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The plane-wave-expansiaiPWE) approach dedicated to the simulation of periodic devices has
been extended to 1-3 connectivity piezoelectric composite structures. The case of simple but actual
piezoelectric composite structures is addressed, taking piezoelectricity, acoustic losses, and
electrical excitation conditions rigorously into account. The material distribution is represented by
using a bidimensional Fourier series and the electromechanical response is simulated using a
Bloch—Floquet expansion together with the Fahmy—Adler formulation of the Christoffel problem.
Application of the model to 1-3 connectivity piezoelectric composites is reported and compared to
previously published analyses of this problem. 2002 Acoustical Society of America.
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I. INTRODUCTION and compared to previous analyses of the same problem gen-
e?_rally based on simpler modeling approaches or on finite

Piezoelectric composite transducers have been dev . -
. : : . “element computations. The possibility to compute the har-
oped for medical ultrasound imaging and nondestructive

: T monic admittance is emphasized, giving access to comple-
evaluation to overcome the limitations of standard 1D . X . .
: ) . ~mentary data such as piezoelectric coupling, propagation
probes. The main advantages of piezoelectric composit . . .
. ; .~ _losses, and vibration shapes. As a conclusion, the future ex-
structures are the optimization of their electromechanica

. . . . ensions of the model are discussed in order to build up a
coupling factor, their low specific acoustic impedance, an . . . .
. o comprehensive tool that is able to accurately simulate piezo-
their capability to be shaped on curved surfadfes more

about piezoelectric composite, see, e.g., Refs. 1-3. electric composite structures radiating in different media.

Plane-wave-expansiofPWE) model4® have been de-
veloped to address the description of structures exhibiting
periodic in-plane or bulk nonhomogeneity. Such an approach. PRINCIPLES OF THE MODEL
rep_resents an alternative_tq finite element compgtations,_eaw_ Basic definitions
to implement and providing complementary information
about the capability of any structure to guide elastic waves. Figure 1 shows the general geometry of the considered
Unfortunately, most of the proposed developments do no$tructures, respectively 2-2 and 1-3 connectivity piezocom-
take into account piezoelectricity, acoustic losses, or simplyosite structures and their elementary cells. The thickness of
the finite thickness of actual devices. However, the possibilthe plate is along; and wave propagation occurs alorg
ity to simulate, for instance, a semi-infinite substrate using &nd/orx, depending on the addressed problem. The plate is
PWE approach was recently demonstrétdd. the present assumed periodic along for 2D problems, and two period-
work, the PWE model for periodic structures is extended tdcities p; andp, in the (x;,x) plane are considered for 3D
piezoelectric composite materials. These are generally coniroblems.
posed of a 1D(2-2 connectivity or 2D (1-3 connectivity According to the Floquet theorem, all fieltir,t), such
array of piezoelectric elements mixed with a polymer mate2s displacements or stresses, propagating in such periodic
rial. Addressing the problem of periodic arrays using the proStructures can be expanded as infinite series
posed method allows one to compute the general properties
of the'devi_ce py qnly .treating one perioq of the ;tructure. The h(r,t)= 2 hyy g8l (@ K76 1)
material distribution is represented using Fourier series and G
the electromechanical vibration using a Bloch—Floquet ex-
pansion. The Fahmy—Adler formulation of the Christoffel Where r=(x;,x;,x3)" and G=(27m/p;,27n/p,,0)". The
probleni has been adapted to obtain the modal distributiorpperscript’ stands for transpositiorG are the vectors of
along the thickness of the piezoelectric composite plate. the reciprocal lattice ani{ is the wave vector. For 2D prob-

Assessment calculations are performed for academitems, K, and G, are fixed to zero. The periodicity of the
problems, illustrating the efficiency of the proposed ap-Structure is used to expand the material constants as Fourier
proach. For instance, the identification of plate modes in &eries
homogeneous piezoelectric materiahmely the Z cut plate
of quart2 has been c;h.eckgd. The application qf thg model to a(n=3 age ic", )
2-2 and 1-3 connectivity piezoelectric composites is reported G
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B. Matrix formulation of the problem

The orthogonality property of Fourier series components
is then used to eliminate the spatial dependence of the stress
and electrical displacement. The change of variade<(G
+G’) is first performed, then both expressiof™ and (8)
are multiplied by &, and finally the resulting form is inte-
grated over one period, yielding the following definition of
Tijk+c andDjx.:

Tin+G:E [~ (K +G/)(Cijxic-c'Ukk+ o’
G’

+€jijc-c'Uak+a) ], )

Dikio=2 [—i(K+G))(eiio-clUkks o
GI

—€j16-c'Uak+ )] (10)
FIG. 1. General geometry of the addressed problem: respectively 2-2 and . L . o
1-3 connectivity composites and their elementary cells. This operation is equivalent to an orthogonal projection

of the operators on the trigonometric functional basis using
the classical scalar product associated to Fourier thesesy,

with a={p,Cjj,&.€}. The termsag are easily calcu- for instance, Ref. p The generalized stress vectors are then
lated, especially for different cross section shapes of 1-3 congyitten

nectivity composite structures.

The usual constitutive relations of piezoelectricity are ~ , )
then considered, together with the fundamental equation of ltiK+G:§ (Ki+GDAIg-eUk+e (11,23, (1D
dynamics and Poisson’s condition for dielectric media:

where
Tij = Cijii Uk, T €iij &1 » 3 ) .
Aic(l,K) =Cijkic,  Aucll 4 =€ijc,
Di=ejUx — €19, 4 12
1= Gt~ € @ Aic(4k)=eie, Aic(4d=—c¢ic, 42
2
P (5  With (j,k) e[13.
otz T Inserting Eqs(1) and(2) into Egs.(5) and(6) yields the
following expressions for the propagation equation and the
D;,=0. (6)  Poisson’s condition:

According to Ref. 8, one can define a generalized dis~Z i , Gl
placement fieldu in which u, represents the electrical < —I(Ki+G)Tijk+ €
potential ¢, and generalized stress vectorg;
=(Tiz, Ti2, Tiz. D).

— ; 2. —j(G+G')r
Inserting Eqs(1) and(2) into Egs.(3) and(4) yields the % g [pelie) Uik e 1 (13
following expressions for the stress and electrical displace-
ment: . , _ig
2 —i(Ki+G{)Dix; o 1®"=0. (14
GI

> Tikeee 7= > [—](K+G))
G’ G @

Applying the same procedure to the stress and the elec-
trical displacement provides the following expression for the
X (Cijii gUkk + 6 generalized stress vectors:

+elijGU4K+G’)e_j<G+G,)‘r]s (7) ~
(Ki+G)tiki 6= ©?Ro_clksar s (15
G’

D' ’ _jG/'r: | K + ! i ’ 7 .
% iK+G'€ % %[ J(Ki+G/)(eikicUkk+ whereRg._ o = pa._ o, with

(G+ G’)-r], (8) 1
~ 1
|

— €j1Uak+c)€

where the’ is introduced to differentiate summations over
space harmonics relative to the dynamic fields from those
relative to static distributions of material properties. 0
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In numerical computations, one has to truncate the Fouwriting the system of Eqg19) and(20), in order to identify
rier series using a number of spatial harmonics large enougk, as the eigenvalue andJg,jTs¢)" as the eigenvector of

to ensure convergence. AssumiNgerms in the Fourier ex-

pansiong1) and(2), the following vector notations are con-
sidered for the generalized stress and displacement fields:

tik+ Gl
Tik=

tik+ N

Uk+gt
and Uy= (16)

Uk+N

The same approach is applied to matriggs and R
introduced in Eqs(11) and(15) yielding the definitions

Aijo Ajjcl-c2 Ajjcl-cN
Rij: AijG:Z—Gl A:ijO AijG:Z—GN a7
AijeN-ct  AjjeN-c2 Aijo
and
PoT /!)Gl—e@T PGl—GNT
B pGZ._GlT pf)T PGZ‘—GNT (19
PGN—Gl~I .DG.N—G2T Po~|

Introducing the diagonal matriX’; (i=1,2,3) whose

terms are generated by first-order spatial derivatives, Egs.

(11) and(15) can be written in the very compact form

jrri:nAiijD (i=1,2,3), (19

w?RU=T(jT), (20)
with

(Ki+Gi)lg 0
r - (Ki+GP)lq
0 (Ki+GM)lg
(21

C. Calculation of the vibration distribution along X3

Equations(19) and (20) do not exactly yield a standard
eigenvalue problem as usually defifetiHowever, due to
the large dimension of the matrices in Eq%9) and (20),
especially when addressing the bi-periodic probl@equa-

the problem, yields after some algebra

‘R-B 0][ U c1 1]/ U
© ==K, al €1, @
—C2 Lo\ [ Tak D OJ\jTa

with

B= > TAl, Cl=2> TAg,

i,]=1,2 i=1,2

(23

C2: ’A3JFJ, D:Z\33,

j=12

and whereT 3, is the generalized normal stress vector.

Solving this system yields 8 eigenvaluesk{’ and
eigenvectors, which are used to build the generalized dis-
placement and normal stress fields. Since the eigenvectors
are determined for an arbitrary constant value of the inde-
pendent unknowns of the problem, one introduces the rela-
tive amplitudesA(") (as for surface waves, see, e.g., Refs. 8
and 10. Using a comprehensive set of boundary conditions
allows one to determine these relative amplitudes. The final
form of the generalized displacement and normal stress fields
is written

(u(r,t)

- — al (wt—Kix3—Koxy)
t3<r,t>> ¢

N
X2,
=1

8N u(r)

g 0! K+G

e 1G> AlNe I X3(~<r> :
r=1 3K+ G

(24)

D. Boundary conditions

Note that the case of bulk waves propagating along the
(X1,X,) plane in an infinite medium alongz can be easily
computed using Eq22), simply by settingk;=0 and by
solving the resulting problem»?RU=BU, wherew is com-
puted for each K;,K,) defined in the first Brillouin zone
[0,27/pyj2] (P12 being the periods of the structyre

However, a large variety of boundary conditions can be
applied to simulate actual operating conditions of a piezo-
electric composite structure. The mechanical boundary con-
ditions require the nullity of stress components normal to
surfaces (stress free definite boundaries in air or in a
vacuum or the physical validity of the partial modes that

tions timesN, the number of spatial harmonics in the Floquethave to be included in the normal mode expans{@d)

developments along; times those along,), one should

(semi-infinite medium In this latter case, one has to select

avoid any matrix inversion. The computation time and nu-the values oK; with respect to this condition. Using a cri-
merical difficulties related to this operation may induce ma-terion based on the sign of the mean Poynting véctbof
jor drawbacks to the proposed method. Similarly to the proeach partial modéin the case of propagative modes on
cedure outlined by Peach for SAW propagation onthe sign of the imaginary part of eatﬁg’) (in the case of
homogeneous substratfsan extended definition of eigen- evanescent modgsan unambiguous modal selection can be
value problems is considered here, for an efficient treatmerggerformed. For plate devices, both sides are assumed stress
of Egs.(19) and(20) without any matrix inversion. free. Other kinds of mechanical boundary conditions may be
The structure is assumed to be nonperiodic along<the applied(for instance, radiation conditions, see Ref),1dut

axis. As a consequenc@g is set to zero ant; depends on
the other parameters of the model, nam#&ly, K,, andw.
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they have not been implemented yet. The stress free condi-
tion is then written independently from the space coordinates
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X4 andx,, as previously explained for the propagation equa- 8000 T T
tion and Poisson’s equation, yielding the following expres-
sions:
7000
8N
() . .
> AOT, e Ks =0 (i=1,.N) (j=12,3,
=1 25 6000 |
wherexz=h at the surface. =
From the electrical point of view, in the case of a defi- 7, 5000
nite boundary, two kinds of boundary conditions have been &
considered. The first one is the continuity of the potential and &
of the normal component of the electrical displacement at the 73 4000
surface. In the air, one can write n
AG—0, (26) >§ 3000
) (9¢air
air__ __
Ds'=—¢o X3 | (27 2000
where A is the Laplacian. The continuity conditions at the
surface yield 1000 |x N
(bSUbStratan:h: ¢air| xg=h (28)
Dsubstratr _ Dair| -0 (29 0 L L : L L
3 xz=h 3 Ixg=h— VY- 0 1 2 3 4 5 6
The boundary condition expressions are finally obtained after frequency . thickness (kHz.m)
PWE method  x
some algebra as SAW method - plate modes
8N SAW method - BAWS --------

SAW method — SSBW e

(r (N 1a-ikPh_ P
> AV[Dgl g~ okl gyt gle M3 "=0 (i=1,..N), _ _ -

r=1 FIG. 2. Comparison between standard Green’s function computestadial

(30) and dashed lingsand the proposed approa@tross markepsto identify the

. _ Vi Vi acoustic modes of &X) quartz plate. The plate modésamb waves are

with |K| - \/(K1+ Gl) + (K2+ GZ.). : . ) ) found, such as the three BAWbulk acoustic wavesand the SSBW(sur-
The second boundary condition considered is setting theice skimming bulk wave The BAWS are the longitudinal, fast shear and

surface potential homogeneously to a given valg for slow shear ones at, respectively, 5748, 5103.3, and 3300.5'.nThe
instance 0 V for a shorted surface or 1 V for an active eleC-SSBW celerity is 4678 m'$. Contrary to the BAWS, its wave vector is not

. . . . arallel to the surface while its Poynting vector is such. The two isolated
trode. Considering one period and infinitely close eIeCtrOdeioints on the top of the figure are in fact in the continuity of a Lamb mode.

the potential is written Indeed, the SAW dedicated method computation is not complete for the
iot corresponding mode because of the difficulty to follow modes which cross
¢(r,t)|x3:h: Vo€, (31 each other.
yielding

8N pute the relative amplituda") by setting one of them equal
eij‘-rE A(”dJQGieng)h} = Vel (Kixa+Koxp), to an arbitrary value and then deducing the others by solving
r=1 the boundary condition system. Thus the actual nature of the
(32)  corresponding vibration can be identified.
Applying the orthogonal projection, one finally obtains the
desired boundary conditions

2

8N E. Harmonic admittance
S AOg" e iKY . _ _ .
“= K+G Using the above-mentioned electrical boundary condi-
tions allows one to simulate the excitation conditions of pi-
. i P1 . i P2 ezoelectric composite materials and to derive the harmonic
— N = =
_VO( smc{ (Ki+Gy) 2 ) )(smc{ (Ko+Ga) 2 )) admittance for a single cell by computing the charge distri-
o bution on the active electrode. In this approach, one has to
el considerK; an as excitation parameters governin e
(i=1..N) (33 derk, andK, tation p ters g g th
In the case of homogeneous boundary conditions, onéxcitation potential distribution as follows,
has tg set up a boundary qondmon system exhibiting 8 V= Ve Kimpig-iKanp;, (34)
equations (the number of independent unknownsThe
modes of the structure correspond to the zeros of the detewherep, and p, are, respectively, the periodicity along
minant of this system, for which nontrivial solutions can thenand x, as previously definedsee Fig. 1. For instance, an
be obtained. For each of these modes, it is possible to conalternation of the sign of the potential excitation alongis
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FIG. 3. Dispersion curves of the 2-2 connectivity composite of Fig. 1. Left: bulk acoustic waves propagatingxp, ¢ plane. Right: plate modes of the
finite-thickness composite given by the minima of the boundary condition system determinant. Bulk modes are found too with this second comphgation, s
bulk and plate modes are discriminated comparing the two figures.

obtained by settind<,=#/p,. For more details about the in a vacuum(assuming ideally thin electrodedntegrating
harmonic admittance, see Ref. 12. The charge distribution dhis distribution along one period and multiplying the result
the active interface is directly given by the difference be-by the angular frequency provides the harmonic admittance
tween the normal electrical displacement in the material andvritten (i=1,...N)

«+——— thickness—mode

first symmetrical lamb-like mode
Harmonic admittance - real part (a.u. . )
part (2.0, FIG. 4. Real part of the harmonic admittan@@nduc-

tance of the 2-2 connectivity piezoelectric composite

76+08 material of Fig. 1. Resonance frequencies are given by
Ge+08 1 the maxima of the conductance. The admittance is trun-
56408 . . )

40408 | cated since the thickness mode has a great amplltu_de
30408 - compared to the other modes. We can derive from this

Per0s T kw C\l__‘/ 7 898 calculus and the previous curves of Fig. 3 dispersion
1e+08 | I 855 curves for piezoelectrically coupled plate modes, since
0 0.25 y conductance maxima indicate vibrating modes in the
$3 ! same manner as dispersion curves.
0.4
, 0.45
i 1 L 1 1 L L i 05

0 2 4 6 8 10 12 14 16 18 20
Frequency (MHz)
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FIG. 5. Comparison between finite eleme@ and
PWE (b) calculations of the harmonic admittance of the
1-3 piezoelectric composite of Fig. 1. The first sym-
metrical Lamb-like wave, the thickness mode, and the
well-known first lateral mode are indicated in the PWE
curves. The displacement fields of these modes are re-
spectively shown in Figs. 6—8.

first symmetrical lamb-like mode

0 12000 14000

Ill. NUMERICAL APPLICATION OF THE MODEL
A. Acoustic plate modes in quartz

This first example was chosen simply to validate the
approach. The problem is the calculation of acoustic plate
modes 6a Z cut plate of quartz, with propagation along the
X axis. By considering only the fundamental term in the
Fourier and Floquet series, one can directly simulate the
acoustic propagation in a homogeneous material of finite

This harmonic admittance provides precious informationthickness. The results are easily compared to those of SAW

about the way the modes are piezoelectrically coupled, bufsurface acoustic wayeledicated simulation tools developed
also concerning frequency band-gap phenomena arising im our group** This comparison is shown in Fig. 2 where the
periodic structures. It is also very useful to derive mutualphase velocity is displayed as a function of the frequency-
admittance¥ allowing us then to evaluate cross-coupling ef- thickness product. A very good agreement between both cal-
fects for a given geometry of transducers. This latter pointulations for piezoelectrically coupled modes can be ob-
will be addressed in future works. served. The proposed approach also allows one to identify
Note that in all the presented theoretical developmentsthe noncoupled modes of the plate, and also modes which
the material constants are assumed complex, so that elastenergy propagates parallel to the plate surfadasynting
piezoelectric, and dielectric losses can be taken intoector parallel to the surfacgsbut are not affected by the
account'® plate thickness and hence are not dispersive. Four modes of
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this kind are found in Fig. 2, and are the slow shear, fast x;um)

shear, and longitudinal bulk acoustic waves, plus a fast shea

SSBW (surface skimming bulk wave, see Rej. 1 fgg
100

L , . 50
B. 2-2 connectivity piezoelectric composite 0

-50
The geometry of the considered structure is shown in-100

Fig. 1. The thickness of the plate was set to 200; the 200
period alongx; was 150um with a 100um width PZT

ridge. ‘ SRk

In that case, different computations were performed to  -200 oo o~ 100" zoomsobwéoc})“' sooeoo 5-150
identify the modes propagating in the structure. Bulk modes %, (um) 700
were first determined assuming an infinite thickness for the

plate and<;=0. The eigenmodes of the finite thickness plateF!G. 6. First symmetrical Lamb wave propagating in four cellg, (
were then extracted assuming that both surfaces are electf.-2>¥2=0:@=2350 kH2 of the 1-3 piezoelectric composite of Fig. 1.
cally shorted. Finally, the harmonic admittance was com-

puted to discriminate piezoelectrically coupled modes. Thé&lrawback of the method because computations with too
top surface is submitted to a harmonic excitation, wherea§mall a number of harmonics yield inaccurate predictions.
the back surface is grounded. All computations were per-  Although some minima of the determinant are not physi-
formed considering six spatial harmonics. It should be em<al solutions of the problem, dispersion curves for relatively
phasized that using more spatial harmonics yields a mor®w-frequency modes are found similar to those computed
nearly accurate prediction of the frequency location of thewith a finite element method in Ref. 15.

modes. Considering six harmonics represents a trade-off be- A qualitative comparison between finite element analy-
tween accuracy and computation time. The results obtaine®is and PWE analysis of the composite is reported in Fig. 5.
for the three different computations are reported in Figs. 3Although similar results are obtained in the vicinity of the
and 4. Figure 3 shows the bulk eigenmodes propagating ifPngitudinal compression mode using the two methods, dis-
the (x,,X,) plane and the plate eigenmodes of the finite-Crepancies arise for higher-order frequency modes. However,
thickness configuration, and Fig. 4 displays the real part oPoth approaches exhibit prohibitive computation times for
the harmonic admittance of the piezoelectric composite fothe accurate simulation of high-order modes and overtones
all couples @, y,=K;p;/27). In the case of infinite thick- (increasing the number of elements of the finite element
ness of the plate, one can easily identify the first three mode®esh is equivalent to increasing the number of harmonics in
as in-plane and thickness shear vibrations, and in-plane lorihe PWE method

gitudinal propagation. The latter strongly contributes to the  Although the problem of accuracy must be addressed to
first symmetrical Lamb wave. In the case of the finite thick-Provide reliable computation results, much pertinent infor-
ness configuration, many couples,f;) are found to mini- Mation can be deduced from the proposed calculation. The
mize the determinant of the boundary condition systemshape of the mode is accessible by simply calculating the
Howeven some of these values Correspond to local minimsﬂ:ective values of the mechanical diSplacement fields of the
of this determinant and not to physical solutions of the prob-

lem. For instance, bulk modes appear for the finite-thickness ‘ ~ polymer
configuration, too, and can be discriminated using the results piezoelectric element -~
of the case of infinite thickness. In Fig. 4, it can be seen that

the piezoelectrically coupled modes of the device can be dis- Xa (um)
criminated efficiently, using the harmonic admittance com-
putation. In that case, eigenmode and harmonic admittance 300 -
computations are both useful since the dispersion curves of
Fig. 3 allow one to distinguish between modes that are very 200 &
close to one another and not easily independently identifiable 100 -
by the use of the harmonic admittance. oF
-100 |

C. 1-3 connectivity piezocomposite _o00 |

The last illustration of the proposed theory is a 1-3 con- -300 150
nectivity piezoelectric composite. The elementary cell of the 100
studied structure is shown in Fig. 1. The thickness was set to A S 050 X (1m)
300 um, and both periodicities along, andx, are equal to I S -50
200 um (PZT width is 100um alongx, andx,). The same e %
kind of analysis as for the 2-2 piezocomposite was per- -100-50 0 50 100 150
formed. However, due to the large computation time re- X (hm)

quired, the number of spatial harmonics was restricted to fiv@|g. 7. Fundamental longitudinal mode along (y,= v,=0, ©=4900
for both directions, i.e., 25 terms in the series. This is a majokHz) of the 1-3 piezoelectric composite of Fig. 1.

J. Acoust. Soc. Am., Vol. 112, No. 3, Pt. 1, Sep. 2002 Wilm et al.: PWE model for piezoelectric composites 949



olymer
piezoelectric element -------- .  polymer
piezoelectric element --—------

uz {a.u.)

l
\I
I\

>

n
m
I
ol
LAY
muTa

o

11
R

0
AR

AN

T
N
W

W

W

FIG. 8. First lateral mode for infinite thickness and fi-
nite thickness ;= v,=0,w=7200 kH2 of the 1-3
piezoelectric composite of Fig. 1.
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problem. For a given value oy ,v,,®), one can construct Comparisons between thedrand our computations are
the propagation profile for the desired number of cells. Thisshown in Figs. 10 and 11. By increasing the number of terms
is illustrated in Fig. 6, showing the first Lamb mode at (  of the expansions, a convergence appears between the Smith
=0.25,7,=0,0=2350 kH2 propagating in four adjacent ang Auld model and the plane-wave-expansion method. For
cells. The mechanical state of the elementary cell for th‘?nstance, with seven terms along each direction, we have a

fundamgntal longitudinal compression mode aloryand. good agreement for a ceramic volume fraction from 0% to
for the first lateral mode ¥, = vy,=0) are also reported in PO%

Figs. 7 and 8, respectively, demonstrating the capability o
the model to fairly predict the actual vibration of a 1-3 con-
nectivity piezoelectric composite.

Figure 9 displays the real part of the harmonic admit- harmonic of the thickness—mode
tance(i.e., the conductangen the first Brillouin zoné® of

the studied in-plane symmetrical structure. We can recognize¢'23%° 15000
for y,=0 the harmonic admittance of Fig. 5. Resonance fre-
guencies are given by the maxima of the conductance
Thanks to these conductance curves, which give the resonat -
piezoelectrically coupled modes, and the dispersion curves
calculated in the case of shorted surfaces, we are able t
Frequency (kHz)

identify parasitic modes of the thickness mode and acoustic
band-gaps of the structure, which are of main interest for
ultrasonic imaging applications. 0
Finally, a quantitative study was performed in the case
of the fundamental thickness mode. First, the longitudinal
phase velocity, and the electromechanical coupling fadkor
were calculated by varying the volume fraction of ceramic,
with our constant sets, according to the well-known Smith
and Auld theory? Then the harmonic admittance was calcu-
lated at (y;= y,=0) around the thickness-mode for different
numbers of terms in the Bloch—Floquet and Fourier expan-

5000

first lateral mode

first symmetrical lamb-like mode

I
sions. The maximum of the conductance gives one the reso &
nance frequency, , while the antiresonance frequentyis S r X thickness—mode
given by the maximum of the resistan¢eal part of the : |
impedancg!’ Consequently, and k can be calculated as - e -1

follows:

FIG. 9. Real part of the harmonic admittance, for the 1-3 piezoelectric
U= tha, (36) composite, calculated in the first Brillouin zone in th€,(K,) plane. One
can deduce the frequencies of the parasitic modes, considering the thickness
mode as the useful vibration for imaging applications. For instance, consid-
ering the pathX—M, we can see that a vibrating mode mingles with the
strong coupled fundamental thickness mode near the goitoustic band-

whereh is the thickness of the plate, and

5 T f, m f.—f, gaps are retrievable considering piezoelectrically coupled modes. The thick-
k =E f_taHE f . (37) ness mode and its harmonic are truncatetiite colon because of their
a magnitudes.
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0.6 T T T T IV. CONCLUSION

A full 3D model based on a plane wave expansion of the
generalized acoustic fields has been developed and imple-
mented for general piezoelectric-based composite materials.
It is able to simulate homogeneous materials, but also 1D or
2D periodic devices with a good level of accuracy. It can
take into account material losses using the imaginary part of
elastic, piezoelectric, and dielectric fundamental constants.
This approach is an alternative to finite element computa-
tions in the case of the considered regular piezoelectric com-
posite geometry. The model is able to provide much infor-
mation about the considered device such as the piezoelectric
coupling, the resonance efficiency, and the effect of acoustic
losses by calculating the harmonic admittance. It can incor-
porate different boundary conditions corresponding to effec-
tive operation of the device. First qualitative computations
were performed for 2-2 and 1-3 connectivity piezoelectric
composites. Complementary quantitative calculations were

Coupling factor k

01 ' performed for the 1-3 connectivity piezoelectric composite
gﬂgﬁmgg:gg . thickness mode and compared to a well-established theory.

) 7 harmonics % In a future extension of the theory, a particular effort will be

0 - Smith and Auld mods! paid to the optimization of the computation time and the
0 0.2 0.4 0.6 0.8 1 accuracy of 3D computations. The case of radiation in fluids
volume fraction of ceramic and solids will also be addressed, to provide a comprehen-

FIG. 10. Electromechanical coupling factor for the thickness mode, calcuSIVe d.escrlptlon Pf operating Cc_)ndlt'ons of ?'2 and 1-3 pIeZ.O-

lated for different values of the number of terms of the series, to be com€lectric composite-based devices. Even if the computation

pared with the well-established Smith and Auld model. The number of hartime, which governs in fact the accuracy of the method, has

monics along each direction is given for each computation. to be optimized, the PWE method already provides qualita-
tive information, which is of primary interest to understand
the operation of such composite structures.
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