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We investigate experimentally Lamb wave propagation in coupled-resonator elastic waveguides (CREWs)
formed by a chain of cavities in a two-dimensional phononic crystal slab with cross holes. Wide complete
bandgaps, extending from 53 to 88 kHz, are first measured in a finite phononic crystal slab sample. A straight
waveguide and a wave splitting circuit with 90° bends are then designed, fabricated and measured. Elastic Lamb
waves are excited by a piezoelectric patch attached to one side of the phononic slab and detected using a

scanning vibrometer. Strongly confined guiding and splitting at waveguide junctions are clearly observed for
several guided waves. Numerical simulations are found to be in excellent agreement with experimental results
and allow for the identification of the involved resonant cavity modes. The influence on the dispersion of guided
waves of the slab thickness and of the hole length is also investigated. The results have implications for the
design of innovative phononic devices with strong confinement and tailorable dispersion.

1. Introduction

Over the past two decades, phononic crystals (PCs) [1], i.e. artificial
functional composites composed of periodic scatterers embedded in a
matrix, have attracted a lot of interest [2,3]. In particular, wave pro-
pagation can be fully forbidden if the frequency falls inside a phononic
bandgap. The factors influencing bandgaps, such as material [4] and
geometrical [5] parameters, are now well understood. Furthermore,
when the geometrical or material properties of one or several unit cells
are locally altered, defect states can appear inside bandgaps. As a result,
waves can be guided either along a line of defects [6,7] or along a linear
chain of defect cavities [8,9]. As a general rule, confinement of the
guided waves is favored by wider bandgaps.

Recently, there has been a growing interest in harnessing the pro-
pagation of Lamb waves in PC slabs [10-13]. PC slabs are periodic and
infinite in two directions, but finite in the third direction and hence do
not suffer from leakage [14]. Lamb waves are strongly confined be-
tween the free surfaces but can still be manipulated in the periodic
plane, making them interesting candidates for the design of phononic
circuits and devices. Generally, two kinds of PC slabs have been con-
sidered: either flat slabs perforated with holes [15] or containing solid
inclusions [16], or slabs supporting attached pillars [17] or mechanical
resonators [18]. Phononic bandgaps were reported experimentally in
slabs at ultrasonic frequencies [16,19], up to the GHz range [20,21].

Bandgaps in PC slabs can be optimized by adding holes [22] or by using
topology optimization [23]. They can also be enlarged by erecting
pillars on the solid regions of a perforated slab [24] or by adding pillars
on both sides of the slab [25].

Much attention has also been paid to defect-based waveguides in PC
slabs. Investigations have mainly focused on guiding Lamb waves along
linear waveguides [26]. Since Lamb wave are channeled along a line
defect, complex waveguides can be tailored in the plane at frequencies
within a complete bandgap. The propagation of Lamb waves can be
changed by 90° through a polyline sharp waveguide [27] or at a wa-
veguide bend with slightly perturbed lattice in the bent region [28].
Waveguides with many sharp corners (90°) have also been reported,
though with a relatively large width [17]. In contrast to linear wave-
guides, waveguides based on linear chains of coupled cavities have
been shown theoretically to allow simultaneously for very strong wave
confinement and for low group velocity transmission [8,9]. In this
paper, we present the first experimental demonstration of highly con-
fined propagation of Lamb waves along coupled-resonator elastic wa-
veguides (CREWs). We also show that sharp 90° bends can be included
to form phononic circuits.

2. Experimental setup and numerical methods

Fig. 1 presents a photograph of the experimental setup used for
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Fig. 1. Photograph of the experimental setup illustrating the measurement of
vertical displacements of Lamb waves excited in a PC slab sample.
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Fig. 2. PC slab sample manufactured in a stainless steel plate. (a) The Lamb
wave source in the center is a piezoelectric patch. Transmitted waves are
measured along the I'X direction (at point A) and the I'M direction (at point B).
(b) The primitive unit cell is schematized, including geometrical dimensions
and the first Brillouin zone for the square lattice.

(b)

measuring Lamb wave propagation in a PC slab. An asymmetric wave
source is formed by sticking a piezoelectric patch to one side of the slab,
in order to generate Lamb waves. Two kinds of temporal signals are
used. A periodic chirp is used to measure the transmission properties
[13]. A harmonic signal with given frequency is further used to measure
the distribution of the out-of-plane displacement over the surface of the
slab. Displacements are measured using the Polytec PSV-500 scanning
vibrometer. Such a technique is often used to detect Lamb waves
[29,30]. Transmissions are estimated by detecting out-of-plane dis-
placements around designated points and are averaged over the surface
of one unit cell of the PC slab.

Numerical simulations are conducted using the finite element
method. A primitive unit cell, as sketched in Fig. 2(b), is chosen to
determine dispersion relations of the perfect PC slab. Due to the large
impedance ratio between steel and air, air is treated as a vacuum in the
numerical model. A supercell technique is used to investigate the dis-
persion relation and eigenmodes of CREWs [8]. Traction-free boundary
conditions are set on the top and bottom surfaces and inside the holes,
and periodic Bloch boundary conditions are applied on the other
boundaries. The mesh spacing in the plane of the slab is smaller than a/
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Fig. 3. (a) Phononic band structure and (b) experimental transmission of the
perfect PC slab with cross holes (b/a = 0.9, ¢/a = 0.2, h/a = 0.4). The color
scale in panel (a) measures the polarization and varies from in-plane modes
(blue) to out-of-plane modes (red). The gray areas indicate the passing fre-
quency ranges. The blue and red lines in panel (b) show measurements along
the I'X and I'M directions, respectively. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4. Coupled resonator elastic waveguides (b/a = 0.9, c¢/a = 0.2, h/a = 0.4).
(a) The experimental sample includes a linear chain of defect cavities defining a
straight waveguide (W1), and a wave splitter circuit with 90° bends and two
output ports (S1 and S2). The Lamb wave source is a piezoelectric patch. (b)
The supercell of the coupled-resonator elastic waveguide is used to obtain the
dispersion of guided waves.
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Fig. 5. Experimental observation of Lamb wave propagation in the sample of Fig. 4. (a) The transmission through the waveguide (blue line: W1) and through the
splitter (red line: S1, green line: S2) is shown as a function of frequency. Transmission is measured for the vertical component of displacement |u,| and is normalized
to its value at low frequency. The gray areas indicate the passing bands for perfect PC slab. Panels (b)—(d) show field distributions of displacement measured at chosen
frequencies of the three passing frequency ranges labeled I-III in (a). In each panel, the left and right subplots are for the straight waveguide or the wave splitter,
respectively. The wave source position is indicated by the gray disk. The color scale is for amplitude of z-displacement normalized with respect to the maximum
.amplitude (Max). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

20, with a the lattice constant. There are 5 elements in the depth of the
plate. Second degree polynomial elements of the Lagrange type are used
to approximate the displacement vector considered as the unknown. A
sparse eigenvalue solver is used to search for eigenfrequencies around
75 kHz. Band structures are obtained by letting the wavevector sweep
selected directions of the first Brillouin zone. The displacement dis-
tribution for selected eigenmodes is obtained by selecting the relevant
frequency and wave vector.

Numerical transmissions are further calculated by considering a
time-harmonic 3D model of the finite slab. A z-polarization displace-
ment wave source with unit amplitude (IUyl = 1) is applied to the
central part of the slab. Transmitted displacements are collected at the
ends of the waveguide and of the splitter circuit, similarly to the ex-
perimental arrangement. The transmission, T (f), is evaluated as the
ratio of the vertical displacement amplitude (1U;|) integrated over two
identical homogeneous parts around the excitation (S; = a?) and de-
tection areas (S; = a?), i.e.,

Js, U ds]
' M

j;l_ Uyl ds
It should be noted that the transmission thus defined can be larger than
0 dB without violating energy conservation [9].

T() = 2010g10(

3. Bandgaps of the phononic crystal slab with cross holes

We first consider a 2D square lattice PC slab with cross holes, as
shown in Fig. 2. The sample is composed of an array of 20 X 20 unit
cells with a central defect where the source is attached. Actually, the
consideration of cross holes is known to favor wide complete band gaps
[15]. The geometrical parameters are chosen as b/a = 0.9, ¢/a = 0.2 and
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h/a = 0.4, with the lattice constant a = 20 mm, based on the optimi-
zation in Ref. [15]. The solid matrix is isotropic steel with mass density
o = 7850 kg/m>, Poisson’s ratio v =0.3, and Young’s modulus
E = 206 GPa.

The phononic band structure of the perfect PC slab is shown in
Fig. 3(a). The primitive unit cell and the corresponding first Brillouin
zone are shown in Fig. 2(b). The dispersion bands are classified as in-
plane or out-of-plane but evaluating the displacement vector of each
Bloch wave. Two complete bandgaps extend in the frequency ranges
53.15kHz <f < 68.25kHz and 69.8kHz <f < 87.9 kHz. Experimental
transmissions along the I'X and I'M directions are shown in Fig. 3(b).
Excellent agreement is observed between numerical simulation and
experiments, without any parametric adjustment. As a remark, the ex-
citation is asymmetric with respect to the mid-plane of the slab and
favors the excitation of out-of-plane modes. In-plane modes can, how-
ever, be excited as well as a result of the finite lateral extent of the
source. The wide complete bandgaps are suitable for the design of
highly confined coupled resonator waveguides, as we discuss next.

4. Coupled resonator elastic waveguides

In this section, we consider CREWs formed in the perfect PC slab by
filling certain cross holes to form defect cavities. The sample fabricated
in stainless steel is shown in Fig. 4(a). CREWs are formed by con-
sidering a chain of defect cavities separated by 2 lattice constants [9].
Both a straight waveguide and a wave splitter are fabricated on the
same sample. The straight waveguide (W1) is a sequence of 7 cavities.
The wave splitter is composed of one straight part and of two asym-
metric parts (labeled S1 and S2), including sharp corners with 90°
bends [7].

Experimental transmissions are shown in Fig. 5(a). They are
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Fig. 6. Finite element analysis of dispersion and transmission for coupled-resonator elastic waveguides of Fig. 5. (a) The band structure is obtained from a supercell
model of the periodic waveguide. Points are for finite element results. Solid lines are obtained by fitting to a theoretical model (see text). The horizontal dashed lines
mark the resonant frequencies for an isolated cavity in the PC slab. The color scale represents from the in-plane modes (blue) to out-of-plane modes (red). The gray
areas indicate the passing bands for the perfect PC slab. (b) The displacement distributions at the X point of the 6 Bloch waves labeled in (a) are shown. (c) The
numerical transmission through the straight waveguide and the wave splitter is plotted as a function of frequency. Panel (d) shows the displacement distributions at a
chosen frequency inside passing range III. The color scale in panels (b) and (d) is for amplitude of z-displacement normalized with respect to the maximum .amplitude
(Max). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(a) X2

(b) X3

Fig. 7. Distribution of the x-displacement at the X point for Bloch waves 2 and 3
in Fig. 6(a). The color scale varies from negative (blue) positive (red) no.r-
malized values. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

normalized by the transmission for the straight waveguide measured at
a low passing frequency. Three distinct guidance frequency ranges,
labeled I-III, are clearly observed inside the complete bandgap. In the
case of the wave splitter, the transmissions measured at the two ends
present only slight differences, especially in the logarithmic scale, al-
though their total lengths are quite different, similarly to the results in
Ref. [9]. This observation is consistent with the high degree of con-
finement of guided waves. Experimental displacement fields at chosen
frequencies for each of the three passing frequency ranges are presented
in Fig. 5(b)-(d). Lamb waves are found to be strongly confined as they
are guided along the waveguides and to turn efficiently at the 90°
bends. They are furthermore split rather evenly at the T-junction of the
wave splitter. Away from the defect cavities, Lamb waves decay very
fast in all directions. This is a further confirmation of the complete
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Fig. 8.Band structures of CREWs with different relative thicknesses
(b/a = 0.9, c¢/a = 0.2). The color scale measures the polarization and varies from
in-plane modes (blue) to out-of-plane modes (red). The gray areas indicate the
passing bands for the corresponding perfect PC slab. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

bandgap of the PC slab.

The phononic band structure shown in Fig. 6(a) is obtained con-
sidering a supercell of size 2a X 7a X h, as depicted in Fig. 4(b). It in-
dicates the existence of a total of 9 guided Bloch waves. Each of them
emerges around a resonance frequency of the isolated defect cavity. The
lowest 3 guided Bloch waves are mixed together and are thus left out of
the following analysis, though they clearly lead to transmission both
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Fig. 9. Band structures of CREWs with different relative hole lengths
(¢c/a = 0.2, h/a = 0.4). The color scale measures the polarization and varies
from in-plane modes (blue) to out-of-plane modes (red). The gray areas indicate
the passing bands for the corresponding perfect PC slab. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

experimentally and theoretically. Eigenmodes at the X point are shown
in Fig. 6(b). Guided Bloch waves 1, 5, and 6 are polarized mostly out-of-
plane. In contrast, guided Bloch waves 2, 3, and 4 are polarized mostly
in-plane. The numerical transmissions through the waveguide and the
wave splitter shown in Fig. 6(c) are in quite good agreement with the
experimental results. Bloch waves 4 and 6 have a flat dispersion and
thus can hardly be excited; hence they do not contribute to transmis-
sion. Since the wave source is vertical and symmetrical with respect to
the xz plane, longitudinal modes can be excited. The distribution of x-
displacement for Bloch wave 2 shown in Fig. 7(a) is symmetric with
respect to the xz plane. This mode can thus be excited, and results in a
relatively high transmission. In contrast, the x-displacement distribu-
tion of Bloch wave 3 is asymmetric with respect to the xz plane. Such a
mode can then hardly be excited, and a quite low transmission is ob-
served in both simulation and experiment. Summarizing, passing fre-
quency ranges I, I and III can be attributed to Bloch waves 1, 2 and 5,
respectively. In each of these frequency ranges, guidance is single-
mode. Taking range III for example, guiding and splitting of Lamb
waves in Fig. 6(d) are clearly observed owing to the excitation of the
eigenmode at X5 for Bloch wave 5.

5. Influence of geometric parameters
The dispersion of Lamb waves is strongly dependent on the geo-

metry [15]. Accordingly, we investigate the influence of geometric
parameters, including slab thickness and size of the hole, on the
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dispersion of guided waves. The variation of the phononic band struc-
ture with the slab thickness is shown in Fig. 8. For a small thickness
(h/a = 0.15), only passing bands appear below 94.5 kHz. In the absence
of a bandgap, guided modes cannot form between adjacent defect
cavities. When h/a = 0.3, guided modes are formed owing to the ap-
pearance of complete bandgaps. As the slab thickness is varied con-
tinuously, it is expected that bands shift continuously in dispersion
space. Bands can then be labeled by comparing eigenmodes with those
of Fig. 6(b). With h/a increasing to 0.4, the frequencies of Bloch waves
1, 5 and 6 generally increase. Since these modes are mostly out-of-
plane, their eigenfrequencies are to the first order proportional to the
slab thickness. In contrast, the frequencies of Bloch waves 2, 3 and 4 do
almost not change, since these modes are mostly in-plane. When
h/a = 0.55, Bloch waves 5 and 6 move to even higher frequencies, and
Bloch wave 1 is mixed with the in-plane guided modes. When h/a = 0.9,
higher order vibration modes with cutoff frequencies [15] appear, and
are mixed with Bloch waves 3 and 4. With a further increase of the slab
thickness, these modes will close the bandgap [15], causing the dis-
appearance of the guided modes.

We further consider the effect of the hole length, b/a, on the guided
modes. The results are illustrated in Fig. 9. When b/a = 0.75, a narrow
complete bandgap exist in the considered frequency range and guided
modes are mixed with passing bands. This mixture disappears when
b/a = 0.8, but the in-plane and the out-of-plane guided modes remain
mixed. With a further increase of the hole length, Bloch waves 3 and 4
separate from Bloch waves 5 and 6. When b/a = 0.9, Bloch waves 1 and
2 come up. When b/a = 0.95, Bloch wave 2 interferes with the passing
bands around 70 kHz. As a rule, the frequencies of guided modes gen-
erally decrease with an increase in the hole length, similarly to the
variation of bandgap edges reported in Ref. [15]. Furthermore, the
frequencies of in-plane Bloch waves decrease faster than those of the
out-of-plane Bloch waves.

The dispersion of guided Bloch waves in a linear chain of coupled
cavities can be fitted against the theoretical model of Ref. [8]. The
fitting parameters are listed in Table 1 for the six Bloch waves and for
different geometrical parameters. As a note, parameter I;/(27) is the
resonance frequency of the isolated cavity. The predicted dispersion
relations are further shown in Figs. 6, 8 and 9 with solid lines. It can be
seen that the fit of dispersion with the numerical results is excellent.
Significantly, it is observed that the coupling coefficients hardly change
with the slab thickness for the in-plane Bloch waves 2, 3 and 4. This is a
direct evidence that the dispersion of the in-plane guided Bloch waves
is almost independent of the slab thickness. In contrast, coupling
coefficients clearly vary with the hole length, especially for in-plane
Bloch waves.

Table 1
Fitted expansion coefficients, I},/(27) (kHz), used for the prediction of CREW dispersion according to the theoretical model of Ref. [8].
Mode n=1 n=2 n=3 n=4 n=>5 n==6
h/a =0.3 To/(27) 54.04 72.12 78.78 78.83 75.38 75.27
b/a =09 hL/(2x) 0.37 0.88 1.19 0.005 0.81 -0.09
L/(2m) —-0.02 0.21 —0.019 —0.001 0.054 —0.001
Iz/(27) —0.002 —-0.06 0.003 —0.0002 0.006 —0.00009
h/a =04 To/(27) 62.05 72.15 78.85 78.9 87.2 87.1
b/a =09 hL/(2nr) 0.30 0.90 1.19 0.005 0.72 —-0.06
L/(2n) -0.01 0.20 -0.019 —0.001 0.035 —0.00048
B/(27) —0.001 —0.06 0.004 —0.0002 0.003 —0.00003
h/a =04 To/(27) 59.23 69.31 74.59 74.61 85.92 85.87
b/a =095 L/(2r) 0.11 0.67 1.01 —-0.010 0.44 —0.02
L/(2m) —0.0008 0.08 —0.031 —0.002 0.015 —0.00012
Iz/(27) —0.000 —0.002 0.003 —0.0003 0.0008 —0.0000
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6. Conclusions

In summary, we have investigated coupled resonator elastic wave-
guides designed in a PC slab with cross holes. We first measured wide
complete bandgaps using a finite PC slab sample. Coupled-resonator
elastic waveguides formed with chains of coupled cavities were then
designed and fabricated. We observed the transmission of strongly
confined Lamb waves along a straight waveguide and in a wave splitter
circuit. Guidance and splitting of Lamb waves at 90° bends were clearly
observed in the experiments. Numerical simulations successfully ex-
plained experimental transmission results and allowed us to identify the
guided Bloch waves responsible for guidance. The slab thickness was
found to have little influence on the dispersion of in-plane guided Bloch
waves, contrary to the usual case of Lamb waves of an homogeneous
plate. The results in this paper can be used for the practical design of
elastic wave devices based on coupled defect cavities at ultrasonic
frequencies, and could be used to design more complicated phononic
circuits.
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