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This paper presents a unified and full scattering matrix �s-matrix� formalism for modeling of
acoustic waves in piezoelectric multilayered structures. A stable recursive algorithm is derived for
computation of the total s-matrix of a stack in terms of the interface s-matrix, both referring to the
eigenmode amplitudes. The derivation is direct and succinct, the deduced expressions of the
s-matrix are terse and concise, and the recursion algorithm is efficient and convenient for
implementation. The total s-matrix recursion scheme differs from the previously published partial
matrix algorithms in that the recursions are conducted once for all independent of the stack
boundary conditions and so the same results apply for any post-specified boundary condition.
Numerical examples are given to show its numerical features that are superior to other currently
used matrix formalisms, such as unconditional stability for both large and small thicknesses, being
pole-free and branch point-sensitive, constant mean magnitude with stable phase, involving only
dimensionless elements. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2978219�

I. INTRODUCTION

Investigations of wave propagation and interaction with
various materials of various geometries are required in many
scientific fields and high-tech engineering applications.
Many advanced technological devices employing direct elec-
tromechanical transduction require piezoelectric materials
that are necessarily anisotropic. Even so, some specific prop-
erties, unavailable in homogeneous media have to be ac-
quired by means of composites stacking different materials
together. Modeling of wave propagation in these structures is
often a problem complicated enough to be out of reach of
analytical calculations. A variety of matrix formalisms were
developed during the past decades for numerical simulations.
Among the most typical and representative models, the trans-
fer T-matrix1–3 is certainly the most widely well-known. Un-
fortunately, the intuitive and easy-to-process T-matrix model
was rapidly recognized to suffer from numerical instability at
the high frequency regime, as measured by the frequency-
thickness product fh. To circumvent the numerical instability
of the classical T-matrix, which becomes a serious obstacle
in analyzing miniaturized devices operating at high frequen-
cies, a variety of different matrices have been proposed for
wave modeling. The last to date is the hybrid H-matrix mix-
ing the compliance/stiffness.4 A veritable breakthrough ad-
vance in eliminating the harmful numerical instability within
the realm of matrix models for acoustic waves in piezoelec-
tric heterostructures originated from the impedance
Z-matrix,5–7 comprising its direct variant compliance/
stiffness K-matrix,8,9 and some scattering s-matrix related
approaches10–14 that are in reality partial s-matrix formulas.

In order for readers to have a quick reference and a clear
comparison at a glance, in Table I we summarize the regular
and modified definitions of the aforementioned matrices,
their mostly known variants, all in relation to the physical
quantities, along with their important properties which we
will analyze later in more detail. In effect, their differences
are very subtle. Depending on the journals in which they
appear and on the scientific communities who employ them,
often the same matrix was presented in different forms and
sometimes the same matrix name was attributed to different
physical definitions. The H-matrix recursion presented in
Ref. 4 was conducted indirectly without using the full
H-matrix. Similar is the quarter Z-matrix recursion presented
in Ref. 6 for nonpiezoelectric media and in Ref. 7 for piezo-
electric media. In the book of Kennett,10 which treats the
seismic wave propagation in stratified nonpiezoelectric me-
dia, only the partial matrix recursions were implemented in
terms of the reflection and transmission matrices. Although
the s-matrix idea was largely developed, the term “scattering
matrix” never appears throughout the book. The first stable
recursion proposed by Pastureaud et al.12 for analyzing
acoustic waves in piezoelectric stacks is, in fact, a quarter
s-matrix formalism based on the reflection R-matrix. Very
similar to the work of Kennett,10 a half matrix recursion was
implemented by Tan13 for nonpiezoelectric media, again us-
ing a submatrix-based indirect recursion. Although later all
of the four submatrices of a full s-matrix for piezoelectric
media were also provided,15 they appeared under the name of
reflection and transmission matrices and were derived as the
result of a somewhat cumbersome procedure. In both
papers12,13 entitled scattering matrix method or formalism,
neither the s-matrix was clearly defined as an entity nor the
recursive algorithms were derived in terms of the s-matrix
itself. Only some submatrices of the s-matrix were given
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instead, and they were “scattered” in different equations and
in the various expressions.

Among many stable matrix formalisms available now,
the scattering matrix-based modeling is the only one that
considers the eigenmode amplitudes as unknown variables
instead of the physical field quantities.12 Herein, we use the
words “matrix formalism” to designate both the basic matrix
relative to a single layer, defined after a specific physical
signification, and the associated recursive algorithm neces-
sary for dealing with a stack of several layers. The usefulness
and deficiencies of various algorithms and their variants
were lengthily discussed in a very recent paper,15 along with
their computational efficiency and numerical stability across
large and small thicknesses quantitatively compared. Obvi-
ous similarities and subtle differences among the aforemen-
tioned matrix formalisms, their respective rationale, advan-
tages, and disadvantages, as well as their interrelationships,
were also addressed. So the present paper does not intend to

attempt an overall comment and comparison or to claim a
complete synthesis. Instead, we aim to provide a natural defi-
nition and a direct derivation of the s-matrix formalism be-
cause we consider that the s-matrix published up to now
dealing with acoustical waves10–14 has not been introduced in
a way as direct and not presented in a form as concise as it
should be, compared with the s-matrix used by microwave
electronic engineers16 or by researchers in other fields.17,18 In
effect, they were derived in several variant forms, expressed
with different terminologies and with different notations, of-
ten given in the partial form, and thus confused with the
reflection R-matrix. We believe that this is certainly a reason
why the numerical superiority of the s-matrix formalism is,
to the best of our knowledge, not sufficiently illustrious and
influential, and especially not fully exploited for modeling of
acoustic waves in piezoelectric multilayered structures. More
significantly, any partial s-matrix approach has to incorporate
the stack boundary conditions �BCs� into the recursive algo-

TABLE I. Definition and properties of various matrices. Note: to facilitate the understanding and comparison, we have used the same symbols to denote the
same physical variables defining the matrices even if they were originally presented with different symbols: t and v, generalized �normal� stress and velocity
vectors; w and u, generalized deformation and displacement vectors; yx, amplitude vector of the direct �x=D� and inverse �x= I� modes; v= i�u, w=−iku for
harmonic regimes assumed in the current studies; �, circular frequency; and k, wavenumber. The superscripts + and − denote the values of a vector at the top
and bottom of a layer or a stack, respectively. To avoid confusion, we adopted the symbols X to denote the layer stress vector �in place of T already reserved
by the transfer matrix� and W to denote the layer deformation vector �in place of S already reserved by the scattering matrix�.

Nomination,
symbol,
and field
variables

Impedance Z:
X��t− ; t+�,
V��v− ;v+�

Stiffness K:
X��t− ; t+�,

W��w− ;w+�,
U��u− ;u+�

Transfer T
of state
vectora

���t ;v�

Hybrid H
of impedance-admittance

of Tanb

a��t− ;v+�,
b��v− ; t+�

Scattering S:
mode amplitudes

yout��yI
�n� ;yD

�n+1��,c

yin��yD
�n� ;yI

�n+1��

Basic definition X��Z�V X��K�W �+��T��− a��H�b yout��S�yin

Variants of the
same family

X��t+ ; t−�,
V��v+ ;v−�;

Stiffness K�
of Rokhlind:
X��K��U;

According to
arrangement

of �:

Rokhlin type
compliance-stiffness

of Tane,

yout��yD
�n+1� ;yI

�n��,
yin��yI

�n+1� ;yD
�n��

or Z inverse:
Admittance

Y�Z−1

or K inverse:
Compliance

C�K−1

��v ; t�
���t ;u�

���u ; t� ; . . .

a��u− ; t+�
b��t− ;u+�

Poles/SSBW With poles
No SSBW

With poles
No SSBW

No poles
No SSBW

�Unknown� No poles
SSBW-sensitive

For fh→� Stable diagonal
matrix

Stable diagonal matrix Singularf

unstable
Stable diagonal

matrix
Stable matrix
with �1,1� or
�2,2� element

For fh→0 Singularg

unstable
Singularg

unstable
Stable identity

matrix
Stable antidiagonal

matrix of
unitary elements

Stable full
matrix

Matrix
elements

Homogeneous Homogeneous Heterogeneous Heterogeneous Dimensionless

Physical
meanings of
submatrices

Four impedance
submatrices

Four stiffness
submatrices

1 impedance
1 admittance

2 transfer

Similar to T 2 Transmission
and 2 Reflection

submatrices

aReferences 2 and 20.
bReference 15.
cn denotes the interface number.
dReferences 8 and 9.
eReference 4.
fTo invert a matrix containing some zero columns.
gTo invert a matrix containing some identical columns.
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rithm itself by specifying them at the outset of the recursion.
Due to incorporation of a specific BC into the partial
s-matrix recursion at one side of the stack, the recursion has
to be repeated if a different BC is needed to be considered
for the same stack. In a number of situations, it is indeed
useful to specify independent BC on both sides of a compos-
ite layered plate. For instance, wave generation and propaga-
tion in a plate with corrugations or patterned electrodes on its
outer surfaces can be adequately described by combining
plane wave analysis for the homogeneous stack and finite
element analysis for the heterogeneous part of the problem,
as discussed by Reinhardt et al.19 In Ref. 19, a somewhat
cumbersome method was employed to obtain the full
Green’s functions of the composite plate, based on the
R-matrix algorithm, which involves varying the BC on one
side to obtain block matrices of the Green’s functions. The
s-matrix algorithm presented here would give the required
Green’s functions at no additional expense. To remedy the
deficiencies of the partial s-matrix recursion schemes, we
offer here a veritable full s-matrix formalism which, similar
to that used for K-matrix,8,9 differs significantly from the
previously published R-matrix,12 or quarter- and half-matrix
formalisms.10,13,15

This paper is organized as follows. The basic s-matrix
for an elementary black-box containing a layer and an inter-
face is first introduced as a linear relation between mode
amplitudes. A recursive algorithm is then developed to for-
mulate the s-matrix of a stack containing a finite number of
boxes in terms of the s-matrix of the last single box and the
s-matrix of the stack without the last box. Finally, the basic
s-matrix is expressed by the product of the layer scatterer
and the interface scattering matrix. The stack BCs are intro-
duced in terms of two surface impedance matrices of the
external media surrounding the stack. The same s-matrix re-
cursion results are combined with various stack BCs to es-
tablish a corresponding homogeneous system. Setting to zero
the system determinant yields the BC-dependent proper
modes. Examples are provided to demonstrate particular nu-
merical features of the s-matrix, such as pole-free, branch
point-sensitive, constant mean magnitude with stable phase,
and involving only dimensionless elements, in addition to its
stability in both high and low fh regimes.

II. BASIC S-MATRIX AND RECURSIVE ALGORITHM
FOR A STACK

To begin with, we consider a black-box containing a
single layer n of thickness hn and an interface separating it
with the next layer n+1, as illustrated in Fig. 1. The symbols
yxn

� �x=D , I� denote the wave amplitudes of the direct �D�
and inverse �I� modes at the top �−� and bottom �+� surface
of the layer n. The sense of direct refers to the positive x2

direction. We introduce an eight-dimensional matrix Sn to
express the output modes’ amplitudes in terms of the input
ones. The terms input and output refer to the box. Thus the
matrix Sn, which is called generalized interface scattering
matrix �GISM�, is defined for the box n by

� yIn
−

yDn+1
− � � �S11

n S12
n

S21
n S22

n �� yDn
−

yIn+1
− � , �1�

where the layer index n can take any integer value �positive,
negative, or zero�. This definition is totally coherent with the
well-known s-parameter matrix of a two-port network widely
used in microwave circuit analysis.16 The GISM, Sn+1 of the
next box n+1 is defined in the same way and yields from Eq.
�1� upon substituting n with n+1. The generalized total scat-
tering matrix �GTSM� of the system containing two boxes n
and n+1, noted as sn;2, is similarly defined by

� yIn
−

yDn+2
− � � �s11

n;2 s12
n;2

s21
n;2 s22

n;2�� yDn
−

yIn+2
− � . �2�

As usual, we assume a perfect contact at the interface be-
tween any two adjacent layers in the multilayered structure
�called stack� and no interface is metallized. This state vector
continuity allows us to express the matrix sn;2 in terms of the
matrices Sn and Sn+1 once the wave amplitudes yDn+1

− and
yIn+1

− at the interface n+1 are eliminated. We write the final
results in the following form:

s11
n;2 = S11

n + S12
n �I − S11

n+1S22
n �−1S11

n+1S21
n , �3a�

s12
n;2 = S12

n �I − S11
n+1S22

n �−1S12
n+1, �3b�

s21
n;2 = S21

n+1�I − S22
n S11

n+1�−1S21
n , �3c�

s22
n;2 = S22

n+1 + S21
n+1S22

n �I − S11
n+1S22

n �−1S12
n+1. �3d�

By substituting Sij
n with sij

n;1 and keeping Sij
n+1 unchanged in

Eqs. �3a�–�3d�, we obtain a recursive algorithm for calculat-
ing sn;2 from sn;1�Sn and Sn+1 as follows:

s11
n;2 = s11

n;1 + s12
n;1�I − S11

n+1s22
n;1�−1S11

n+1s21
n;1, �4a�

s12
n;2 = s12

n;1�I − S11
n+1s22

n;1�−1S12
n+1, �4b�

s21
n;2 = S21

n+1�I − s22
n;1S11

n+1�−1s21
n;1, �4c�

s22
n;2 = S22

n+1 + S21
n+1s22

n;1�I − S11
n+1s22

n;1�−1S12
n+1. �4d�

Equations �4a�–�4d� stand for the GTSM of a two-box stack
containing two interfaces but involving three layers. Now,
we extend the definition in Eq. �2� to a stack containing m
�2 boxes by writing down

↓y−
Dn−1 ↑y−

In−1

↓ y−
Dn ↑y−

In

x1

x2

↓ y+Dn ↑y+In
↓ y−

Dn+1 ↑y−
In+1

] ↓ y+Dn+1 ↑y+In+1

interface n: Sn

interface n+1: Sn+1

interface n−1: Sn−1

FIG. 1. �Color online� Schematic of a box containing a layer and an inter-
face separating it with the next layer along with notations for the mode
amplitudes used in defining the GISM Sn of the box n.
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� yIn
−

yDn+m
− � � �s11

n;m s12
n;m

s21
n;m s22

n;m�� yDn
−

yIn+m
− �, m � 2. �5�

The submatrices sij
n;m in Eq. �5� of sn;m—the GTSM of the

m-box stack—are obtained from Eqs. �4a�–�4d� by substitut-
ing �n+1� with �n+m� and �n ;2� with �n ;m�, namely,

s11
n;m = s11

n;m−1 + s12
n;m−1�I − S11

n+ms22
n;m−1�−1S11

n+ms21
n;m−1, �6a�

s12
n;m = s12

n;m−1�I − S11
n+ms22

n;m−1�−1S12
n+m, �6b�

s21
n;m = S21

n+m�I − s22
n;m−1S11

n+m�−1s21
n;m−1, �6c�

s22
n;m = S22

n+m + S21
n+ms22

n;m−1�I − S11
n+ms22

n;m−1�−1S12
n+m. �6d�

Results in Eqs. �6a�–�6d� represent the recursive algorithms
in terms of the full s-matrix. This s-matrix formalism is the
most general form and is directly introduced without any
restriction neither on the nature of wave modes nor on the
actual geometry of propagation media that the black box
represents.

We now apply the above derived s-matrix formalisms to
piezoelectric stacks of flat layers of infinite extent in the
x2-plane. We first express the GISM Sn defined in Eq. �1� in
terms of the more fundamental electroacoustic properties of
the component layers. The field variables and wave motions
are represented by an eight-component state vector defined
by �= �T21T22T23D2v1v2v3��T, which is formed by a linear
combination of the basic eigensolutions �Q and E� as fol-
lows, see Zhang et al.20 for notations:

��x1,x2,t� = Qy�x2�ei��t−s1x1�, �7�

where y�x2��E�x2�ỹ and E�x2��e−i�s2x2. Here, ỹ is the
mode amplitude vector associated with the eigensolutions Q,
and s2 is the diagonal spectral matrix. ỹ, s2, and Q vary from
layer to layer but are keep constant within a given layer.
y�x2� is the position-dependent amplitudes; in particular it
takes on values of y� at the layer’s top �−� and bottom �+�
surface. The partial or eigenmodes are arranged as usual, i.e.,
QD=Q�: ,1 :4� for D-modes and QI=Q�: ,5 :8� for I-modes.
Herein the MATLAB notations are employed for denoting the
elements of a matrix, as explained in Ref. 20. We introduce
now an interface scattering matrix, Rn for the interface sepa-
rating two adjacent layers n and n+1, already used for sim-
pler seismic waves.11 We define Rn by

� yIn
+

yDn+1
− � � �Rn�� yDn

+

yIn+1
− � . �8�

Using the relations �n
+�Qn

DyDn
+ +Qn

I yIn
+ and �n+1

−

�Qn+1
D yDn+1

− +Qn+1
I yIn+1

− yielded from Eq. �7� along with the
state vector continuity �n

+=�n+1
− , we derive from Eq. �8� an

expression of Rn in terms of the modal matrices of both
layers,

Rn = − �Qn
I − Qn+1

D �−1�Qn
D − Qn+1

I � . �9�

We underline that Rn depends on the electroacoustic proper-
ties of both layers surrounding the interface n but is indepen-
dent of their thickness. Further, the Rn matrix as expressed
in the complete form Eq. �9� fails for a singular matrix

�Qn
I −Qn+1

D �. This happens, for example, for an interface
separating a solid and a vacuum. Therefore, it is useful in
some situations to have at one’s disposal the submatrices of
Rn. We have derived them explicitly as follows:

Rn
11 = C−1�Gn

D − Gn+1
D � , �10a�

Rn
12 = C−1�Gn+1

D − Gn+1
I � , �10b�

Rn
21 = C−1�Gn

D − Gn
I � , �10c�

Rn
22 = C−1�Gn

I − Gn+1
I � . �10d�

Above, C�Gn+1
D −Gn

I , the symbol Gn
x is defined by Gn

x

� tn
x�vn

x�−1 �x=D, I�, with tn
D�Qn

11, tn
I �Qn

12, vn
D�Qn

21, and
vn

I �Qn
22. Qn

ij denote submatrices of Qn. Gn
x is nothing but the

characteristic surface impedance matrices �CSIM� of a half
space of the same material as the layer n. The term charac-
teristic here expresses the fact that Gn

x depends only on the
material properties of the layer n and is independent of fh
�frequency or layer thickness�. The diagonal and antidiagonal
submatrices of Rn are what were called local reflection and
transmission matrices, respectively.11,15 Rn

ij exhibit poles
when the matrix C becomes singular for certain s1 values.
This happens for SAW �surface acoustic wave� on the free
surface of a semi infinite solid, and in some specific crystal-
line configurations where the interface wave is pertained.
The amplitudes at both surfaces ��� of a layer are related by

yDn
+ = en

DyDn
− and yIn

− = �en
I �−1yIn

+ , �11�

with ex�vxe−j�s2
xh�vx�−1, x=D,I. vD�Q�5:8 ,1 :4�, vI

�Q�5:8 ,5 :8�, s2
D�s2�1:4 ,1 :4� and s2

I �s2�5:8 ,5 :8�, and
h is the layer thickness, all of them refer to the layer n.
Eliminating yxn

+ from Eqs. �8� and �11�, we find again the
relation �1�, with the GISM Sn given by

Sn = ��en
I �−1 0

0 I
��Rn��en

D 0

0 I
� = ��en

I �−1Rn
11en

D �en
I �−1Rn

12

Rn
21en

D Rn
22 � .

�12�

III. BC AND CHARACTERISTIC FUNCTIONS GIVING
PROPER MODES

The recursive algorithm derived above applies to a stack
of any number m of total layers with an arbitrary index n of
the first layer. The reflection and transmission properties of a
piezoelectric stack can thus be analyzed by means of the
recursive algorithm �Eqs. �6a�–�6d� along with Eqs. �9�,
�10a�–�10d�, and �12�. The proper modes depend on both the
stack and the surrounding media. An external surface of the
stack can be stress-free or clamped for mechanical variables,
and metallized or not for electrical variables. The stack BC
must belong to some combinations of the mentioned condi-
tions. In a general and versatile way, any BC can be ex-
pressed in terms of a generalized surface impedance matrix
�GSIM�—Gex for the surface of either external media in con-
tact with the stack. To be definitive, we assume from now on
that all layers of finite thickness are contained in the stack
and, consequently, on either side of the stack can only exist a
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half space which is allowed to be a vacuum or a piezoelectric
solid. With this in mind, the unique configuration that we
have to consider is a finite-thick stack sandwiched in be-
tween two homogeneous half spaces. Let the stack layers be
numbered from n=1 to N�2, which implies that in Eqs. �5�
and �6a�–�6d� m=N−1, and that the top and bottom half
spaces are numbered with 0 and N+1. Their GSIM, becom-
ing CSIM in this case, are still denoted by Gex

− and Gex
+ ,

respectively. Applying the state vector continuity at both in-
terfaces separating the stack and the external media yields a
global system with all four amplitudes vectors kept,

�
s11

1;N−1 − I 0 s12
1;N−1�eN

I �−1

s21
1;N−1 0 − I s22

1;N−1�eN
I �−1

Gex
− − G1

D Gex
− − G1

I 0 0

0 0 �GN
D − Gex

+ �eN
D GN

I − Gex
+
	

��
yD1

−

yI1
−

yDN
−

yIN
+
	 = 0�16x1� . �13�

In Eq. �13�, we have considered yDN
− instead of yDN

+ as an
unknown in order to avoid potential overflow with fhN→�,
which would occur if the factor �eN

D�−1 instead of eN
D was

present within the system matrix. Nontrivial solutions re-
quire the system determinant �12, also called characteristic
function, to vanish. The zeros define the allowed values for
the �-k pair or the proper mode solutions. Once the proper
modes are determined, all other wave features can be easily
analyzed straightforwardly. In particular, the mode ampli-
tudes can be determined from Eq. �13� for any specific �-k
pair, and the dispersion relation, say � as a function of k1

�s1�, yields as k1 varies in a desired range. We limit our
paper only to formulating the characteristic functions that
give proper modes without dealing with other wave charac-
teristics.

The final system giving rise to the characteristic func-
tion, as we formulated in the form of Eq. �13�, has features of
both flexibility and versatility: the effects on the wave spec-
tra due to the stack itself and those due to the surrounding
media are explicitly distinguished. The former is described
by the total s-matrix s1;N−1, the latter is incorporated into two
parametric matrices Gex

� . Various BCs at both sides of the
stack are thus allowed to be specified by the user and to be
formulated in a way totally independent of the s-matrix re-
cursion. This way, the s-matrix recursion is conducted once
for all BCs the stack may be subjected to. This radically
differs from the R or any partial matrix recursion schemes,
which inherently require repeating the s-matrix recursions
whenever the BCs at the starting side are modified. We now
discuss briefly the relations between the GSIM Gex

� and the
half space-related stack BC. Because all finite-thickness lay-
ers are by assumption included in the stack itself, an external
medium must be a homogeneous half space, and is totally
characterized by its CSIM, no matter whether it is a solid or
a vacuum. If the stack bottom is a solid, one has Gex

+

=GN+1
D ; if the stack top is a solid, then Gex

− =G0
I , according to

the definition of Gn
x after Eq. �9�. If the top surface of the

stack is nonmetallized and stress-free, equivalent to a
vacuum on the stack top, then Gex

− =Gv. Gv is a four-
dimensional null matrix except for the �4,4�-element, which
equals j
s1
	0 and amounts to the vacuum contribution to the
electrical variables. Finally, if the stack bottom is a vacuum,
one has Gex

+ =−Gv. The case of a metallized surface can be
deduced from the above results by letting 	0 tend to the
infinity. The mechanically clamped surface BCs are not de-
tailed here for the reason that they are difficult to realize in
practice. As a matter of fact, using two GSIM Gex

� to repre-
sent external effects is a versatile way of expressing the stack
BC. This remains true and so the resultant system �Eq. �13��
still applies even if the surrounding media are layered instead
of homogeneous half spaces. Of course, Gex

� appearing in Eq.
�13� should be specified accordingly, which is beyond the
scope of the current paper.

IV. NUMERICAL FEATURES OF THE FULL S-MATRIX
FORMALISM

Below, we illustrate numerical features of the full
s-matrix formalism by considering a bilayer ZnO /LiNbO3

plate of arbitrary crystalline orientation. Both surfaces are
assumed to be stress-free and nonmetallized. The individual
layer thickness was assumed to be h=1 
m in all examples.
The characteristic functions are plotted against the parallel
slowness s1�k1 /� for some fixed values of fh. A curve dip
shows either a true or a pseudozero of the function. Figure 2
shows for a moderate fh=1000 m /s the results for the
s-matrix, along with the Z and T matrix results for compari-
son. Five true zeros are present which are common to all
three curves and due to plate modes or generalized Lamb
modes. The six additional dips of the s-matrix curve are
pseudozeros and are related to the so-called surface skim-
ming bulk waves �SSBW�, three in each material. SSBW
appear for some particular values of s1, the so-called branch
points at which the eigenvalue s2 is double-valued but not
necessarily zero. Although all of the three curves show the
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FIG. 2. �Color online� Characteristic functions given by three different for-
malisms for a bilayer �10,20,30�-ZnO /LiNbO3 with h1,2=h=1 
m, fh
=1000 m /s. In addition to the five dips �true zeros for plate modes� com-
mon to the three curves, the s-matrix shows six dips due to pseudozeros
�SSBW�, as indicated by arrows for three SSBW of ZnO at s1=4.03, 3.53,
and 1.87, and three SSBW of LiNbO3 at s1=2.49, 2.44, and
1.36 �10−4 s /m�, and the Z-matrix shows two peaks �poles�.
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same plate modes, only the s-matrix is sensitive to SSBW.
Some poles are present with the Z-matrix but not with the T-
or the s-matrix. For this relatively low fh value, the superi-
ority of the s-matrix over the T- or Z-matrix is not obvious
since the stability issue is not involved and a few poles do
not bother much the observation of zeros. With increasing
fh, the number of plate modes increases and the basic
�A0-like� plate mode tends to the SAW in the slow ZnO layer,
which behaves like a half space at sufficiently high fh
=10 000 m /s, as indicated in the top panel of Fig. 3. The
T-matrix curve is not presentable and is so not presented due
to the numerical instability at this relatively high fh. As to
the Z-matrix, though the result remains stable, the function
curve exhibits a lot of poles, as shown in the lower panel of

Fig. 3. The presence of poles makes it difficult to observe on
the graphs and to numerically locate the zeros which are
hidden among the poles when the modes are dense at very
high frequencies. At an extremely low fh=1 m /s, on the
other hand, only one plate �A0-like� mode exists in addition
to the six pseudozeros due to SSBW, and the s-matrix re-
mains stable, see the upper panel of Fig. 3, as contrasted to
the Z-matrix one which becomes unstable.15

To go further, we tested the s-matrix formalism for fh as
high as fh=100 000 m /s. In the spectral range shown in
Fig. 4, 4500 uniform samplings were sufficient to clearly
distinguish all of the 310 dips �complete set of modes�. No
bad matrix condition was reported by MATLAB during calcu-
lations. The proper modes are so many and so dense that the
full spectra become difficult to be numerically determined
with other formalisms, either due to loss of precision
�T-matrix� or impossibility of distinguishing mixed zeros
and poles �Z-matrix� with a reasonable number of sampling
points. Referring to the lower panel of Fig. 3, it is not hard to
figure out how the Z-matrix curve might look when about
ten times more poles and zeros mix together. The character-
istic function we formulated using the s-matrix is not only
stable like the Z- or K-matrix, but also exhibits nice func-
tional features: being pole-free in contrast to the Z-matrix,
and keeping a rather steady magnitude over the entire range
of k1 in contrast to the T-matrix whose curve, as seen in
Figs. 2, will grows rapidly with high fh and for sufficiently
high k1 values even in stable regimes. We also applied the
full s-matrix formalism to a three-layer ZnO/LNO/ZnO plate
with the same BC as before. The obtained results, not pre-
sented here, are similar to those for the bilayer except for the
absence of the dips related to the SSBW modes of the LNO
material though the three dips due to the SSBW of ZnO were
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FIG. 3. �Color online� Characteristic functions of the same bilayer as in Fig.
2. Upper panel given by s-matrix: only A0–like plate mode exists along with
six SSBW for fh=1 m /s; A0–like mode becomes a SAW-like in ZnO ma-
terial, indicated by an arrow, along with a lot of higher order plate modes
�dips� for fh=10000 m /s; Lower panel given by Z-matrix: many poles are
mixed with zeros for fh=10000 m /s.
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FIG. 4. �Color online� Characteristic function of the same bilayer as in Fig. 2 given by s-matrix for fh=100000 m /s with 4500 uniform samplings used in
the shown k1-range. A total of 310 modes �curve dips� are present and all are well distinguishable with the graph magnified. The right-most dip is the SAW
of ZnO, a less remarkable dip at 2.718 is the SAW of LiNbO3. Other 308 dips are plate modes along with the 6 SSBW.
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still present. We explain this phenomenon by noting that the
wave amplitudes of the middle LNO layer do not appear in
Eq. �13� leading to the characteristic function �12. The same
three-layer plate terminated on an additional LNO half space
was investigated as well. Again, the three SSBW of ZnO
were observed but the SSBW of LNO were not. Instead,
some pseudo-SAW appeared near the SSBW of LNO and
they become more and more visible as fh decreases.

V. COMMENTS AND CONCLUSIONS

A comprehensive approach for the modeling of acoustic
waves in stacked piezoelectric structures is presented based
on the stack’s total scattering matrix. Instead of elevating the
s-matrix algorithms from quarter- or half-matrix recursions,
we derived them directly from the basic physical definition
of the s-matrix. As a consequence, our recursion scheme is
concise and unified. It naturally incorporates within a single
s-matrix the stack reflection and transmission matrices of
both the input and output sides. The full s-matrix recursion
can be conducted for a given stack regardless of the sur-
rounding media. Thus it obviates the need to preliminarily
specify the BC on one side of the stack and then to proceed
the recursion toward the other side as with the R-matrix.12

Without the need of incorporating the BC into the recursions
at the outset, the same s-matrix recursion results remain valid
and applicable for studying proper modes associated with
various BCs.

Compared with other matrix formalisms, the s-matrix
exhibits superior properties considering all of the criteria:
asymptotic behaviors as the frequency tends to zero or infin-
ity, absence of poles, and the sensitivity to SSBW, as well as
being dimensionless, as summarized in Table I. It gives the
pole-free characteristic functions, such as the T-matrix; but it
is unconditionally stable throughout large and small thick-
nesses, such the H-matrix. The piezoelectric Z-matrix for-
malism, though also unconditionally stable, possesses poles
which might be troubling in numerical calculations. In addi-
tion to its instability at low fh, the existence of intrinsic poles
is in our opinion a major drawback of the Z-matrix formal-
ism. The K-matrix, a direct variant of the Z-matrix, should
have exactly the same properties as Z, and so is expected to
possess poles for piezoelectric materials. A certain physical
signification can be attributed to the poles, which generally
correspond to proper modes associated with some exotic
BCs that have no obvious practical interests. The full
s-matrix recursion we presented here is the only formalism
that is both pole-free and unconditionally stable. The
s-matrix involves only homogeneous matrix elements such
as Z or K matrix; this property was claimed to be more
desirable than the heterogeneous T and H matrices.15 Better,
it is the only one involving dimensionless matrix elements,
which naturally facilitates the numerical normalization. The
s-matrix-based characteristic function, such as �12�� ,s1�
considering the mode amplitudes, is independent of the arbi-
trary eigenvectors norm in the Q-matrix and has a definitive
phase. A stable sign of the function with the iterative variable
s1 is indispensable for implementing numerical zero-finding
algorithms based on the sign-detection scheme.

Our total s-matrix formalism is numerically more effi-
cient than partial matrix recursions because the proper modes
associated with several sets of BC can be determined in par-
allel by performing a single s-matrix recursion. The compu-
tational gain is especially significant when different BCs are
to be considered for a stack containing a lot of layers. For a
stack beginning with a half space, computation efficiency of
the full s-matrix formalism can still be improved by perform-
ing a quarter-matrix recursion, i.e., the �2,2�-element s22

alone is recursively determined without calculating all other
submatrices of s. This is possible because s22

1;N−1 of the final
stack depends only on the �2,2�-element s22

1;N−2 of the previ-
ous stack �see Eq. �6d��, and s22

1;N−1 is the only needed sub-
matrix of s1;N−1 with yD1

− =0 in Eq. �13�. When the beginning
half space is a vacuum, however, some poles are introduced
into the final characteristic function.

A peculiar feature of the s-matrix formalism resides in
its high sensitivity to SSBW modes that are usually absent
from the Z−, K-, and T-matrix formalisms. How about the
H-matrix as regards the sensitivity to SSBW modes and pos-
sessing intrinsic poles or not, the answer is not yet widely
known and would need further investigations. The presence
of pseudozeros might be inconvenient if the numerical root
finding scheme for true zeros is based on the local minima
localization. However, pseudozeros have no harmful effect
on the sign-detection algorithm, which is much more robust
and reliable than the previous one. Since leaky SAW usually
exists in close proximity to SSBW, the sensitivity to SSBW
of the s-matrix is expected to find interest in establishing
algorithms for leaky modes location. A thorough study is
required in order to be able to explain in clear and simple
physical terms the fundamental reason as to why the s-matrix
is sensitive to the SSBW modes.
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