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Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials
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We have used a plane-wave-expansion model to study the out-of-plane propagation of elastic waves in a
two-dimensional phononic band-gap material. The case of quartz rods embedded in an epoxy matrix has been
computed. Band gaps for nonzero values of the wave-vector component parallel to the rods are shown to exist
and are investigated. For wavelengths smaller than the period of the structure, modes are found that are
localized in the epoxy intersites, and propagate perpendicularly to the plane of the structure.

DOI: 10.1103/PhysRevE.67.065602 PACS number~s!: 43.20.1g, 43.40.1s, 46.40.Cd, 63.20.2e
a
d
st

ha

d
n
e
c
io

th
m

o
ed
h
ed

om
e
th
d

th
h
es
e

th
o
o
a
on
a
n
o
o

of
pic
al-

er-
u-
ve-
-3

his
re
p for
pe-
aps
ods

res
ny
the

-

nts,
r the
ns
of
Acoustic band-gap materials@1–5#, also called phononic
crystals, are receiving increasing attention as potential c
didates for the design of passive components dedicate
signal processing. For instance, in the case of ela
waveguides, bulk localized states have been predicted@6,7#,
and surface states as well as localization phenomena
been calculated and observed in linear and point defects@8#.
Acoustic band-gap materials are composite elastic me
constituted of two- or three-dimensional periodic repetitio
of different solids or fluids, which exhibit stop bands in th
spectrum of transmission of elastic waves. The existen
location, and width of acoustic band gaps in the transmiss
spectrum result from a large contrast in the value of
elastic constants and/or mass density of the constitutive
terials.

In most theoretical and experimental studies of tw
dimensional structures, elastic waves have been assum
propagate in the plane perpendicular to cylinders. In t
case, for isotropic media, the out-of-plane-polariz
@uz(x,y)# and the in-plane-polarized@ux(x,y),uy(x,y)#
elastic waves are decoupled. It has been found that in s
cases, these phononic band structures display gaps that
for all incidences of plane acoustic waves scattered by
structure. In general, band gaps for in-plane polarizations
not overlap band gaps for out-of-plane polarizations in
same structure. Of particular interest has been the searc
periodic two-dimensional isotropic structures that poss
band gaps common to waves of both polarizations. Th
have come to be called absolute band gaps.

However, these band structures remain unexplored in
case of out-of-plane propagation. In particular, it might be
interest, for technological applications of such a tw
dimensional periodic structure that displays an absolute b
gap in its phononic band structure for in-plane propagati
to know the extent to which acoustic waves can propag
out of plane while an absolute band gap can still be see
the corresponding band structure. Also, the possibility
guiding waves propagating perpendicularly to the plane
the structure can be revealed by such an analysis.
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In this paper, we theoretically study the propagation
acoustic waves in a two-dimensional periodic anisotro
structure, which consists of an array of infinitely long par
lel square-section rods of quartz (Z cut! embedded in an
epoxy matrix. The intersections of the rod axis with the p
pendicular plane form a two-dimensional Bravais lattice. N
merical calculations are performed using a plane-wa
expansion method, which was originally developed for 1
connectivity piezoelectric composites@9# and is here adapted
to anisotropic solid-solid phononic band-gap materials. T
method is first briefly reviewed. The quartz-epoxy structu
has been chosen because it exhibits an absolute band ga
propagation in the plane perpendicular to the rods. We es
cially explore how this gap closes up and other absolute g
appear as the wave-vector component parallel to the r
increases from zero.

The plane-wave-expansion method of Ref.@9# is applied
to the study of two-dimensional periodic band-gap structu
as follows. According to the Bloch-Floquet theorem, a
field h(r,t) in a periodic structure can be expanded as
infinite series,

h~r,t !5(
G

hk1G exp@ j ~vt2k•r2G•r!#, ~1!

where k is the wave vector andG are the vectors of the
reciprocal lattice. Here the fieldh represents either the dis
placementsui , the stressesTi j , the electric potentialf, or
the electric displacementDi , with i and j running from 1 to
3. The mechanical, piezoelectric, and dielectric consta
and the mass density are expanded as Fourier series ove
reciprocal lattice. Considering the usual constitutive relatio
of piezoelectricity together with the fundamental equation
dynamics and Poisson’s equation for insulating media,

Ti j 5ci jkl uk,l1eli j f ,l , ~2!

Di5eikl uk,l2e i l f ,l , ~3!
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TABLE I. Material constants of quartz~crystal-lattice group 32! and epoxy. Only the independent constants are given for e
material.

Mass density Elastic constants Piezoelectric Dielectric constan
(kg/m3) (1010 N/m2) constants (C/m2) (10211 F/m)

Material r c11 c12 c13 c33 c44 c14 e11 e14 «11
S «33

S

Quartz (SiO2) 2648 8.674 0.70 1.191 10.72 5.794 21.791 0.171 20.0406 3.92 4.103
Epoxy 1142 0.7537 0.1482 3.8
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5Ti j ,i , ~4!

Di ,i50, ~5!

we define a generalized displacement vectoru
5(u1 ,u2 ,u3 ,f)T and generalized stress vectorsTi
5(Ti1 ,Ti2 ,Ti3 ,Di)

T. AssumingN terms in the expansions
and considering the following vector notationT̃i

5(Tik1G1, . . . ,Tik1GN)T and ũ5(uk1G1, . . . ,uk1GN)T, we
obtain after some algebra@9# the very compact system

j T̃i5Ai j G j ũ ~ i 51,2,3!, ~6!

v2R ũ5G i~ j T̃i !, ~7!

and the linear eigenvalue problem

v2R ũ5G iAi j G j ũ, ~8!

whereR and Ai j are the spectral mass density and mate
constant matrices, respectively. The diagonal matricesG i
contain the components of the wave vector and of
reciprocal-lattice vectors. We use the orthogonality prop
ties of the expansions to separate the independent spe
unknowns and set up the algebraic system. The modes o
periodic structures are obtained by solving the eigenva
problem ~8! for v as a function of the wave vectork. All
computations in this study have been performed conside
100 terms (10310) G in each of the Fourier and Bloch
Floquet series, resulting in a 4003400 eigenvalue problem
It was verified, by using more reciprocal-lattice vectors, t

FIG. 1. ~a! Cross section of a biperiodic solid-solid phonon
band-gap material, consisting of quartz rods in epoxy.~b! First Bril-
louin zone in the (kx ,ky) plane.
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the convergence is better than a few per cent for the
band gaps shown in Figs. 2 and 3. For higher frequencies
considered in Fig. 4, the convergence degrades, although
essential features are conserved.

Figure 1~a! displays the cross section of the structure co
sidered in this work. The structure consists of quartz (Z cut!
rods in an epoxy matrix~see material constants in Table I!.
The inclusions are arranged periodically on a square lat
and are assumed to have a square cross section so tha
filling fraction (d/a)2 is 0.64. For instance, the widthd of
the inclusions is 80mm, with a lattice parametera equal to
100 mm. Figure 1~b! displays the first Brillouin zone assoc
ated with the Bravais lattice of Fig. 1~a!.

Figure 2 shows the projected band structures in
(kx ,ky) plane onto the reduced frequencyf a, normalized-
wave-vector,gz , plane, withgz5kza/2p. The white regions
indicate absolute band gaps in the (kx ,ky) plane. The width
of the low-frequency band gap, labeled~a! in Fig. 2, is seen
to increase quasimonotonically from zero with increas
gz . Whengz increases, the width of gap~b! that exists from
f a51500 Hz m to f a52200 Hz m initially increases unti
gz.0.15, then decreases and vanishes atgz.0.4. Gap~c!
appears atgz.0.2 and vanishes atgz.0.9, while gap~d!
exists fromgz.0.3 togz.0.65.

In order to understand better the evolution of these ga
Fig. 3 displays the phononic band structures in the first B
louin zone for the high symmetry axis, i.e., along t

FIG. 2. Projection of the phononic band structures in t
(kx ,ky) plane onto the (kz , f ) plane. Numbers indicate the position
of particular branches labeled in Fig. 3. Delimited white regio
indicate absolute stop bands in the (kx ,ky) plane.
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M -G-X-M path indicated in Fig. 1~b!, calculated when the
normalized wave vectorgz5kza/2p equals 0, 0.25, and 0.4
respectively. Indeed, we have verified by numerical com
tation that the projection of such dispersion curves onto

FIG. 3. Dispersion curves along theM -G-X-M path shown in
Fig. 1~b!, for ~a! gz50, ~b! gz50.25, and~c! gz50.4. The first five
branches are numbered in the order of their appearance in thgz

50 dispersion diagram.
06560
-
e

(kz , f ) plane gives the same result as their projection for
wave vectors in the first Brillouin zone. The results forgz
50.25 differ significantly from those forgz50. The most
striking difference is that the dispersion curves for t
lowest-frequency branches, in the casegz50.25, do not tend
to zero anymore as bothkx andky tend to zero. Thus, a ban
gap below the first band opens up in the phononic ba
structure for nonzerogz , whose width increases asgz in-
creases.

In Fig. 3, the first five branches were numbered in orde
follow their evolution with increasinggz . It can be seen tha
gap~b!, which vanishes forgz.0.4, is delimited by the first
four branches and the fifth one. Simultaneously, gap~c!,
which appears fromgz.0.2, is delimited by the first two
branches and the fourth, since the third branch is now fo
at higher frequencies. Gap~d!, which appears atgz.0.3, is
found between the third and fourth branches. In fact,
third and fourth branches cross each other asgz increases
from 0, so that the third branch is found at higher frequenc
than the fourth one whengz is larger than 0.3. Consequentl
the three apparent gaps~a!–~c! can be considered as a uniqu
gap traversed by two acoustic modes.

Figure 4 is the same as Fig. 2 with an enlarged range
gz . It can be observed that forgz.1, i.e., when the wave-
length lz along thez axis is smaller than the period of th
structure, some quasilinear branches appear that are s
rated by gaps. Ifgz is held constant, these modes are fl
branches in the (kx ,ky) plane. Consequently, their group ve
locities (]v/]kx ,]v/]ky) are zero in the (x,y) plane, and
energy propagates along the rod axes. It has been verifie
plotting their modal distribution that energy is localized
the epoxy matrix. Moreover, these branches seem to hav
asymptotic behavior, i.e., they tend to the branch of the bu
epoxy transverse mode. Figure 4 also illustrates a propert
the existence of gap~a!, as labeled in Fig. 2. There are n
allowed states from zero up to a certain frequency whenkz is
greater than zero. This is because the slowest wave in
structure is the bulk-epoxy transverse mode, irrespective
the values ofkx and ky . Then gap~a! always exists, and
extends at least over the triangle below the bulk-epo

FIG. 4. Same as Fig. 2 but for an enlarged range ofkz values.
Bulk-epoxy longitudinal and transverse modes are indicated.
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transverse-mode line shown in Fig. 4.
An interesting feature of phononic band structures is t

not only does the band gap in anisotropic media gradu
closes up asgz increases from zero, but other gaps open
for nonzero values ofgz . Also, the frequencies of the lowe
and upper limits of those gaps shift to higher values asgz
increases. Consequently, the frequency filtering charact
tics of two-dimensional phononic structures can be modifi
by varyinggz away from zero. This property can be usef
for technological applications of periodic structures, but a
implies that accurate alignment of the wave vector of
elastic waves is required. An immediate application of t
study concerns waveguiding in the plane of such perio
structures when some defaults are added or dropped. Ev
the wave-vector component along thez axis is not exactly
zero, the elastic wave is still guided since the band gap
exists. The theory presented also accounts for solid-s
ri-

hy

,
Ph

h-
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phononic crystal fibers, for which propagation is along t
normal to the periodic plane.

In summary, we have computed the phononic band str
ture of an anisotropic infinite square array of parallel qua
rods embedded in an epoxy matrix. We have used an
tended plane-wave-expansion method that can describe
eral anisotropic materials. The studied structure possesse
absolute band gap in the plane perpendicular to the rods,
for all polarizations of elastic waves propagating in the pla
of the structure. We have demonstrated the existence of b
gaps for nonzero values ofkz , resulting from the closing of
the former gap, and from the opening of other gaps whenkz
increases. For wavelengths smaller than the period of
structure, modes appear that are localized in the matrix in
sites in the plane of the structure, and propagate perpend
lar to it. Finally, this study predicts the possibility of solid
solid phononic fibers to guide elastic waves along thez axis.
P.
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