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The plane-wave-expansion~PWE! approach dedicated to the simulation of periodic devices has
been extended to 1-3 connectivity piezoelectric composite structures. The case of simple but actual
piezoelectric composite structures is addressed, taking piezoelectricity, acoustic losses, and
electrical excitation conditions rigorously into account. The material distribution is represented by
using a bidimensional Fourier series and the electromechanical response is simulated using a
Bloch–Floquet expansion together with the Fahmy–Adler formulation of the Christoffel problem.
Application of the model to 1-3 connectivity piezoelectric composites is reported and compared to
previously published analyses of this problem. ©2002 Acoustical Society of America.
@DOI: 10.1121/1.1496081#
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I. INTRODUCTION

Piezoelectric composite transducers have been de
oped for medical ultrasound imaging and nondestruc
evaluation to overcome the limitations of standard
probes. The main advantages of piezoelectric compo
structures are the optimization of their electromechan
coupling factor, their low specific acoustic impedance, a
their capability to be shaped on curved surfaces~for more
about piezoelectric composite, see, e.g., Refs. 1–3.

Plane-wave-expansion~PWE! models4,5 have been de-
veloped to address the description of structures exhibi
periodic in-plane or bulk nonhomogeneity. Such an appro
represents an alternative to finite element computations,
to implement and providing complementary informati
about the capability of any structure to guide elastic wav
Unfortunately, most of the proposed developments do
take into account piezoelectricity, acoustic losses, or sim
the finite thickness of actual devices. However, the poss
ity to simulate, for instance, a semi-infinite substrate usin
PWE approach was recently demonstrated.6 In the present
work, the PWE model for periodic structures is extended
piezoelectric composite materials. These are generally c
posed of a 1D~2-2 connectivity! or 2D ~1-3 connectivity!
array of piezoelectric elements mixed with a polymer ma
rial. Addressing the problem of periodic arrays using the p
posed method allows one to compute the general prope
of the device by only treating one period of the structure. T
material distribution is represented using Fourier series
the electromechanical vibration using a Bloch–Floquet
pansion. The Fahmy–Adler formulation of the Christoff
problem7 has been adapted to obtain the modal distribut
along the thickness of the piezoelectric composite plate.

Assessment calculations are performed for acade
problems, illustrating the efficiency of the proposed a
proach. For instance, the identification of plate modes i
homogeneous piezoelectric material~namely the Z cut plate
of quartz! has been checked. The application of the mode
2-2 and 1-3 connectivity piezoelectric composites is repor
J. Acoust. Soc. Am. 112 (3), Pt. 1, Sep. 2002 0001-4966/2002/112(3)/9
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and compared to previous analyses of the same problem
erally based on simpler modeling approaches or on fin
element computations. The possibility to compute the h
monic admittance is emphasized, giving access to com
mentary data such as piezoelectric coupling, propaga
losses, and vibration shapes. As a conclusion, the future
tensions of the model are discussed in order to build u
comprehensive tool that is able to accurately simulate pie
electric composite structures radiating in different media.

II. PRINCIPLES OF THE MODEL

A. Basic definitions

Figure 1 shows the general geometry of the conside
structures, respectively 2-2 and 1-3 connectivity piezoco
posite structures and their elementary cells. The thicknes
the plate is alongx3 and wave propagation occurs alongx1

and/orx2 depending on the addressed problem. The plat
assumed periodic alongx1 for 2D problems, and two period
icities p1 andp2 in the (x1 ,x2) plane are considered for 3D
problems.

According to the Floquet theorem, all fieldsh(r,t), such
as displacements or stresses, propagating in such per
structures can be expanded as infinite series

h~r,t !5(
G

hK1Gej ~vt2K"r2G"r!, ~1!

where r5(x1 ,x2 ,x3)T and G5(2pm/p1,2pn/p2,0)T. The
upperscriptT stands for transposition.G are the vectors of
the reciprocal lattice andK is the wave vector. For 2D prob
lems, K2 and G2 are fixed to zero. The periodicity of th
structure is used to expand the material constants as Fo
series

a~r!5(
G

aGe2 j G"r, ~2!
94343/10/$19.00 © 2002 Acoustical Society of America
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with a5$r,ci jkl ,ei jk ,e i j %. The termsaG are easily calcu-
lated, especially for different cross section shapes of 1-3 c
nectivity composite structures.5

The usual constitutive relations of piezoelectricity a
then considered, together with the fundamental equation
dynamics and Poisson’s condition for dielectric media:

Ti j 5ci jkl uk,l1eli j f ,l , ~3!

Di5eikluk,l2e i l f ,l , ~4!

r
]2uj

]t2 5Ti j ,i , ~5!

Di ,i50. ~6!

According to Ref. 8, one can define a generalized d
placement fieldu in which u4 represents the electrica
potential f, and generalized stress vectorst̃i
5(Ti1 ,Ti2 ,Ti3 ,Di)

T.
Inserting Eqs.~1! and~2! into Eqs.~3! and~4! yields the

following expressions for the stress and electrical displa
ment:

(
G8

Ti j K1G8e
2 j G8"r5(

G
(
G8

@2 j ~Kl1Gl8!

3~ci jkl GukK1G8

1eli j Gu4K1G8!e
2 j ~G1G8!"r#, ~7!

(
G8

DiK1G8e
2 j G8"r5(

G
(
G8

@2 j ~Kl1Gl8!~eiklGukK1G8

2e i l Gu4K1G8!e
2 j ~G1G8!"r#, ~8!

where the8 is introduced to differentiate summations ov
space harmonics relative to the dynamic fields from th
relative to static distributions of material properties.

FIG. 1. General geometry of the addressed problem: respectively 2-2
1-3 connectivity composites and their elementary cells.
944 J. Acoust. Soc. Am., Vol. 112, No. 3, Pt. 1, Sep. 2002
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B. Matrix formulation of the problem

The orthogonality property of Fourier series compone
is then used to eliminate the spatial dependence of the s
and electrical displacement. The change of variable (G95G
1G8) is first performed, then both expressions~7! and ~8!
are multiplied by ej G"r, and finally the resulting form is inte
grated over one period, yielding the following definition
Ti j K1G andDiK1G :

Ti j K1G5(
G8

@2 j ~Kl1Gl8!~ci jkl G2G8ukK1G8

1eli j G2G8u4K1G8!#, ~9!

DiK1G5(
G8

@2 j ~Kl1Gl8!~eiklG2G8ukK1G8

2e i l G2G8u4K1G8!#. ~10!

This operation is equivalent to an orthogonal projecti
of the operators on the trigonometric functional basis us
the classical scalar product associated to Fourier theory~see,
for instance, Ref. 9!. The generalized stress vectors are th
written

j t̃iK1G5(
G8

~Kl1Gl8!Ail G2G8uK1G8 ~ i 51,2,3!, ~11!

where

Ail G~ j ,k!5ci jkl G , Ail G~ j ,4!5eli j G ,
~12!

Ail G~4,k!5eiklG , Ail G~4,4!52e i l G ,

with ( j ,k)P@1,3#2.
Inserting Eqs.~1! and~2! into Eqs.~5! and~6! yields the

following expressions for the propagation equation and
Poisson’s condition:

(
G8

2 j ~Ki1Gi8!Ti j K1G8e
2 j G8"r

5(
G

(
G8

@rG~ j v!2uj K1G8e
2 j ~G1G8!"r#, ~13!

(
G8

2 j ~Ki1Gi8!DiK1G8e
2 j G8"r50. ~14!

Applying the same procedure to the stress and the e
trical displacement provides the following expression for t
generalized stress vectors:

~Ki1Gi ! j t̃iK1G5(
G8

v2RG2G8uK1G8 , ~15!

whereRG2G85rG2G8Ĩ , with

Ĩ 5F 1

1

1

0

G .

nd
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In numerical computations, one has to truncate the F
rier series using a number of spatial harmonics large eno
to ensure convergence. AssumingN terms in the Fourier ex-
pansions~1! and~2!, the following vector notations are con
sidered for the generalized stress and displacement field

T̃iK5S t̃iK1G1

]

t̃iK1GN

D and ŨK5S uK1G1

]

uK1GN

D . ~16!

The same approach is applied to matricesAi j and R
introduced in Eqs.~11! and ~15! yielding the definitions

Ãi j 5F Ai j 0 Ai j G12G2 ¯ Ai j G12GN

Ai j G22G1 Ai j 0 ¯ Ai j G22GN

] ] � ]

Ai j GN2G1 Ai j GN2G2 ¯ Ai j 0

G ~17!

and

R̃5F r0Ĩ rG12G2Ĩ ¯ rG12GNĨ

rG22G1Ĩ r0Ĩ ¯ rG22GN
Ĩ

] ] � ]

rGN2G1Ĩ rGN2G2Ĩ ¯ r0Ĩ

G . ~18!

Introducing the diagonal matrixG i ( i 51,2,3) whose
terms are generated by first-order spatial derivatives, E
~11! and ~15! can be written in the very compact form

j T̃i5Ãi j G jŨ ~ i 51,2,3!, ~19!

v2R̃Ũ5G i~ j T̃i !, ~20!

with

G i5F ~Ki1Gi
1!I d 0

~Ki1Gi
2!I d

�

0 ~Ki1Gi
N!I d

G .

~21!

C. Calculation of the vibration distribution along x 3

Equations~19! and ~20! do not exactly yield a standar
eigenvalue problem as usually defined.7,9 However, due to
the large dimension of the matrices in Eqs.~19! and ~20!,
especially when addressing the bi-periodic problem~8 equa-
tions timesN, the number of spatial harmonics in the Floqu
developments alongx1 times those alongx2), one should
avoid any matrix inversion. The computation time and n
merical difficulties related to this operation may induce m
jor drawbacks to the proposed method. Similarly to the p
cedure outlined by Peach for SAW propagation
homogeneous substrates,10 an extended definition of eigen
value problems is considered here, for an efficient treatm
of Eqs.~19! and ~20! without any matrix inversion.

The structure is assumed to be nonperiodic along thex3

axis. As a consequence,G3 is set to zero andK3 depends on
the other parameters of the model, namely,K1 , K2 , andv.
J. Acoust. Soc. Am., Vol. 112, No. 3, Pt. 1, Sep. 2002
u-
gh

s.

t

-
-
-

nt

Writing the system of Eqs.~19! and~20!, in order to identify
K3 as the eigenvalue and (ŨK , j T̃3K)T as the eigenvector o
the problem, yields after some algebra

Fv2R̃2B
2C2

0
I d

G S ŨK

j T̃3K
D 5K3FC1

D
I d

0 G S ŨK

j T̃3K
D , ~22!

with

B5 (
i , j 51,2

G i Ãi j G j , C15 (
i 51,2

G i Ãi3 ,

~23!

C25 (
j 51,2

Ã3 jG j , D5Ã33,

and whereT̃3K is the generalized normal stress vector.
Solving this system yields 8N eigenvaluesK3

(r ) and
eigenvectors, which are used to build the generalized
placement and normal stress fields. Since the eigenvec
are determined for an arbitrary constant value of the in
pendent unknowns of the problem, one introduces the r
tive amplitudesA(r ) ~as for surface waves, see, e.g., Refs
and 10!. Using a comprehensive set of boundary conditio
allows one to determine these relative amplitudes. The fi
form of the generalized displacement and normal stress fi
is written

S u~r,t !
t̃3~r,t ! D5ej ~vt2K1x12K2x2!

3(
l 51

N Fe2 j Gl "r(
r 51

8N

A~r !e2 jK 3
~r !x3S uK1Gl

~r !

t̃3K1Gl
~r ! D G .

~24!

D. Boundary conditions

Note that the case of bulk waves propagating along
(x1 ,x2) plane in an infinite medium alongx3 can be easily
computed using Eq.~22!, simply by settingK350 and by
solving the resulting problemv2R̃Ũ5BŨ, wherev is com-
puted for each (K1 ,K2) defined in the first Brillouin zone
@0,2p/p1/2# (p1/2 being the periods of the structure!.

However, a large variety of boundary conditions can
applied to simulate actual operating conditions of a pie
electric composite structure. The mechanical boundary c
ditions require the nullity of stress components normal
surfaces ~stress free definite boundaries in air or in
vacuum! or the physical validity of the partial modes th
have to be included in the normal mode expansion~24!
~semi-infinite medium!. In this latter case, one has to sele
the values ofK3 with respect to this condition. Using a cr
terion based on the sign of the mean Poynting vector1,10 of
each partial mode~in the case of propagative modes! or on
the sign of the imaginary part of eachK3

(r ) ~in the case of
evanescent modes!, an unambiguous modal selection can
performed. For plate devices, both sides are assumed s
free. Other kinds of mechanical boundary conditions may
applied~for instance, radiation conditions, see Ref. 11!, but
they have not been implemented yet. The stress free co
tion is then written independently from the space coordina
945Wilm et al.: PWE model for piezoelectric composites
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x1 andx2 , as previously explained for the propagation equ
tion and Poisson’s equation, yielding the following expre
sions:

(
r 51

8N

A~r !T3 j K1Gi
~r ! e2 jK 3

~r !h50 ~ i 51,...,N! ~ j 51,2,3!,

~25!

wherex35h at the surface.
From the electrical point of view, in the case of a de

nite boundary, two kinds of boundary conditions have be
considered. The first one is the continuity of the potential a
of the normal component of the electrical displacement at
surface. In the air, one can write

Dfair50, ~26!

D3
air52e0

]fair

]x3
, ~27!

whereD is the Laplacian. The continuity conditions at th
surface yield

fsubstrateux35h5fairux35h , ~28!

D3
substrateux35h2D3

airux35h50. ~29!

The boundary condition expressions are finally obtained a
some algebra as

(
r 51

8N

A~r !@D3K1Gi
~r !

2e0ukufK1Gi
~r !

#e2 jK 3
~r !h50 ~ i 51,...,N!,

~30!

with uku5A(K11G1)21(K21G2)2.
The second boundary condition considered is setting

surface potential homogeneously to a given valueV0 , for
instance 0 V for a shorted surface or 1 V for an active el
trode. Considering one period and infinitely close electrod
the potential is written

f~r,t !ux35h5V0ej vt, ~31!

yielding

(
i 51

N Fe2 j Gi "r(
r 51

8N

A~r !fK1Gi
~r ! e2 jK 3

~r !hG5V0ej ~K1x11K2x2!.

~32!

Applying the orthogonal projection, one finally obtains t
desired boundary conditions

(
r 51

8N

A~r !fK1Gi
~r ! e2 jK 3

~r !h

5V0S sincS ~K11G1
i !

p1

2 D D S sincS ~K21G2
i !

p2

2 D D
~ i 51,...,N!. ~33!

In the case of homogeneous boundary conditions,
has to set up a boundary condition system exhibitingN
equations ~the number of independent unknowns!. The
modes of the structure correspond to the zeros of the de
minant of this system, for which nontrivial solutions can th
be obtained. For each of these modes, it is possible to c
946 J. Acoust. Soc. Am., Vol. 112, No. 3, Pt. 1, Sep. 2002
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pute the relative amplitudeA(r ) by setting one of them equa
to an arbitrary value and then deducing the others by solv
the boundary condition system. Thus the actual nature of
corresponding vibration can be identified.

E. Harmonic admittance

Using the above-mentioned electrical boundary con
tions allows one to simulate the excitation conditions of
ezoelectric composite materials and to derive the harmo
admittance for a single cell by computing the charge dis
bution on the active electrode. In this approach, one ha
considerK1 and K2 as excitation parameters governing t
excitation potential distribution as follows,

Vmn5V0e2 jK 1mp1e2 jK 2np2, ~34!

wherep1 and p2 are, respectively, the periodicity alongx1

and x2 as previously defined~see Fig. 1!. For instance, an
alternation of the sign of the potential excitation alongx1 is

FIG. 2. Comparison between standard Green’s function computation~solid
and dashed lines! and the proposed approach~cross markers! to identify the
acoustic modes of a~ZX! quartz plate. The plate modes~Lamb waves! are
found, such as the three BAWs~bulk acoustic waves! and the SSBW~sur-
face skimming bulk wave!. The BAWS are the longitudinal, fast shear an
slow shear ones at, respectively, 5748, 5103.3, and 3300.5 m s21. The
SSBW celerity is 4678 m s21. Contrary to the BAWs, its wave vector is no
parallel to the surface while its Poynting vector is such. The two isola
points on the top of the figure are in fact in the continuity of a Lamb mo
Indeed, the SAW dedicated method computation is not complete for
corresponding mode because of the difficulty to follow modes which cr
each other.
Wilm et al.: PWE model for piezoelectric composites
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FIG. 3. Dispersion curves of the 2-2 connectivity composite of Fig. 1. Left: bulk acoustic waves propagating in the (x1 ,x2) plane. Right: plate modes of the
finite-thickness composite given by the minima of the boundary condition system determinant. Bulk modes are found too with this second computatio that
bulk and plate modes are discriminated comparing the two figures.
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obtained by settingK15p/p1 . For more details about th
harmonic admittance, see Ref. 12. The charge distributio
the active interface is directly given by the difference b
tween the normal electrical displacement in the material
J. Acoust. Soc. Am., Vol. 112, No. 3, Pt. 1, Sep. 2002
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in a vacuum~assuming ideally thin electrodes!. Integrating
this distribution along one period and multiplying the res
by the angular frequency provides the harmonic admitta
written (i 51,...,N)
e
by

un-
ude
his
on
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he
FIG. 4. Real part of the harmonic admittance~conduc-
tance! of the 2-2 connectivity piezoelectric composit
material of Fig. 1. Resonance frequencies are given
the maxima of the conductance. The admittance is tr
cated since the thickness mode has a great amplit
compared to the other modes. We can derive from t
calculus and the previous curves of Fig. 3 dispersi
curves for piezoelectrically coupled plate modes, sin
conductance maxima indicate vibrating modes in t
same manner as dispersion curves.
947Wilm et al.: PWE model for piezoelectric composites
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PWE ~b! calculations of the harmonic admittance of th
1-3 piezoelectric composite of Fig. 1. The first sym
metrical Lamb-like wave, the thickness mode, and t
well-known first lateral mode are indicated in the PW
curves. The displacement fields of these modes are
spectively shown in Figs. 6–8.
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Y~K1 ,K2 ,v!

5 j v(
i 51

N F (
r 51

8N

A~r !~D3K1Gi
~r !

2e0ukufK1Gi
~r !

!e2 jK 3
~r !hG

3S p1sincS ~K11G1
i !

p1

2 D D S p2sinc~K21G2
i !

p2

2 D .

~35!

This harmonic admittance provides precious informat
about the way the modes are piezoelectrically coupled,
also concerning frequency band-gap phenomena arisin
periodic structures. It is also very useful to derive mutu
admittances12 allowing us then to evaluate cross-coupling e
fects for a given geometry of transducers. This latter po
will be addressed in future works.

Note that in all the presented theoretical developme
the material constants are assumed complex, so that ela
piezoelectric, and dielectric losses can be taken i
account.13
948 J. Acoust. Soc. Am., Vol. 112, No. 3, Pt. 1, Sep. 2002
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III. NUMERICAL APPLICATION OF THE MODEL

A. Acoustic plate modes in quartz

This first example was chosen simply to validate t
approach. The problem is the calculation of acoustic pl
modes of a Z cut plate of quartz, with propagation along th
X axis. By considering only the fundamental term in t
Fourier and Floquet series, one can directly simulate
acoustic propagation in a homogeneous material of fin
thickness. The results are easily compared to those of S
~surface acoustic wave! dedicated simulation tools develope
in our group.14 This comparison is shown in Fig. 2 where th
phase velocity is displayed as a function of the frequen
thickness product. A very good agreement between both
culations for piezoelectrically coupled modes can be
served. The proposed approach also allows one to iden
the noncoupled modes of the plate, and also modes w
energy propagates parallel to the plate surfaces~Poynting
vector parallel to the surfaces!, but are not affected by the
plate thickness and hence are not dispersive. Four mode
Wilm et al.: PWE model for piezoelectric composites
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this kind are found in Fig. 2, and are the slow shear, f
shear, and longitudinal bulk acoustic waves, plus a fast s
SSBW~surface skimming bulk wave, see Ref. 1!.

B. 2-2 connectivity piezoelectric composite

The geometry of the considered structure is shown
Fig. 1. The thickness of the plate was set to 200mm; the
period alongx1 was 150mm with a 100-mm width PZT
ridge.

In that case, different computations were performed
identify the modes propagating in the structure. Bulk mod
were first determined assuming an infinite thickness for
plate andK350. The eigenmodes of the finite thickness pla
were then extracted assuming that both surfaces are ele
cally shorted. Finally, the harmonic admittance was co
puted to discriminate piezoelectrically coupled modes. T
top surface is submitted to a harmonic excitation, wher
the back surface is grounded. All computations were p
formed considering six spatial harmonics. It should be e
phasized that using more spatial harmonics yields a m
nearly accurate prediction of the frequency location of
modes. Considering six harmonics represents a trade-of
tween accuracy and computation time. The results obta
for the three different computations are reported in Figs
and 4. Figure 3 shows the bulk eigenmodes propagatin
the (x1 ,x2) plane and the plate eigenmodes of the fini
thickness configuration, and Fig. 4 displays the real par
the harmonic admittance of the piezoelectric composite
all couples (v,g15K1p1/2p). In the case of infinite thick-
ness of the plate, one can easily identify the first three mo
as in-plane and thickness shear vibrations, and in-plane
gitudinal propagation. The latter strongly contributes to
first symmetrical Lamb wave. In the case of the finite thic
ness configuration, many couples (v,g1) are found to mini-
mize the determinant of the boundary condition syste
However, some of these values correspond to local min
of this determinant and not to physical solutions of the pr
lem. For instance, bulk modes appear for the finite-thickn
configuration, too, and can be discriminated using the res
of the case of infinite thickness. In Fig. 4, it can be seen t
the piezoelectrically coupled modes of the device can be
criminated efficiently, using the harmonic admittance co
putation. In that case, eigenmode and harmonic admitta
computations are both useful since the dispersion curve
Fig. 3 allow one to distinguish between modes that are v
close to one another and not easily independently identifia
by the use of the harmonic admittance.

C. 1-3 connectivity piezocomposite

The last illustration of the proposed theory is a 1-3 co
nectivity piezoelectric composite. The elementary cell of
studied structure is shown in Fig. 1. The thickness was se
300 mm, and both periodicities alongx1 andx2 are equal to
200 mm ~PZT width is 100mm alongx1 andx2). The same
kind of analysis as for the 2-2 piezocomposite was p
formed. However, due to the large computation time
quired, the number of spatial harmonics was restricted to
for both directions, i.e., 25 terms in the series. This is a ma
J. Acoust. Soc. Am., Vol. 112, No. 3, Pt. 1, Sep. 2002
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drawback of the method because computations with
small a number of harmonics yield inaccurate predictions

Although some minima of the determinant are not phy
cal solutions of the problem, dispersion curves for relativ
low-frequency modes are found similar to those compu
with a finite element method in Ref. 15.

A qualitative comparison between finite element ana
sis and PWE analysis of the composite is reported in Fig
Although similar results are obtained in the vicinity of th
longitudinal compression mode using the two methods, d
crepancies arise for higher-order frequency modes. Howe
both approaches exhibit prohibitive computation times
the accurate simulation of high-order modes and overto
~increasing the number of elements of the finite elem
mesh is equivalent to increasing the number of harmonic
the PWE method!.

Although the problem of accuracy must be addressed
provide reliable computation results, much pertinent inf
mation can be deduced from the proposed calculation.
shape of the mode is accessible by simply calculating
effective values of the mechanical displacement fields of

FIG. 6. First symmetrical Lamb wave propagating in four cells (g1

50.25,g250, v52350 kHz! of the 1-3 piezoelectric composite of Fig. 1

FIG. 7. Fundamental longitudinal mode alongx3 (g15g250, v54900
kHz! of the 1-3 piezoelectric composite of Fig. 1.
949Wilm et al.: PWE model for piezoelectric composites
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FIG. 8. First lateral mode for infinite thickness and fi
nite thickness (g15g250, v57200 kHz! of the 1-3
piezoelectric composite of Fig. 1.
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problem. For a given value of (g1 ,g2 ,v), one can construc
the propagation profile for the desired number of cells. T
is illustrated in Fig. 6, showing the first Lamb mode at (g1

50.25,g250,v52350 kHz! propagating in four adjacen
cells. The mechanical state of the elementary cell for
fundamental longitudinal compression mode alongx3 and
for the first lateral mode (g15g250) are also reported in
Figs. 7 and 8, respectively, demonstrating the capability
the model to fairly predict the actual vibration of a 1-3 co
nectivity piezoelectric composite.

Figure 9 displays the real part of the harmonic adm
tance~i.e., the conductance! in the first Brillouin zone16 of
the studied in-plane symmetrical structure. We can recog
for g250 the harmonic admittance of Fig. 5. Resonance
quencies are given by the maxima of the conductan
Thanks to these conductance curves, which give the reso
piezoelectrically coupled modes, and the dispersion cur
calculated in the case of shorted surfaces, we are abl
identify parasitic modes of the thickness mode and acou
band-gaps of the structure, which are of main interest
ultrasonic imaging applications.

Finally, a quantitative study was performed in the ca
of the fundamental thickness mode. First, the longitudi
phase velocityv l and the electromechanical coupling factok
were calculated by varying the volume fraction of ceram
with our constant sets, according to the well-known Sm
and Auld theory.2 Then the harmonic admittance was calc
lated at (g15g250) around the thickness-mode for differe
numbers of terms in the Bloch–Floquet and Fourier exp
sions. The maximum of the conductance gives one the r
nance frequencyf r , while the antiresonance frequencyf a is
given by the maximum of the resistance~real part of the
impedance!.17 Consequentlyv l and k can be calculated a
follows:

v l52h fa , ~36!

whereh is the thickness of the plate, and

k25
p

2

f r

f
a

tan
p

2

f a2 f r

f a
. ~37!
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Comparisons between theory2 and our computations ar
shown in Figs. 10 and 11. By increasing the number of ter
of the expansions, a convergence appears between the S
and Auld model and the plane-wave-expansion method.
instance, with seven terms along each direction, we hav
good agreement for a ceramic volume fraction from 0%
50%.

FIG. 9. Real part of the harmonic admittance, for the 1-3 piezoelec
composite, calculated in the first Brillouin zone in the (K1 ,K2) plane. One
can deduce the frequencies of the parasitic modes, considering the thic
mode as the useful vibration for imaging applications. For instance, con
ering the pathX2M , we can see that a vibrating mode mingles with t
strong coupled fundamental thickness mode near the pointX. Acoustic band-
gaps are retrievable considering piezoelectrically coupled modes. The t
ness mode and its harmonic are truncated~white color! because of their
magnitudes.
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FIG. 10. Electromechanical coupling factor for the thickness mode, ca
lated for different values of the number of terms of the series, to be c
pared with the well-established Smith and Auld model. The number of
monics along each direction is given for each computation.

FIG. 11. Longitudinal phase velocity for the thickness mode, calculated
different values of the number of terms of the series, to be compared
the well-established Smith and Auld model. The number of harmonics a
each direction is given for each computation.
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IV. CONCLUSION

A full 3D model based on a plane wave expansion of
generalized acoustic fields has been developed and im
mented for general piezoelectric-based composite mater
It is able to simulate homogeneous materials, but also 1D
2D periodic devices with a good level of accuracy. It c
take into account material losses using the imaginary par
elastic, piezoelectric, and dielectric fundamental consta
This approach is an alternative to finite element compu
tions in the case of the considered regular piezoelectric c
posite geometry. The model is able to provide much inf
mation about the considered device such as the piezoele
coupling, the resonance efficiency, and the effect of acou
losses by calculating the harmonic admittance. It can inc
porate different boundary conditions corresponding to eff
tive operation of the device. First qualitative computatio
were performed for 2-2 and 1-3 connectivity piezoelect
composites. Complementary quantitative calculations w
performed for the 1-3 connectivity piezoelectric compos
thickness mode and compared to a well-established the
In a future extension of the theory, a particular effort will b
paid to the optimization of the computation time and t
accuracy of 3D computations. The case of radiation in flu
and solids will also be addressed, to provide a compreh
sive description of operating conditions of 2-2 and 1-3 pie
electric composite-based devices. Even if the computa
time, which governs in fact the accuracy of the method,
to be optimized, the PWE method already provides qual
tive information, which is of primary interest to understan
the operation of such composite structures.
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