000-0002-4692-5696
mailto:vincent.laude@femto-st.fr
https://doi.org/10.1063/5.0045827
https://aip.scitation.org/journal/jap


by various authors to the phononic crystal case, or of periodic
elastic composites.15–17 A firm mathematical formulation, however,
was not obtained before Torrent et al..18 An appealing approach
was provided by Kutsenko et al. who obtained a generalized
Christoffel equation for shear elastic waves in phononic crys-
tals.19,20 Again, they did not consider anisotropy explicitly.

Our approach to the effective anisotropy of artificial crystals is
based on a variational formulation as in the case of two-scale
homogenization, thus replacing in the end the PWE implementa-
tion with a finite element method. Similar to Krokhin’s13 and
Kutsenko’s20 approaches, we work directly with a second-order per-
turbation theory of the dispersion relation in periodic media.
We obtain explicit formulas generalizing the Christoffel equation
for plane waves in homogeneous solids that depend explicitly on
the direction of propagation. The formulas can be fitted against the
form of the elastic tensor that results from considering the space
group of the crystal. We apply the theory to laminate, two-
dimensional, and three-dimensional crystals of various structures.
We identify strongly anisotropic sonic crystals for scalar acoustic
waves and phononic crystals for vector elastic waves in which
quasi-longitudinal waves are much slower than shear waves.

II. EFFECTIVE VELOCITY FOR PERIODIC ACOUSTIC
COMPOSITES

Bloch waves are the eigenfunctions of sonic crystals and, in
general, of periodic fluid composites. They have the form
p(r)exp({(k � r � ωt)), with ω being the angular frequency, k being
the wavevector, and p(r) being the periodic part of the pressure
field. They can be obtained by solving the time-harmonic acoustic
wave equation

�∇ � 1
ρ
∇(pexp(�{k � r))

� �
¼ ω2 1

B
pexp(�{k � r) (1)

under periodic boundary conditions. The mass density ρ(r) and
the elastic modulus B(r) are inhomogeneous functions of space
coordinates.

In the finite element method, the eigenproblem defining the
band structure is solved in weak form as

h(∇� {k)q, ρ�1(∇� {k)pi ¼ ω2hq, B�1pi, 8q: (2)

In this equation, q(r)exp({k � r) is a test function defined in the
same functional space as the solution [q(r) is periodic] and the
symbol 8q means “for all test functions.” The scalar product is
defined for two scalar functions as ha, bi ¼ Ð

Ω a*b, with * being the
complex conjugation operation and for two vector functions as
ha, bi ¼ Ð

Ω a* � b. The left-hand side of Eq. (2) is thus

ð
Ω
(∇þ {k)q* � ρ�1(∇� {k)p: (3)

The phononic band structure depicted in Fig. 1(a) is the func-
tional relation, ω(k), obtained from Eq. (2). For a sonic crystal,
there is a single band starting from the Γ point of the first Brillouin
zone. For small frequency and wavenumber, this band is

non-dispersive but anisotropic: its slope, the effective velocity,
depends on the direction of propagation. Plotting the effective
velocity as a function of the unit vector k̂ defines the effective veloc-
ity surface depicted in Fig. 1(b). Numerically, it is sufficient in
order to obtain it to consider a small value for k and solve Eq. (2)
as a function of k̂, keeping only the lowest eigenvalue. A closed
form expression, giving more physical insight into the origin of
anisotropy, can be obtained as follows.

We wish to consider an expansion for small wavenumber
k ¼ jkj and small frequency ω. From the point of view of the per-
turbation theory, the first-order solution for ω is zero, implying
that we consider only the lowest band starting at the Γ point at the
center of the first Brillouin zone, so we need a second-order solu-
tion in k and ω. For the Bloch wave itself, the first-order solution is
enough. We consider the following ansatz for the periodic pressure
field to first-order:

p(r) � p0 þ {kp1(r; k̂), (4)

with k̂ ¼ k=k being a unit vector in the direction of propagation. p0
is a constant field since

Ð
Ω ∇q* � ρ�1∇p0 ¼ 0 for all test functions

and q implies ∇p0 ¼ 0 uniformly. As a result, ∇p � {k∇p1 and for
instance,

(∇� {k)p � �{kk̂p0 þ {k∇p1 (5)

to first order. As a result, the gradient of pressure is a linear func-
tion of the wavenumber that also depends on the direction of prop-
agation. Note that we do not need to consider explicit dependence
with frequency since close to the Γ point ω depends linearly on
k—and also depends on the direction of propagation. As a result,
the effective phase velocity veff ¼ ω

k depends only on the direction
of propagation.

FIG. 1. Definition of the effective velocity surface for a periodic acoustic com-
posite or sonic crystal. (a) The phononic band structure plotted along high sym-
metry directions in the first Brillouin zone (figured here by points X, M, and Γ)
has one band starting at the Γ point in any direction. The slope of that band is
the effective velocity veff (k̂), a function of the direction of propagation for acoustic
waves given by unit vector k̂. (b) The effective velocity surface is the locus of
veff (k̂), a closed surface in the three-dimensional space.
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Developing (2), we have

h∇q, ρ�1∇pi � {kh∇q, ρ�1k̂pi þ {khk̂q, ρ�1∇pi
þ k2hq, ρ�1pi ¼ ω2hq, B�1pi, 8q: (6)

Then inserting the first-order approximation for the solution and
keeping terms up to second order,

{kh∇q, ρ�1∇p1i � {kh∇q, ρ�1k̂p0i þ k2h∇q, ρ�1k̂p1i
� k2hk̂q, ρ�1∇p1i þ k2hq, ρ�1p0i ¼ ω2hq, B�1p0i, 8q: (7)

The first two terms are of first order and the remaining terms of
second order. They must be zero independently since the equation
is continuously valid for all k and ω. The two conditions are thus

h∇q, ρ�1∇p1i ¼ h∇q, ρ�1k̂p0i, 8q, (8)

v2eff hq, B�1p0i ¼ hq, ρ�1p0i
þ h∇q, ρ�1k̂p1i � hk̂q, ρ�1∇p1i, 8q: (9)

Equation (8) defines the first-order correction p1 in the weak sense.
Setting q ¼ p1, it further follows

h∇p1, ρ�1∇p1i ¼ h∇p1, ρ�1k̂p0i ¼ hk̂p0, ρ�1∇p1i: (10)

The last expression holds only if ρ is a real-valued function. Finally,
setting q ¼ p0 in Eq. (9), we obtain an estimator for the square of
the effective phase velocity

v2eff (k̂) ¼
h p0, ρ�1p0i � hk̂p0, ρ�1∇p1i

h p0, B�1p0i : (11)

Equation (11) gives explicitly the effective velocity surface for
acoustic pressure waves in the long wavelength limit. It is equiva-
lent to Krokhin’s PWE formula,13 but it avoids referring to the
inversion of a full matrix. Actually, the matrix inversion is replaced
by the solution of the sparse linear problem defined by Eq. (8).
Anisotropy is exclusively contained in the correction term
hk̂p0, ρ�1∇p1i that represents the part of the elastic potential
energy of the Bloch wave that is stored in the microstructure, i.e.,
this term vanishes only for a homogeneous unit cell. If both B and
ρ are real-valued functions, including the case of lossless media, the
latter term is positive per Eq. (10), and we have the upper bound

v2eff �
h p0, ρ�1p0i
h p0, B�1p0i , (12)

i.e., the effective velocity is always smaller than the ratio of the
averaged inverses of the mass density and the modulus. As a conse-
quence, the velocity surface is contained within a sphere whose
radius is the square root of (12), independent of the direction of
propagation. For a binary mixture of two fluids, the integral in the
denominator corresponds to Wood’s law:1 B�1

eff ¼ fB�1
1

þ(1� f )B�1
2 , with f the filling fraction of fluid 1 in fluid 2.

The integral in the numerator is an upper bound for the effective
value of the inverse of the mass density, ρ�1

eff � f ρ�1
1 þ (1� f )ρ�1

2 .
Equation (11) gives the exact value ρ�1

eff ¼ h p0, ρ�1p0i
�hk̂p0, ρ�1∇p1i, with the second term accounting for the slowing
down of acoustic waves depending on the exact details of the
microstructure.13,21

III. EFFECTIVE TENSORS FOR PERIODIC ACOUSTIC
COMPOSITES

In the case of fluid composites, Eq. (11) leads to a scalar effec-
tive value of the elastic modulus that can be defined as

Beff ¼ h p0, p0i
h p0, B�1p0i : (13)

That value is independent of the direction of propagation.
The numerator of Eq. (11) can be checked to be a quadratic form
with respect to the direction vector k̂; hence, it defines a rank-2
effective tensor for the inverse of mass density, i.e.,

k̂ � 1
ρ

� �
eff

k̂ ¼ hk̂p0, ρ�1(k̂p0 � ∇p1)i
h p0, p0i : (14)

Thus, it is the effective mass density that is anisotropic in the case
of fluid composites. The effective tensor can be checked to be sym-
metric and has the general form

1
ρ

� �
eff

¼
r11 r12 r13
: r22 r23
: : r33

2
4

3
5: (15)

When the tensor is written in its principal axes, it becomes diago-
nal and positive

1
ρ

� �
eff

¼
r11 0 0
0 r22 0
0 0 r33

2
4

3
5: (16)

There is a single longitudinal wave whatever the direction of propa-
gation, satisfying the relation

v2eff (k̂) ¼ Beff (r11α
2 þ r22β

2 þ r33γ
2) (17)

with (α, β, γ) ¼ (cos θ cosf, cos θ sinf, sin θ) the components of
k̂ along the principal axes. When under this form, fitting the effec-
tive velocity surface is very easy since only the value of the phase
velocity in three different directions is required. As a note, we
checked in all cases reported in this paper that the effective veloc-
ities obtained from the second-order perturbation theory agree
exactly with the brute-force method based on the computation of
the phononic band structure outlined in the introduction and illus-
trated in Fig. 1.

As a first example, we consider the 2D sonic crystal of steel
rods in water whose unit cell is depicted in Fig. 2. For simplicity,
steel is, in this section, considered an equivalent fluid supporting
only longitudinal waves. The steel inclusions have a triangular
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shape and are organized according to a square lattice. The structure
is invariant along the Z axis and has a vertical symmetry plane
passing along the diagonal of the square. Hence, the crystal is
orthotropic with the first two principal axes rotated by 45� in the
(XY) plane. The material constants used are ρ ¼ 1000 kg/m3 and
B ¼ 2:2 GPa for water, and ρ ¼ 7780 kg/m3 and B ¼ 264 GPa for
steel. The velocity surface has an almost circular cross section in
the (XY) plane and an almost elliptical cross section in all planes
containing the Z axis. The fitted effective constants in Table I
confirm that r11 and r22 are almost equal, whereas r33 has a slightly
larger value. We checked that the results are similar for other lat-
tices and inclusion shapes: anisotropy remains quite limited for
sonic crystals with an inclusion fully immersed in the surrounding
matrix. In the case of the hexagonal lattice, the same inclusion but
rotated by 10�, see Fig. 3, there is a C3 symmetry in addition to the
invariance axis (the Z axis is a rotation center of order 3). The C3

symmetry imposes strictly r11 ¼ r22, a property that is verified
numerically in Table I.

The simplest acoustic composite with very strong anisotropy is
a simple alternation of two very different materials, for instance,

FIG. 2. A 2D square-lattice sonic crystal composed of triangular steel rods in
water. (a) The triangular rods are rotated by 45� with respect to the X axis. The
ratio of the length of the equilateral triangle to the lattice constant is d=a ¼ 0:8.
The crystal is orthotropic. (b) Effective velocity surface. (c) Cross sections
through the symmetry planes of the crystal.

TABLE I. Effective constants for periodic acoustic composites.

Effective
constant
(units) Beff (GPa) r11 (m

3/kg) r22 (m
3/kg) r33 (m

3/kg)

Figure 2 3.034 6.07 × 10−4 6.03 × 10−4 7.58 × 10−4

Figure 3 2.9 6.46 × 10−4 6.46 × 10−4 7.88 × 10−4

Figure 4 2.84 × 10−4 2.0 × 10−3 0.416 0.416
Figure 5 2.2 7.17 × 10−4 2.85 × 10−4 1.0 × 10−3

Figure 6 2.2 1.94 × 10−3 1.94 × 10−3 0.865 × 10−3

FIG. 3. (a) A 2D hexagonal-lattice sonic crystal composed of triangular steel rods
in water. The triangular rods are rotated by 10� with respect to the X axis. The ratio
of the length of the equilateral triangle to the lattice constant is d=a ¼ 0:7. The
crystal has a C3 symmetry and is transverse isotropic. (b) Effective velocity surface.
(c) Cross sections through the symmetry planes of the crystal.
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water and air; see Fig. 4. The material constants used for air are
ρ ¼ 1:2041 kg/m3 and B ¼ 142 kPa. X is an axis of revolution and
the crystal is transverse isotropic. Of course, such a theoretical
sonic crystal of air and water is not easily accessible to experiments.
For the laminar case, the effective tensor ρ�1

eff is known analytically.1

We checked that the formulas r11 ¼ hρi�1 and r22 ¼ r33 ¼ hρ�1i
match with the fitted result in Table I for Fig. 4, where h�i denotes
the spatial average.

A feasible solution to obtain strongly anisotropic sonic crystals
is to consider a single-phase material, for instance, water, contained
in a periodic array of solid tubes acting as acoustic waveguides
without a frequency cutoff. We neglect here the generation of
elastic waves in the solid waveguides containing the fluid support-
ing acoustic waves. For instance, the square-lattice crystal of Fig. 5
defines an orthotropic crystal with three different principal veloc-
ities. The phase velocity in the Z direction is faster than the phase

velocity in the Y direction because acoustic waves have to propagate
for a longer distance from one side of the unit cell to another and
even faster than the phase velocity in the X direction. The situation
is typical of labyrinthine sonic crystals or metamaterials used for
sound absorption. Figure 6 shows a 3D labyrinthine sonic crystal
containing water. That crystal is orthotropic with two independent
tensor elements.

IV. EFFECTIVE VELOCITIES FOR PERIODIC ELASTIC
COMPOSITES

The derivation of the effective velocity formula for elastic
composites, or phononic crystals, follows the same path as for
sonic crystals in Sec. II, with the added difficulty that the displace-
ment field ui(r) is a vector field with three components. The vector
elastodynamic equation, here written in the component form,

FIG. 4. (a) A laminar 1D sonic crystal composed of alternated layers of water
and air with equal thickness. The structure is invariant along axes Y and Z. The
crystal is orthotropic with two independent tensor elements. (b) Effective velocity
surface. (c) Cross sections through the symmetry planes of the crystal.

FIG. 5. (a) A 2D sonic crystal composed of a periodic array of waveguides
containing water. The crystal is orthotropic with three independent tensor
elements. (b) Effective velocity surface. (c) Cross sections through the symmetry
planes of the crystal.
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replaces the scalar acoustic equation

� cijkl(ukexp(�{k � r)),l
� �

,j
¼ ω2ρuiexp(�{k � r): (18)

The weak form of Eq. (18), valid for Bloch waves of the form
ui(r)exp({(�k � r þ ωt)), is

h(∇� {k)q, c : (∇� {k)ui ¼ ω2hq, ρui, 8q: (19)

The notation c: means contraction of the last two indices the
rank-4 tensor c. The left-hand side of Eq. (19) is in the component
form

ð
Ω
(@j þ {kj)qi*cijkl(@l � {kl)uk: (20)

One difficulty in the vector (elastic) case is that there is not a
single value for the zeroth order constant field at zero frequency.

Instead, for elasticity, we have three possible values for each of
the three different possible polarizations. In the phononic band
structure, there are now three different propagating bands starting
from the Γ point. Therefore, the ansatz for the displacement field
up to the first order is taken as

u � ξα(u0α þ iku1α(k̂)), (21)

where summation on α ¼ 1, 2, 3 is implicit. This expression uses
the fact that the kernel of the operator at (ω, k) ¼ 0 is of dimension
3. The three coefficients ξα in the linear combination are unknown.
Instead of Eq. (8), the first-order corrections are obtained as the
solution of the linear problems,

h∇q, c :∇u1αi ¼ h∇q, c : k̂u0αi, 8q, (22)

for α ¼ 1, 2, 3. For the second-order terms, we now have instead of
Eq. (9)

v2eff hq, ρu0βiξβ ¼ ξβ hk̂q, c : k̂u0βi
h

þ h∇q, c : k̂u1βi � hk̂q, c :∇u1βi
i
, 8q, (23)

for β ¼ 1, 2, 3. As before, we select the three test function
q ¼ u(α)0 to obtain a generalization of Christoffel’s equation for
elastic waves in anisotropic homogeneous media

v2eff hu0α , ρu0βiξβ ¼ hk̂u0α , c : k̂u0βi
h

�hk̂u0α , c :∇u1βi
i
ξβ: (24)

This expression defines a 3� 3 generalized eigenvalue problem for
the square of the effective velocities.

The formula generalizes the result by Kutsenko et al. for shear
elastic waves20 to vector elastic waves and contains the full anisot-
ropy of wave propagation in the long wavelength limit. The imple-
mentation under a variational form is much more efficient than
PWE formulas22 because there is no matrix that needs to be
inverted, only two 3� 3 matrices have to be formed. The first-
order corrections u1α contain structural anisotropy and arise
because of discontinuities at the inclusions or at internal boundar-
ies. The formula has an explicit dependence on the direction of
propagation: it gives the three effective velocity surfaces directly.
Each of the velocity surfaces can be assigned to either the longitudi-
nal wave or one of the two shear waves that exist in the long wave-
length limit.

V. EFFECTIVE TENSORS FOR PERIODIC ELASTIC
COMPOSITES

In the case of elastic composites, Eq. (24) leads to a scalar
effective value of the mass density if the vectors u0α are chosen
orthogonal. Then,

ρeff ¼
hu0, ρu0i
hu0, u0i , (25)

where u0 equals any of the three u
(α)
0 .

FIG. 6. (a) A 3D sonic crystal composed of a periodic array of waveguides
containing water. The crystal is orthotropic with two independent tensor ele-
ments. (b) Effective velocity surface. (c) Cross sections through the symmetry
planes of the crystal.
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The effective elastic tensor defined by Eq. (24) is symmetric
and of rank 4. Its general form in the contracted notation is then

cð Þeff ¼

c11 c12 c13 c14 c15 c16
: c22 c23 c24 c25 c26
: : c33 c34 c35 c36
: : : c44 c45 c46
: : : : c55 c56
: : : : : c66

2
6666664

3
7777775
: (26)

With phononic crystals in the long wavelength limit, the symmetry
is given by the space group describing the symmetries of the unit
cell considered a continuous distribution of matter.23 This is in
contrast to the point group for crystal lattices composed of atoms
assumed to be punctual.24 We will not consider all possible space
groups in the following, but only combinations of symmetry
planes. In case there is one symmetry plane, e.g., (x1, x2), then

cð Þeff ¼

c11 c12 c13 0 0 c16
: c22 c23 0 0 c26
: : c33 0 0 c36
: : : c44 c45 0
: : : : c55 0
: : : : : c66

2
6666664

3
7777775
: (27)

In case there are two orthogonal planes of symmetry, the crystal is
orthotropic and

cð Þeff ¼

c11 c12 c13 0 0 0
: c22 c23 0 0 0
: : c33 0 0 0
: : : c44 0 0
: : : : c55 0
: : : : : c66

2
6666664

3
7777775
: (28)

If the crystal is transversely isotropic with respect to axis x3, then

cð Þeff ¼

c11 c12 c13 0 0 0
: c11 c13 0 0 0
: : c33 0 0 0
: : : c44 0 0
: : : : c44 0
: : : : : 1

2 (c11 � c12)

2
6666664

3
7777775
: (29)

Transverse isotropy is a sub-case of orthotropy.
The fits in the following figures are for curves with the follow-

ing expressions, valid for the (XY) plane of orthotropic crystals:

�ρV2
L,S(f) ¼

1
2
[(c11 þ c66)α

2 þ (c22 þ c66)β
2

+ [(c11 � c66)α
2 � (c22 � c66)β

2]
2

�

þ4(c12 þ c66)
2α2β2

��1
], (30)

�ρV2
SH(f) ¼ c55α

2 þ c44β
2: (31)

Fitting of the velocity curves then provides an estimator for effec-
tive parameters (c11, c22, c12, c66, c44, c55). All effective parameters
can be obtained by fitting velocity curves in the two additional
planes (XZ) and (YZ). Equations (30) and (31) indeed remain valid
with a replacement of the former set of parameters with
(c11, c33, c13, c55, c66, c44) and (c22, c33, c23, c44, c55, c66), respectively.
Redundancy in the effective parameters in the fitting process is not a
problem and instead helps in finding more accurate estimates for the
effective elastic tensor. Table II gathers the effective parameters of
the periodic elastic composites considered next. Two isotropic solid

TABLE II. Effective tensors for periodic elastic composites.

Figure 7 Figure 8 Figure 10

�ρ (kg/m3) 4461 7780 7780
c11 (GPa) 14.66 22.49 83.80
c22 (GPa) 120.38 1.12 83.80
c33 (GPa) 120.68 31.31 1.29
c44 (GPa) 42.74 2.88 0.085
c55 (GPa) 2.91 7.23 0.085
c66 (GPa) 2.91 0.24 0.071
c12 (GPa) 7.12 0.54 0.98
c13 (GPa) 7.12 8.70 0.27
c23 (GPa) 34.90 0.63 0.27

FIG. 7. (a) A laminar 1D phononic crystal composed of alternated layers of
steel and epoxy with equal thickness. The structure is invariant along axes Y
and Z. The crystal is orthotropic. (b)–(d) Cross sections of the three effective
velocity surfaces through the symmetry planes of the crystal.
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materials are considered in examples, steel and epoxy. Independent
material constants for steel are c11 ¼ 264 GPa, c66 ¼ 84 GPa, and
ρ ¼ 7780 kg/m3; for epoxy, they are c11 ¼ 7:54 GPa, c66 ¼ 1:48 GPa,
and ρ ¼ 1142 kg/m3.

The case of phononic crystals with a solid matrix leads to
some anisotropy for square-lattice crystals but transverse isotropy
for hexagonal-lattice crystals.15 An alternation of epoxy and steel
layers in 1D phononic crystals, see Fig. 7, leads as in the case of the
sonic crystal of Fig. 4 to strong anisotropy with orthotropic symme-
try. Propagation in the plane (YZ) is further isotropic. Overall, the
longitudinal velocity remains always faster than the two shear
waves. As a note, the laminar case can be treated analytically,
resulting in explicit formulas for the effective elastic tensor1,25

c*11 ¼ h1=(λþ 2μ)i�1, c*55 ¼ c*66 ¼ h1=μi�1,

c*44 ¼ hμi, c*12 ¼ c*13 ¼ hλ=(λþ 2μ)ih1=(λþ 2μ)i�1,

c*23 ¼ h2μλ=(λþ 2μ)i þ hλ=(λþ 2μ)ic*12,
c*22 ¼ c*33 ¼ h4μ(λþ μ)=(λþ 2μ)i þ hλ=(λþ 2μ)ic*12,

(32)

where λ and μ are Lamé’s constants for isotropic materials
(λþ 2μ ¼ c11, μ ¼ c66) and h�i denotes the spatial average. We
checked that the fitted values appearing in Table II for Fig. 7 are
consistent with the analytical result.

FIG. 8. (a) A 2D phononic crystal composed of a periodic array of steel bars.
The crystal is orthotropic. (b)–(d) Cross sections of the three effective velocity
surfaces through the symmetry planes of the crystal. In-plane (XY ), the longitu-
dinal velocity becomes smaller than the S2 shear velocity in a certain angular
range.

FIG. 9. A 2D hexagonal-lattice phononic crystal composed of a periodic array
of steel bars. (a) In the initial configuration, the C3 symmetry implies transverse
symmetry. (b) The effective velocity surfaces are then transversely isotropic in
the (XY ) plane. (c),(e),(g) The central connection point of the bars is brought
down in steps of 0:1a, breaking the C3 symmetry but leaving the symmetry
plane (YZ) intact, hence making the crystal orthotropic. (d),( f ),(h) Corresponding
cross sections of the three effective velocity surfaces through the symmetry
planes of the crystal. In-plane (XY ), the longitudinal velocity gradually becomes
smaller than the S2 shear velocity in a certain angular range.
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FIG. 10. A 3D phononic crystal
composed of a periodic array of steel
bars, with the same mesh as in Fig. 6.
The crystal is orthotropic with three
symmetry planes. (a),(c),(e) Effective
velocity surfaces for the three elastic
waves. (b),(d),(f ) Cross sections
through the symmetry planes of the
crystal.
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The 2D phononic crystal in Fig. 8 uses the same mesh as the
sonic crystal of waveguides in Fig. 5. However, the long beams now
play the role of elastic waveguides. The structure becomes quite soft
for longitudinal waves propagating in the Y direction compared to
the other principal axes, i.e., c22 is much smaller than c11 and c33,
as Table II indicates. Remarkably, c44 . c22 so that pure-shear
waves (polarized along the Z axis) in the Y direction are signifi-
cantly faster than longitudinal waves. The in-plane shear wave is
coupled with the longitudinal wave by the structure and remains
always slower than that longitudinal wave. This property is consis-
tent with c66 , c22 in Table II.

The interplay of symmetry and anisotropy in 2D structures is
further illustrated in Fig. 9. The hexagonal-lattice crystal is made of
a single phase of steel. The initial configuration in Fig. 9(a) is com-
posed of three identical diamonds connected at the center and at
three vertices of the boundary of the hexagonal unit cell. It has
three symmetry planes (and C3 symmetry). As a result, elastic wave
propagation in the plane (XY) is isotropic. The in-plane shear wave
is very slow, whereas the pure-shear wave is just slightly slower
than the longitudinal wave. Then, the central connection point is
gradually shifted downward in Figs. 9(b)–9(d) by elongating the
upper diamond while contracting both lower diamonds. Of the
three symmetry planes mentioned above, only the vertical symme-
try plane is left and the structure becomes orthotropic. The
purpose of this morphing operation is to make the crystal much
softer in the Y direction while increasing the stiffness in the X
direction. As a result, the in-plane shear wave always remains very
slow and the longitudinal wave in the Y direction becomes slower
and slower and in any case slower than the pure-shear wave. This
example illustrates how the structural design controls wave
anisotropy.

Considering again the 3D structure of beams with the cubic
lattice of Fig. 6 leads to the velocity surfaces shown in Fig. 10.
The structure is again orthotropic. However, anisotropy in the case
of elastic waves is quite different to the case of acoustic waves due
to the vector character of the polarization. As a note, there is no
decoupling of in-plane and out-of-plane elastic waves in the 3D
case, in contrast to the 2D case. There is a very slow shear wave for
all directions of propagation. The longitudinal and the other shear
waves are strongly anisotropic but the longitudinal wave always
remains faster. In case the waves are coupled by the structure, the
velocity surfaces repulse and does not cross. As a result of this
topological property, which must be fulfilled for all propagation
directions defined on the unit sphere that forms a closed surface in
3D space, longitudinal and shear velocity surfaces are strictly imbri-
cated in the case considered.

VI. CONCLUSION

The main results of this work are formulas (11) and (24) for
the effective velocities of acoustic and elastic waves in periodic
composites, respectively. These formulas have a variational form
similar to those produced by the two-scale homogenization theory,
but they were directly obtained from a second-order perturbation
analysis of the phononic band structure of the physics of waves in
periodic media. The influence of the microstructure, that is, the
details of the internals of the crystal, is encompassed in a first-order

perturbation obtained as the solution of an auxiliary problem on
the unit cell. The effective tensors are obtained from volume aver-
ages over the unit cell involving the zeroth order perturbation, here
either a constant pressure field or a constant displacement vector
field. Effective velocities depend continuously on the direction of
propagation and form effective velocity surfaces characteristic of
the crystal anisotropy in the long wavelength limit.

Periodic acoustic composites, though sustaining scalar pres-
sure waves in a fluid medium that is isotropic at the microscopic
level can be made quite strongly anisotropic by a proper design of
the structure of the unit cell. We particularly point at possible reali-
zations with periodic arrays of hollow waveguides forming laby-
rinths for the fundamental acoustic guided mode, which is
dispersionless and without frequency cutoff.

In periodic elastic composites, the vector character of wave
polarization plays a determinant part. For 2D elastic composites for
which in-plane and out-of-plane (pure shear) waves are decoupled,
the longitudinal wave can be made slower than the pure-shear wave
over a given angular range by the structural design with a single-
phase material. For 3D elastic composites, the coupling of all three
components of the displacement field leads to imbricated velocity
surfaces.
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