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PHYSICAL REVIEW E 67, 065602R) (2003

M. Wilm, A. Khelif, S. Ballandras, and V. Laude
Laboratoire de Physique et elogie des Oscillateurs—IMFC / CNRS UPR 3203, assadi&niversite de Franche-Comte
32 avenue de I'Observatoire, 25044 BegamcCedex, France

B. Djafari-Rouhani
Laboratoire de Dynamique et Structures des Miaiex Moleculaires, CNRS UMR 8024, Universite Lille I,
59655 Villeneuve d’Ascq Cedex, France
(Received 7 March 2003; published 26 June 2003

We have used a plane-wave-expansion model to study the out-of-plane propagation of elastic waves in a
two-dimensional phononic band-gap material. The case of quartz rods embedded in an epoxy matrix has been
computed. Band gaps for nonzero values of the wave-vector component parallel to the rods are shown to exist
and are investigated. For wavelengths smaller than the period of the structure, modes are found that are
localized in the epoxy intersites, and propagate perpendicularly to the plane of the structure.
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Acoustic band-gap material]4-5], also called phononic In this paper, we theoretically study the propagation of

crystals, are receiving increasing attention as potential caracoustic waves in a two-dimensional periodic anisotropic
didates for the design of passive components dedicated ®jructure, which consists of an array of infinitely long paral-
signal processing. For instance, in the case of elastitel square-section rods of quartZ (cuy embedded in an

waveguides, bulk localized states have been pred{@gfi, =~ €poxy matrix. The intersections of the rod axis with the per-
and surface states as well as localization phenomena ha\p@ndicular plane form a two-dimensional Bravais lattice. Nu-
been calculated and observed in linear and point deféts Merical calculations are performed using a plane-wave-

Acoustic band-gap materials are composite elastic medig€xPansion method, which was originally developed for 1-3
constituted of two- or three-dimensional periodic repetitionscONNectivity piezoelectric compositg] and is here adapted

of different solids or fluids, which exhibit stop bands in the
spectrum of transmission of elastic waves. The existenc
location, and width of acoustic band gaps in the transmissio
spectrum result from a large contrast in the value of th
elastic constants and/or mass density of the constitutive m
terials.

dimensional structures, elastic waves have been assumed

to anisotropic solid-solid phononic band-gap materials. This
ethod is first briefly reviewed. The quartz-epoxy structure
as been chosen because it exhibits an absolute band gap for
ropagation in the plane perpendicular to the rods. We espe-
cially explore how this gap closes up and other absolute gaps
aa’ppear as the wave-vector component parallel to the rods
increases from zero.
The plane-wave-expansion method of Réfl is applied
tiPthe study of two-dimensional periodic band-gap structures

In most theoretical and experimental studies of two-

propagate in the plane perpendicular to cylinders. In thiss follows. According to the Bloch-Floquet theorem, any
case, for isotropic media, the out-of-plane-polarizedfield h(r,t) in a periodic structure can be expanded as the
[u,(x,y)] and the in-plane-polarizedu(x,y),u,(X,y)] infinite series,

elastic waves are decoupled. It has been found that in some

cases, these phononic band structures display gaps that exist

for all incidences of plane acoustic waves scattered by the h(r,t)zz hgexdj(wt—k-r—G-r)], )
structure. In general, band gaps for in-plane polarizations do G

not overlap band gaps for out-of-plane polarizations in the

same structure. Of particular interest has been the search famere k is the wave vector an& are the vectors of the
periodic two-dimensional isotropic structures that possesgeciprocal lattice. Here the field represents either the dis-

band gaps common to waves of both polarizations. Thesplacementsy;, the stresses;

i » the electric potentialp, or

have come to be called absolute band gaps. the electric displacemem;, with i andj running from 1 to

However, these band structures remain unexplored in thd8. The mechanical, piezoelectric, and dielectric constants,

case of out-of-plane propagation. In particular, it might be ofand the mass density are expanded as Fourier series over the
interest, for technological applications of such a two-reciprocal lattice. Considering the usual constitutive relations
dimensional periodic structure that displays an absolute banof piezoelectricity together with the fundamental equation of
gap in its phononic band structure for in-plane propagationdynamics and Poisson’s equation for insulating media,

to know the extent to which acoustic waves can propagate

out of plane while an absolute band gap can still be seen in

k > St T.=cC: +eid, 2
the corresponding band structure. Also, the possibility of 1= Ciga U @iy & 2
guiding waves propagating perpendicularly to the plane of
the structure can be revealed by such an analysis. Di=ej U1~ €19, (3
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TABLE |. Material constants of quartzcrystal-lattice group 32and epoxy. Only the independent constants are given for each
material.

Mass density Elastic constants Piezoelectric Dielectric constants
(kg/n) (10 N/m?) constants (C/4) (10" F/m)
Material p Ci1 Ciz  Ci3 C33 Ca4 Ci4 e €14 ed1 £3
Quartz (SiQ) 2648 8.674 0.70 1.191 10.72 5794 —1.791 0.171 —0.0406 3.92 4.103
Epoxy 1142 0.7537 0.1482 3.8
52U the convergence is better than a few per cent for the first
pTZIZTi” , (4) band gaps shown in Figs. 2 and 3. For higher frequencies, as
d

considered in Fig. 4, the convergence degrades, although the
essential features are conserved.

Figure Xa) displays the cross section of the structure con-
sidered in this work. The structure consists of quagz(it)
rods in an epoxy matrixsee material constants in Table |
The inclusions are arranged periodically on a square lattice
and are assumed to have a square cross section so that the
filling fraction (d/a)? is 0.64. For instance, the widith of
the inclusions is 8Qum, with a lattice parametea equal to
100 um. Figure 1b) displays the first Brillouin zone associ-
ated with the Bravais lattice of Fig.(d).

D=0, )

we define a generalized displacement vectar
=(uy,Uy,uz,¢)T and generalized stress vectors;,
=(Ti1,Ti2,Ti3.D;)". AssumingN terms in the expansions,
and considering the following vector notationT;
:(Tik+Gl, [P ,Tik+GN)T and u:(uk+Gl' v ,uk+GN)T, we
obtain after some algebf&] the very compact system

jTi=A;Tu (i=123), (6) Figure 2 shows the projected band structures in the

_ _ (kx,ky) plane onto the reduced frequenés, normalized-

w’RU=T(j T)), (7)  wave-vectoryy,, plane, withy,=k,a/27. The white regions

. ) indicate absolute band gaps in thg (ky) plane. The width

and the linear eigenvalue problem of the low-frequency band gap, label@ in Fig. 2, is seen
_ _ to increase quasimonotonically from zero with increasing

w’Ru=TA; T, (8  y,. Wheny, increases, the width of gap) that exists from

fa=1500 Hzm tofa=2200 Hzm initially increases until
whereR andA;; are the spectral mass density and material, ~(.15, then decreases and vanishey,at0.4. Gap(c)
constant matrices, respectively. The diagonal matrEes appears aty,~0.2 and vanishes ag,~0.9, while gap(d)
contain the components of the wave vector and of theyists fromy,~0.3 to y,~0.65.
reciprocal-lattice vectors. We use the orthogonality proper- |y order to understand better the evolution of these gaps,

ties of the expansions to separate the independent spectigly. 3 displays the phononic band structures in the first Bril-
unknowns and set up the algebraic system. The modes of thgyin zone for the high symmetry axis, i.e., along the
periodic structures are obtained by solving the eigenvalue

problem (8) for w as a function of the wave vectds All
computations in this study have been performed considering
100 terms (1& 10) G in each of the Fourier and Bloch-
Floquet series, resulting in a 48@100 eigenvalue problem.

It was verified, by using more reciprocal-lattice vectors, that  55¢9 |
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FIG. 2. Projection of the phononic band structures in the

FIG. 1. (a) Cross section of a biperiodic solid-solid phononic (ky,k,) plane onto theK,,f) plane. Numbers indicate the positions

band-gap material, consisting of quartz rods in ep@yFirst Bril- of particular branches labeled in Fig. 3. Delimited white regions
louin zone in the Ky ,k,) plane. indicate absolute stop bands in thg, (k,) plane.
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FIG. 4. Same as Fig. 2 but for an enlarged rangé,ofalues.
Bulk-epoxy longitudinal and transverse modes are indicated.

4000
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(k,,f) plane gives the same result as their projection for all
wave vectors in the first Brillouin zone. The results fgr
=0.25 differ significantly from those fot,=0. The most
striking difference is that the dispersion curves for the
lowest-frequency branches, in the cage=0.25, do not tend

to zero anymore as botty andk, tend to zero. Thus, a band
gap below the first band opens up in the phononic band
structure for nonzeroy,, whose width increases ag, in-
creases.

In Fig. 3, the first five branches were numbered in order to
follow their evolution with increasing, . It can be seen that
gap(b), which vanishes fory,,=0.4, is delimited by the first
four branches and the fifth one. Simultaneously, gep
which appears fromy,=0.2, is delimited by the first two
branches and the fourth, since the third branch is now found
at higher frequencies. Gdp), which appears af,=0.3, is
found between the third and fourth branches. In fact, the
third and fourth branches cross each otheryasncreases
from 0, so that the third branch is found at higher frequencies
than the fourth one whem, is larger than 0.3. Consequently,
the three apparent gaf®—(c) can be considered as a unique
gap traversed by two acoustic modes.

Figure 4 is the same as Fig. 2 with an enlarged range of
v,. It can be observed that foy,>1, i.e., when the wave-
length A, along thez axis is smaller than the period of the
structure, some quasilinear branches appear that are sepa-
500 | a . rated by gaps. Ify, is held constant, these modes are flat
branches in thek ,k,) plane. Consequently, their group ve-

0 locities (dw/ dky,dwl/ dky) are zero in the X,y) plane, and
© energy propagates along the rod axes. It has been verified by
plotting their modal distribution that energy is localized in

FIG. 3. Dispersion curves along thé-I'-X-M path shown in  the epoxy matrix. Moreover, these branches seem to have an
Fig. 1(b), for (a) y,=0, (b) y,=0.25, andc) y,=0.4. The first five =~ asymptotic behavior, i.e., they tend to the branch of the bulk-
branches are numbered in the order of their appearance iy,the epoxy transverse mode. Figure 4 also illustrates a property of
=0 dispersion diagram. the existence of gafa), as labeled in Fig. 2. There are no

allowed states from zero up to a certain frequency whda
M-I'-X-M path indicated in Fig. (b), calculated when the greater than zero. This is because the slowest wave in the
normalized wave vectoy,=k,a/27 equals 0, 0.25, and 0.4, structure is the bulk-epoxy transverse mode, irrespective of
respectively. Indeed, we have verified by numerical computhe values ofk, andk,. Then gap(a) always exists, and
tation that the projection of such dispersion curves onto the@xtends at least over the triangle below the bulk-epoxy
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transverse-mode line shown in Fig. 4. phononic crystal fibers, for which propagation is along the
An interesting feature of phononic band structures is thahormal to the periodic plane.
not only does the band gap in anisotropic media gradually In summary, we have computed the phononic band struc-
closes up ag, increases from zero, but other gaps open upure of an anisotropic infinite square array of parallel quartz
for nonzero values of,. Also, the frequencies of the lower rods embedded in an epoxy matrix. We have used an ex-
and upper limits of those gaps shift to higher valuesyas tended plane-wave-expansion method that can describe gen-
increases. Consequently, the frequency filtering characterigral anisotropic materials. The studied structure possesses an
tics of two-dimensional phononic structures can be modifiecdabsolute band gap in the plane perpendicular to the rods, i.e.,
by varying vy, away from zero. This property can be useful for all polarizations of elastic waves propagating in the plane
for technological applications of periodic structures, but alscof the structure. We have demonstrated the existence of band
implies that accurate alignment of the wave vector of thegaps for nonzero values &, resulting from the closing of
elastic waves is required. An immediate application of thisthe former gap, and from the opening of other gaps wiken
study concerns waveguiding in the plane of such periodiégncreases. For wavelengths smaller than the period of the
structures when some defaults are added or dropped. Evensfructure, modes appear that are localized in the matrix inter-
the wave-vector component along thexis is not exactly sites in the plane of the structure, and propagate perpendicu-
zero, the elastic wave is still guided since the band gap stillar to it. Finally, this study predicts the possibility of solid-
exists. The theory presented also accounts for solid-soligolid phononic fibers to guide elastic waves alongzlais.
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