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We propose a new type of phononic crystal (PnC) composed of a periodic alternation of circular cavity
sandwich plates. In the low-frequency regime, the crystal can modulate the propagation of flexural
waves. Governing equations are deduced basing on the classical theory of coupled extensional and flex-
ural vibrations of plates. The dispersion relation of the infinite PnC is calculated by combining the transfer
matrix method with Bloch theory. The dynamic response of the PnC with finite unit cells is further stud-
ied with finite element analysis. An experiment is carried out to demonstrate the performance of the PnC
in vibration isolation. Numerical results and experimental results both illustrate that the proposed PnC
can generate several wide low-frequency Bragg band gaps providing strong attenuation. The dependence
of band gaps upon geometric and material parameters is also analyzed in detail in view of vibration iso-
lation applications.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The propagation of elastic waves in periodic structures has been
researched for many years. As artificial periodic structures, phono-
nic crystals (PnCs) can modulate efficiently the propagation of
acoustic or elastic waves by a periodic distribution of material
properties. One of the most attractive properties of the PnCs is
the existence of frequency band gaps, within which acoustic or
elastic waves cannot propagate freely without attenuation. In
recent years, the PnCs have gained increasing interest, both
because of their amazing physical properties and because of their
potential applications [1–3]. Moreover, small vibrations on the
order of nanometers pose challenges for improving the precision
of ultra-precision machine tools and of metrology equipment [4].
Therefore band gap engineering is expected to be an effective mea-
sure for vibration isolation.

In order to effectively employ band gaps to isolate vibrations,
some challenges have to be faced.

A first challenge is to obtain band gaps with low center fre-
quency. The reason is that the spectra of environmental noise
and mechanical vibrations are stronger in the low-frequency range.
As they appear as low-frequency branches in dispersion relations
[5], flexural waves of elastic thin plates are most commonly used
in the PnCs to achieve low-frequency band gaps [6–10]. Further-
more, compared with a rectangular plate, a circular plate has more
symmetry and better dynamic characteristics, especially regarding
rotary motion. But only few works considered periodic circular
plate structures [11–13]. Band gaps can generally be induced by
two different mechanisms, which are named Bragg band gaps
and locally resonant band gaps [14], respectively. The PnCs show-
ing locally resonant band gaps are also called metamaterials since
they possess an effective negative mass in the band gap range [15].
For an elastic wave, a lower frequency means a larger wavelength.
Hence, in order to obtain a low-frequency Bragg band gap, a long
propagation distance is required. The center frequency of locally
resonant band gaps, in contrast, can be reduced since the unit cell
incorporates a heavy mass and a soft material, which is equivalent
to a mass-spring oscillator with a low resonant frequency. Further-
more, a low-frequency local resonance can be created in piezo-
electrics by incorporating a strong inductor [16–18].

A second challenge is to broaden the band gap and a number of
efforts have been made in that direction. A hybrid PnC consisting of
a bi-prism and an inverted bi-prism was proposed for noise control
in a broad bandwidth [19]. A locally resonant beam with multiple
arrays of damped resonators can achieve much broader band gaps
than a locally resonant beam with only a single array of resonators
[20]. A scheme of realizing broadband asymmetric acoustic trans-
mission was proposed by using gradient-index structure. The
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Fig. 1. Quarter cutaway view (a), cross sectional view (b), and axisymmetric
sectional view (c) of the PnC of periodic circular cavity sandwich plates.
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asymmetric transmission was found to be valid within a remark-
ably broad frequency range [21]. The erection of pillars on the solid
regions of a plate patterned by a periodic array of holes increased
subwavelength band gaps in size by up to a factor of 4 [22]. A one-
dimensional finite-sized PnC was proposed to realize broad band-
pass, high-performance filtering whose unit cell is configured with
two elements having mirrored impedance distributions [23]. A
quasi one-dimensional split ring resonator medium was investi-
gated to match the local resonance frequency to the Bragg fre-
quency, thus opening a single band gap which is at the same
time very wide and strongly attenuating [24]. A dual-scale PnC slab
was used to support two effective spins for phonons over a broad
bandwidth [25]. Stacked-structure formed by orthogonally stack-
ing square coated-steel rods embedded in a layer was employed
to widen the band gap [26]. Lee et al. [27] investigated the feasibil-
ity of broadband sound blocking by introducing rotationally sym-
metric extensible inclusions.

A third challenge is to achieve strong attenuation. Generally,
attenuation can be enhanced by increasing the damping coeffi-
cient. Oh et al. [28] showed that air- and metal-embedded vis-
coelastic PnCs can indeed dissipate more wave energy than pure
viscoelastic media in low and high frequency ranges. Frazier
et al. [29] studied a dynamic effective mass for the damped meta-
material model to exhibit negative values over a frequency region
near the band gap, as in the undamped case. However, for rela-
tively high levels of damping, no frequencies are found in which
the effective mass is only negative. In addition, damping can be
introduced into piezoelectric PnCs by tuning the resistance of the
resonant shunting circuit. For locally resonant band gaps, there
exist optimum resistances to obtain a small transmission at the
center frequency, while transmission on both sides of the band
gap cannot be large [11,12]. Furthermore, transmission decreases
when increasing the periodicity number [16,30], with the draw-
back of making the structure more bulky.

Accordingly, widening locally resonant band gaps but retaining
their low center frequency and reducing the center frequency of
Bragg band gaps while maintaining their characteristics of broad
range are two main research orientations to make the PnC a vibra-
tion isolator with good performance. Moreover, a good vibration
isolator also requires that the PnC owns some other properties,
such as miniature size and load-carrying capacity. Therefore, an
appropriate design of a finite PnC structure is critical to have it
overcome all these challenges at the same time.

Sandwich structures are widely used in a variety of engineering
applications due to their outstanding features, such as a high
stiffness-to-mass ratio and easiness of design and manufacture.
The high stiffness-to-mass ratio can result in flexural wave propa-
gation at relatively low frequencies and can impart good perfor-
mance of vibration isolation and sound insulation [31,32]. Band
gaps have already been introduced into the analysis and design
of sandwich structures to control wave propagation within them
[33–36]. Nevertheless, to make the PnC meet the demand of vibra-
tion isolators, the band gaps should be further broaden and the
operation frequency should be further reduced.

In view of vibration isolation applications, we propose a new
PnC of periodic circular cavity sandwich plates. The investigation
is focused on wide band gaps with strong attenuation in the low-
frequency range. Classical plate theory is first applied to describe
the behavior of laminated plates supporting coupled extensional
and flexural vibrations. Basing on the equations of motion, the
complex band structure and the frequency response function are
calculated by the transfer matrix method. In order to evaluate
the performance of this PnC for isolating vibration from ultra-
precision machines, vibration transmission through a finite struc-
ture is further examined using finite element analysis. These
numerical simulations confirm the existence of the band gaps pre-
dicted by the transfer matrix method. Finally, a first experimental
demonstration is reported.

The paper is organized as follows. The mathematical modeling
and the equations of motion are investigated in Section 2. A har-
monic analysis of the structure is conducted and its solution is
obtained in Section 3. Numerical results and comparison with
finite element analysis are presented in Section 4. The experiment
is performed to demonstrate the effectiveness of the PnC on vibra-
tion isolation in Section 5. Finally, some conclusions are drawn in
Section 6.

2. The PnC model of periodic circular cavity sandwich plates

The proposed PnC is arrayed periodically by connecting circular
cavity sandwich plates in series. A quarter cutaway and a cross sec-
tional views are illustrated in Fig. 1(a) and (b). Each unit cell is a
circular cavity sandwich plate. It is composed of a sandwich plate,
one ring, and one centered cylinder. The structure is considered a
sandwich plate since the only difference with a conventional sand-
wich plate is the replacement of the interlayer medium by a cavity.
The ring and the centered cylinder locate at the outer edge and at
the center of the sandwich plate, respectively. The two plates with
thickness 2h are denoted by I and II, respectively. The PnC structure
can be regarded as a folded beam rotated by a complete revolution
around one of its sides. Fig. 1(c) illustrates the folded beam in an
axisymmetric meridian plane with certain nth unit cell circled by
red dashed lines. The outer radius of the ring and the outer and
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inner radius of the sandwich plate are represented by R2, R1, and R0.
Thicknesses of the centered cylinder and of the ring are denoted by
H1 and H2, as shown in Fig. 1(c).

The axisymmetric structure can maintain an axisymmetric
motion when pulled or pushed along the axial direction. In cylindri-
cal coordinates (r, h, and z) we consider axisymmetric coupling
vibration of the plate between the flexural motion in the z direction
and the extensional motion in the r direction. According to the clas-
sical theory for plates in coupled extensional and flexural vibrations
[37], the nontrivial components of strain can be expressed as

Srr ¼ ur;r � zuz;rr ; Shh ¼ 1
r
ður � zuz;rÞ; ð1Þ

where urðr; tÞ and uzðr; tÞ are the extensional and the flexural dis-
placements of neutral layer of the plate, respectively. They are inde-
pendent of h, and the tangential displacement uh of neutral layer of
the plate can be ignored due to the axisymmetric motion. The con-
vention that a comma followed by an index denotes partial differ-
entiation with respect to the coordinate associated with their
index is used.

The constitutive equations, or Hooke’s law, for an isotropic
material are

Trr ¼ ðkþ 2GÞSrr þ kShh þ kSzz;

Thh ¼ kSrr þ ðkþ 2GÞShh þ kSzz;
Tzz ¼ kSrr þ kShh þ ðkþ 2GÞSzz;

ð2Þ

where Lame’s constants k ¼ Em=ð1þ mÞð1� 2mÞ, G ¼ E=2ð1þ mÞ. E
and m are the Young’s modulus and the Poisson’s ratio of the elastic
material, respectively. For the thin plate, we make the usual stress
relaxation condition that Tzz ¼ 0, so that Eq. (2) can be reduced to

Trr ¼ E
1�m2 ðSrr þ mShhÞ;

Thh ¼ E
1�m2 ðShh þ mSrrÞ:

ð3Þ

The bending moments and shearing force per unit length can be
obtained from Eqs. (1) and (3)

Mr ¼
R h
�h Trrzdz ¼ �D1 uz;rr þ m

r uz;r
� �

;

Mh ¼
R h
�h Thhzdz ¼ �D1 muz;rr þ 1

r uz;r
� �

;

Qr ¼
R h
�h Trzdz ¼ Mr;r þ Mr�Mh

r ¼ �D1 r2u
� �

;r
;

ð4Þ

where the bending stiffness is D1 ¼ 2Eh3
=3 1� m2

� �
and the Lapla-

cian operator is defined as r2 ¼ @2=@r2 þ @=ðr@rÞ. Similarly, the
extensional resultants per unit length are

Nr ¼
R h
�h Trrdz ¼ D2 m ur

r þ ur;r
� �

;

Nh ¼
R h
�h Thhdz ¼ D2

ur
r þ mur;r

� �
;

ð5Þ

where the tensile stiffness is D2 ¼ 2Eh= 1� m2
� �

.
The plate equations of motion for extension and flexure take the

following form

Nr;r þ Nr � Nh

r
¼ m€ur ; Qr;r þ

Qr

r
¼ m€uz; ð6Þ

where m ¼ 2qh is the mass per unit area of the plates with the den-
sity q of the isotropic material. A superimposed dot represents
derivative with respect to time. Substitution of Eqs. (4) and (5) into
Eq. (6) yields

�D1r2r2uz ¼ m€uz;

D2 ur;rr þ 1
r ur;r � ur

r2

� � ¼ m€ur ;
ð7Þ

The centered cylinders and rings are assumed to be rigid bodies,
i.e. their deformation is ignored. The forces and displacements of
centered cylinders and rings are presented in Fig. 2. At the interface
between the sandwich plate and the centered cylinder or the ring,
extensional displacement, flexural displacement, rotation angle,
extensional force, shear force, and bending moment meet continu-
ity conditions.

Considering axisymmetric vibration of the sandwich plate, con-
tinuity conditions at the interfaces between the centered cylinder
of the nth unit cell and the plate II of the (n-1)th unit cell, and
between the centered cylinder and the plate I of the nth unit cell,
are

uðn�1ÞII
r ðR0; tÞ ¼ uðnÞI

r ðR0; tÞ;
uðn�1ÞII
z ðR0; tÞ ¼ uðnÞI

z ðR0; tÞ;
uðn�1ÞII
z;r ðR0; tÞ ¼ uðnÞI

z;r ðR0; tÞ ¼ 0;

�2pR1 Nðn�1ÞII
r ðR0; tÞ þ NðnÞI

r ðR0; tÞ
h i

¼ 0;

2pR0 Q ðn�1ÞII
r ðR0; tÞ þ Q ðnÞI

r ðR0; tÞ
h i

¼ m1€u
ðnÞC1
z ðtÞ;

2pR1 �Mðn�1ÞII
r ðR0; tÞ �MðnÞI

r ðR0; tÞ þ R0 Q ðn�1ÞII
r ðR0; tÞ þ Q ðnÞI

r ðR0; tÞ
h in

þ H1
2 � h

� �
Nðn�1ÞII

r ðR0; tÞ � NðnÞI
r ðR0; tÞ

h io
¼ 0;

ð8Þ
where superscripts (n), I and II, C1 represent the nth unit cell, plate I
and plate II, and the centered cylinder, respectively. m1 ¼ q1pR

2
0H1

is the mass of the centered cylinder with material density q1. By
ignoring the deformation of the centered cylinder, the relationship
between the displacement of the two plates and of the centroid of
centered cylinders is

uðnÞC1
z ðtÞ ¼ uðnÞI

z ðR0; tÞ: ð9Þ
Similarly, the continuity conditions at the connection point of

two plates in an arbitrary unit cell is governed by

uðnÞI
r ðR1; tÞ ¼ uðnÞII

r ðR1; tÞ;
uðnÞI
z ðR1; tÞ ¼ uðnÞII

z ðR1; tÞ;
uðnÞI
z;r ðR1; tÞ ¼ uðnÞII

z;r ðR1; tÞ;
�2pR1 NðnÞI

r ðR1; tÞ þ NðnÞII
r ðR1; tÞ

h i
¼ 0;

�2pR1 Q ðnÞI
r ðR1; tÞ þ Q ðnÞII

r ðR1; tÞ
h i

¼ m2€u
ðnÞC2
z ðtÞ;

2pR1 MðnÞI
r ðR1; tÞ þMðnÞII

r ðR1; tÞ � R1 Q ðnÞI
r ðR1; tÞ þ Q ðnÞII

r ðR1; tÞ
h in

þ H2
2 � h

� �
NðnÞII

r ðR1; tÞ � NðnÞI
r ðR1; tÞ

h io
¼ 0;

ð10Þ
where superscript C2 represents the parameters of the ring.
m2 ¼ q2pðR2

2 � R2
1ÞH2 is the mass of the ring with material density

q2. The relationship between the displacements of the centroids
of the rings and of the plates is

uðnÞC2
z ðtÞ ¼ uðnÞII

z ðR1; tÞ: ð11Þ
The frequency response function (FRF) is defined by

20log10(|uout/uin|), where uout and uin are displacement amplitudes
of centered cylinders on the top and bottom, which is often used to
represent wave propagation through a finite periodic structure. For
the PnCs with the finite unit cells, the boundary conditions can be
written as

uð1ÞI
r ðR0; tÞ ¼ 0; uð1ÞI

z ðR0; tÞ ¼ uineixt ; uð1ÞI
z;r ðR0; tÞ ¼ 0;

uðNÞII
r ðR0; tÞ ¼ 0; 2pR0Q

ðNÞII
r ðR0; tÞ ¼ m1€u

ðNÞII
z ðR0; tÞ;

�MðNÞII
r ðR0; tÞ þ R0Q

ðNÞII
r ðR0; tÞ þ H1

2 � h
� �

NðNÞII
r ðR0; tÞ ¼ 0;

ð12Þ

where i and x are the imaginary unit and the angular frequency.

uðNÞII
z is equal to the displacement of the centered cylinder of the



Fig. 2. Sketch of the displacements and forces acting on (a) centered cylinders and (b) rings.
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top. Therefore its amplitude is considered as the output displace-
ment uout.

3. Complex band structure of periodic circular cavity sandwich
plates

For harmonic motions, we use the complex notation

furðr; tÞ;uzðr; tÞg ¼ Re ½UrðrÞ;UzðrÞ�eixt
� �

; ð13Þ
The equations of motion (7) become

D1r2r2Uz ¼ mx2Uz;

D2 Ur;rr þ 1
r Ur;r � Ur

r2

� � ¼ �mx2Ur :
ð14Þ

The general solution for Eq. (14) can be written as

Uz ¼ A1J0ðk1rÞ þ A2I0ðk1rÞ þ A3Y0ðk1rÞ þ A4K0ðk1rÞ;
Ur ¼ A5J1ðk2rÞ þ A6Y1ðk2rÞ;

ð15Þ

where k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx2=D1

4
p

and k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx2=D2

p
, Ai (i = 1, 2, . . ., 6) are

undetermined constants. Ja and Ya are Bessel functions of the first
kind and second kind, Ia and Ka are modified Bessel functions of
the first kind and second kind, a (= 0, 1) refers to the corresponding
order of Bessel functions.
From Eqs. (4), (5), and (15), the continuity conditions of Eq. (10)
can be written in matrix form

K1uðnÞ
1 ¼ K2uðnÞ

2 ; ð16Þ

where K1 and K2 are 6� 6 square matrices relating coefficients uðnÞ
1

and uðnÞ
2 , with uðnÞ

j ¼ AðnÞ
j1 AðnÞ

j2 AðnÞ
j3 AðnÞ

j4 AðnÞ
j5 AðnÞ

j6

h iT
, j ¼ 1;2 correspond-

ing to plate I or II in the unit cell. Similarly, the continuity condi-
tions of Eq. (8) can be expressed as

H2uðn�1Þ
2 ¼ H1uðnÞ

1 ; ð17Þ
where H1 and H2 are also 6 � 6 square matrices.

From Eqs. (16) and (17), the linear relationship between unde-
termined constants of plates II in two neighboring unit cells
becomes

uðnÞ
2 ¼ Tuðn�1Þ

2 ; ð18Þ
where T ¼ K�1

2 K1H
�1
1 H2 is the transfer matrix from the (n–1)th to

the nth cell. Note that all matrices depend explicitly on the
frequency.

According to Bloch theory, we have the periodic condition

uðnÞ
2 ¼ eikauðn�1Þ

2 ; ð19Þ
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where k is the Bloch-Floquet wave vector, a ¼ 2ðR1 � R0Þ is the lat-
tice constant of the periodic structure. From Eqs. (18) and (19), non-
trivial solutions may exist if the determinant satisfies

det TðxÞ � eikaI
	 
 ¼ 0: ð20Þ
For a given x, Eq. (20) is an eigenvalue equation that gives the

admissible values of k. The real part of k is the wavenumber, which
is used to describe wave propagation phenomena. When k is a real
number, a flexural wave can propagate freely. On the contrary, a
complex k means the wave is evanescent and thus that its fre-
quency lies in a band gap. An attenuation constant l is defined
by the product of the imaginary part of k with the lattice constant
a, in order to measure the decay of the amplitude when the elastic
wave propagates from one period to the next.

While for the finite PnC, 12N unknows exists if the PnC has N
unit cells, which can be solved by 6 equations of boundary condi-
tions (12), 6N equations of continuity conditions (10) within the
same unit cells, and 6(N-1) equations of continuity conditions (8)
between the neighboring unit cells. Hence the frequency response
function of the finite PnCs is obtained.
4. Numerical results and discussion

Using metallic material is helpful to improve the load-carrying
capacity of the PnC because of the high strength. As a numerical
example, Copper is chosen as the material for all parts of the
periodic circular cavity sandwich plates. Thus densities q = q1 =
q2 = 8900 kg/m3, Young’s modulus E = 120 GPa and Poisson’s ratio
m ¼ 0:3. Geometric parameters of the unit cell are R0 = 5 mm,
R1 = 65 mm, R2 = 70 mm, H1 = H2 = 10 mm, and h = 1 mm. These
parameters are fixed unless otherwise stated.

The complex band structure of the infinite periodic structure is
illustrated in Fig. 3, where the real part of the complex wave vector
and the absolute value of the imaginary part of the complex wave
vector are illustrated in Fig. 3, respectively. As the transmission
matrix is of size 6 � 6, there are in principle a maximum of 6 eigen-
values. Four of them are found numerically to be always equal to
�0 or �p=a, corresponding to rigid body motions of the plates that
- /a 0
 Wavenumber [Re(k)]
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2000
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 (H
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Second Bragg BG
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Fig. 3. Complex band structure of the PnC of periodic circular cavity sandwich plates
frequency. The PnC is made of copper.
must be discarded. The remaining two eigenvalues are flexural
waves propagating either upward or downward. Henceforth the
presented complex band structure must be understood for flexural
waves only. Three broad and complete band gaps of the Bragg type
can be found within the range 0–3500 Hz, whose frequency spans
are 364–812 Hz, 1038–2171 Hz, 2625–2975 Hz. It has been
observed that unlike local resonances that generate a sharp maxi-
mum attenuation at a certain frequency and a highly asymmetric
attenuation profile, Bragg scattering produces symmetric
frequency-dependent attenuation functions [38,39]. As can be seen
from Fig. 3(b), the three gaps are all Bragg band gaps. The gap-to-
mid-gap ratio is used to measure the performance of band gaps. A
large gap-to-mid-gap ratio means both low-frequency operation
and wide band gap. The gap-to-mid-gap ratios corresponding to
three band gaps are 76%, 71% and 13%, respectively. The first two
ratios are larger than most of those listed in Table 1 of Ref. [40].
Moreover, although a Bragg band gap, the first band gap of our
structure has a lower frequency of 364 Hz. This value compares
favorably with the locally resonant band gap generated by a
70 mm-long rods woodpile PnC [41], for instance.

The vibration and bending modes at the edges of the first Bril-
louin zone (external points defining the band gaps) are now pre-
sented in Fig. 4. They are calculated using the finite element
method (FEM). Without loss of generality and intrinsic essence,
we choose a unit cell with longitudinal symmetry in order to show
results that are more intuitive than the theoretical analysis. We
observe that the two cavity plates in the unit cell move in phase
for lower points, such as S1, S3, S5, of all band gaps, whereas they
move out of phase for upper points, such as S2, S4, S6, of all band
gaps.

The proposed PnC thus owns some qualities to obtain multiple
low-frequency broad band gaps. First, the periodic cavity sandwich
plate structure can transform low-frequency vibrations into low-
frequency flexural waves. Second, owing to the periodic structure
of cavity sandwich plates, the PnC extends the flexural wave prop-
agation path but the structure size remains small. Third, as can be
seen from Fig. 4, the flexural wave propagates along the cavity
plates, while the centered cylinder and the ring only vibrate up
and down with little deformation. Thus, it is quite reasonable to
/a 20 0
 Attenuation constant [ ]

(b)

S1

S2

S3

S4

S5
S6

. (a) Wave number Re(k) and (b) attenuation constant l = Im(k)a as a function of



Fig. 4. Vibration modes (a)-(e) correspond to external points S1-S6 of band gaps in Fig. 3(b), respectively.
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assume that the centered cylinder and the ring are rigid bodies in
the theoretical analysis. Compared with the plate, the centered
cylinder and the ring have an infinite bending stiffness. The bend-
ing stiffness varies periodically and enormously among the cen-
tered cylinders, the plates and the rings. The flexural wave is
alternately modulated by the centered cylinders, the plates and
Fig. 5. (a) Attenuation constants l of the infinite system and (b) frequency response fac
the rings of the periodic structure. Strong reflected waves are gen-
erated when the flexural wave meets the centered cylinders and
the rings. The transmitted waves are thus easily offset by the
strong reflected waves. Consequently, multiple broad band gaps
are opened due to the mismatch in the bending stiffness. Finally,
compared with periodic folding beam-type PnCs [42], the proposed
tor of the finite periodic structure with four unit cells. The PnC is made of copper.



Fig. 7. Comparison on FRF curves of a finite structure with 4 unit cells obtained
with either the theoretical model or a 3D finite element model. The inset shows the
deformation and the distribution of displacements when a vibrational source at
frequency of peak ‘‘A” is imposed on one end of the PnC. The PnC is made of copper.
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PnC can counteract the motion of extension of the plate due to its
axisymmetric structure.

For PnCs, certain frequency ranges of the finite periodic struc-
ture with a good vibration reduction performance correspond to
the band gaps of the infinite periodic system, if the same unit cell
is adopted. The characteristic of the finite periodic structure is thus
often employed to verify the band structure of the infinite periodic
system. Fig. 5 illustrates the attenuation constants of the infinite
system in (a) and the transmission factor of the periodic structure
with four unit cells in (b) versus frequency. In order to study vibra-
tion isolation in the low-frequency range, we focus on frequencies
below 3500 Hz. As shown in Fig. 5(b), the wave is seen to be atten-
uated in some frequency range if the transmission factor is less than
zero. The band gap is induced by the interaction between the inci-
dent wave, the reflected wave and the transmitted wave within an
infinite periodic system. Similarly, as the elastic wave is modulated
by the finite periodic structure, attenuation can appear but also res-
onances or anti-resonances that were not present in the infinite
system. Overall, the finite periodic structure shows a good perfor-
mance for vibration reduction in the frequency ranges correspond-
ing to the band gaps of the infinite system. It is also found that the
transmission properties of the finite periodic structure agree well
with the dispersion relation of the infinite system. Nonetheless,
some transmission peaks arise in pass bands corresponding to the
resonant frequencies of the finite periodic structure, which imply
the amplification of vibration at the corresponding frequencies.
The peaks in the high frequency region could be further cut down
by the introduction of damping and those in the low-frequency
region could be reduced by active control. Accordingly, it is mean-
ingful to cover a wide frequency range of vibration since the pro-
posed periodic structure owns several broad band gaps.

In order to validate the theoretical model, the frequency
response function of the finite periodic structure was further calcu-
lated by FEM implemented with the ANSYS software. Three-
dimensional element SOLID45 is chosen for this model. A three-
dimensional FEM model is meshed by hexahedral-shaped volume
elements, as shown in Fig. 6. Note that the FEM does not make
any assumption regarding flexural wave propagation but instead
considers general elastic wave propagation in three-dimensional
solids. The comparison of frequency response function curves
between model and numerical simulation is plotted in Fig. 7. The
agreement is found to be fairly good, especially in the low-
frequency range. Indeed, a peak ‘‘A” in the transmission inside
the band gap can be noticed around 1.9 kHz. We have added an
inset to illustrate the deformation and the distribution of displace-
ments when a vibrational source at this frequency is imposed on
Fig. 6. Three-dimensional mesh of the finite element model of the PnC of periodic
circular cavity sandwich plates.

Fig. 8. Effect of the radius R1-R0 of the cavity sandwich plates on the first three band
gaps. The PnC is made of copper.
one end of the PnC. A strong attenuation is observed on propaga-
tion through four unit cells of the PnC. The particular mode of
propagation indeed corresponds to a surface mode as reported in
[41,43].

Next, we investigate the dependence of band gaps on the geo-
metrical parameters. The radius R1-R0 of the cavity sandwich plates
can be considered as the lattice constant of the proposed PnC. Fig. 8
presents the evolution of the first three band gaps as a function of
the lattice constant R1-R0. One can easily observe that the center
frequencies of all band gaps decrease and that the band gaps
become narrower with the increase of R1-R0. It is well known that
Bragg scattering depends solely on the wave interferences that
take place within the periodic structure. Since the band gaps are
derived from Bragg scattering, the lattice constant R1-R0 indeed
has a significant influence on the band gaps of the proposed PnC.

Finally, the influence of material parameters on the transmis-
sion of a finite system with four unit cells is investigated in



Fig. 9. Effect of material parameters on the transmission of the finite system with
four unit cells.

Fig. 11. Measured transmission versus frequency.
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Fig. 9. Three commonmetallic materials are chosen: Aluminum (Al,
q = 2700 kg/m3, E = 70 GPa, m = 0.3), mild Steel (Steel, q = 7800 kg/
m3, E = 206 GPa, m = 0.3), and Copper (Cu, q = 8900 kg/m3, E = 120
GPa, m = 0.3). The periodic circular cavity sandwich plates have
almost the same transmission properties when material parame-
ters are chosen as Al and Steel. To explain this observation, we
can infer from Eq. (15) that the characteristic roots k1 and k2 of
the equations of motion (14) depend on m=D1 and m=D2, respec-
tively. Furthermore, m=D1 and m=D2 are both proportional to q/E.
Therefore, the dynamical properties of the finite system are gov-
erned by the value of q/E for given boundary conditions and struc-
ture sizes. For comparison, the q/E of Steel, Al and Cu are equal to
37.86, 38.57, and 74.17 s2/m2, respectively. It can be seen that the
values q/E of Al and mild Steel almost match. In addition, the cen-
ter frequencies of band gaps all decrease when increasing q/E. This
is consistent with the fact that materials with a large q/E like
Epoxy (Epoxy, q = 1180 kg/m3, E = 4.35 GPa, m = 0.37 with q/
E = 271.26 s2/m2) are widely used in PnCs to obtain low-
frequency band gaps.

5. Experiment and results

To demonstrate the effectiveness for the structure on vibration
isolation, we manufactured a steel PnC (label E in Fig. 10) of circu-
Fig. 10. Installation of the sample and experimenta
lar cavity sandwich plates with four unit cells and the following
geometric properties. The thicknesses of the plates, the centered
cylinder, and the ring are 2h = 2 mm, H1 = 18 mm, and
H2 = 10 mm, respectively. The radius of the centered cylinder, the
outer radius of the plates, and the outer radius of the ring are
R0 = 6 mm, R1 = 60 mm, and R2 = 65 mm, respectively. The connec-
tions between the plates and the ring are all welded. The cavity
plate is joined with the centered cylinder by a screw bolt. The
installation of the sample and the experimental apparatus are illus-
trated in Fig. 10. The white noise signals between 1 Hz and 5000 Hz
are generated by a signal generator [Sinocera piezotronics, Inc.,
YE1311] (label B in Fig. 10). The signals are further amplified by
a power amplifier [Sinocera piezotronics, Inc., YE5874A] (label C),
and are applied to the vibration exciter [Sinocera piezotronics,
Inc., JZK-50] (label D). A couple of accelerometers [X&K Tech.,
XK101S] (label F and G) with operating frequency scope of 1 to
5000 Hz are used to measure the input and the output accelerators.
One accelerometer is installed between the vibration exciter and
one end of the PnC. The other accelerometer is mounted on the
other end of the PnC. The two accelerometers are linked to the
dynamic signal collector [uTekL, uT3404FRS-DI] (label A). The mea-
sured input and output accelerators are then analyzed by acquisi-
tion and analysis system software [uTekL, uTekSs-V2004] on the
computer.

The measured transmission of the PnC is shown in Fig. 11. The
frequency in three ranges of 817–1228 Hz, 1434–3406 Hz, and
l apparatus. The PnC sample is made of steel.



Fig. 12. Calculated transmission versus frequency obtained with the transfer
matrix model.
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4120–5000 Hz has a larger attenuation than the other frequencies.
The maximum of the attenuation reaches to 47.5 dB at 2186 Hz.
The three frequency ranges correspond to the first three band gaps.
Therefore the low-frequency and broad band gaps with strong
attenuation can be achieved by the PnC of circular cavity sandwich
plates.

Theoretical result of transmission versus frequency is also illus-
trated in Fig. 12. All the geometric and material parameters in the-
oretical calculations are the same as in the experiment. The
calculated transmission curve demonstrates that the first three
band gaps are 579–1281 Hz, 1613–3647 Hz, and 4168–5000 Hz.
The vibration at 2427 Hz has a maximum attenuation of 59 dB.
The calculated frequencies of the three band gaps match fairly well
with the measured values. In addition, the measured attenuation
has an approximate maximum as the calculated attenuation, and
the two maximums arise at two close frequencies. The measured
transmissions are smaller than the theoretical results at the pass
bands, mainly because structural damping has not been taken into
account for calculations.

6. Conclusion

A new phononic crystal composed of periodic circular cavity
sandwich plates has been proposed to control the propagation of
elastic waves. A theoretical solution for coupled extensional and
flexural motions of elastic thin plates was obtained. The numerical
results illustrate that several low-frequency and broad band gaps
with strong attenuation can be induced. Moreover, the proposed
PnC has a small size and an excellent load-carrying capacity. We
also conducted some comparison between the axisymmetric theo-
retical model and a three-dimensional finite element method. The
theoretical results are found to be in good agreement with numeri-
cal simulations. The low-frequency and broad band gaps were also
verified by experiment. Thanks to its properties, the proposed PnCof
periodic circular cavity sandwich plates could be implemented in
engineering applications as a vibration isolator or a noise insulator.
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