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1. Introduction

It is now well understood that band gaps in phononic crystals 
can arise both because of Bragg interference [1] or because 
of the presence of local resonances in the unit cell [2]. Since 
the propagation of waves is fully prohibited within band gaps, 
they appear as transmission dips in experiments. Considering 
the transmission properties through finite phononic crys-
tals thus does not immediately inform on the exact mecha-
nism which led to band gap formation. Relying on the band 
structure only is also not sufficient, as band gaps are charac-
terized by an absence of any band rather than by a definite 
signature. The underlying physical mechanisms of Bragg and 
locally resonant (LR) band gaps, however, remain quite dif-
ferent. In the case of Bragg interference, the distribution of 
material in the crystal is heterogeneous and impedance varia-
tions (at interfaces between the inclusions and the matrix, for 

example) are spatially distributed in the unit cell. For given 
materials composing the crystal, the frequency range of Bragg 
band gaps is mainly conditioned by the lattice constant. In 
the case of a local resonance, in contrast, waves propagating 
in a continuum matrix are coupled to the resonances of an 
array of resonators [3–6]. This coupling is ideally considered 
to be perfectly localized in space, i.e. to be described by a 
Dirac delta function. The resonant frequency is also relatively 
independent of the lattice constant, because band gaps appear 
in the continuum around the natural frequencies of the iso-
lated resonator. LR phononic crystals are often advocated to 
lead to low-frequency or sub-wavelength band gaps, because 
of this independence with the lattice constant, while Bragg 
band gaps require comparatively longer lattice constants for 
the same result.

There is thus interest in identifying which of the two mech-
anisms, Bragg or local resonance, is at play for a given band 
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gap, but also in clarifying the dependence of LR band gaps 
with the lattice constant, especially as the latter becomes small. 
We suggest in this paper that the complex band structure is an 
adequate theoretical tool for this purpose and that it can be 
compared to transmission experiments. In order to clarify the 
presentation of our ideas, but also to obtain a tractable model 
that can be later generalized to more complicated structures, 
we have chosen to study one of the simplest phononic crystals. 
We specifically study acoustic wave propagation in the audible 
frequency range through a one-dimensional (1D) phononic 
crystal consisting of a cylindrical polyvinyl chloride (PVC) 
tube with periodically grafted resonators, which conceptually 
approaches the phononic crystal with both linear defect (wave-
guide) and point defects (resonators) [3]. Different resonators 
and different lattice constants are considered in our experi-
ments. Similar structures were already considered both theo-
retically and experimentally [7, 8]. The model that we propose, 
however, explicitly considers evanescent waves attached at the 
grafting points and extending inside the waveguide, a feature 
that was not introduced previously. This model is first con-
structed for the case of a single resonator and is then extended 
to include periodicity. The explicit expression of the complex 
band structure that results directly allows us to highlight dif-
ferences between Bragg and LR band gaps. Comparison with 
experiment is satisfactory for both the single resonator and for 
the long-lattice periodical cases. For sub-wavelength lattice 
constants, a deterioration of band gaps is observed, that we 
attribute to interference between resonators.

2. Experiments with single grafted resonators

Figure 1 shows a photograph of one of the 1D phononic crystal 
samples. It is constructed on a PVC tube with an inner radius 
R = 5 cm and a 2 mm thick wall. The tube is a waveguide for 
pressure acoustic waves in air. Only single-mode sound waves 
can propagate in this waveguide for frequencies between 0 
and 2009 Hz [9]. For frequencies above 2009 Hz, propaga-
tion becomes multi-modal, a situation that we will not con-
sider in the following. Periodic resonators in the form of PVC 

tubes with a smaller diameter and closed at their extremity 
are grafted onto the waveguide with a period of either 8 or 
25 cm. The radius of the resonators is 2.5 cm, and their length 
is either 24 cm for long resonators or 4 cm for short resonators. 
Such cylindrical resonators have a series of natural resonances 
whose frequencies are directly related to the tube length. The 
fundamental mode for a completely closed tube appears at the 
zero frequency; the same tube forms a Helmholtz resonator 
when connected to the waveguide [10].

Gaussian pulses with different central frequencies and 
bandwidths are generated with a simple sound card in a per-
sonal computer and played with a loudspeaker. The signals 
recorded with a microphone are sampled using the same 
sound card. The sampling rate of 384 kHz is amply sufficient 
to capture the relevant spectrum.

Before moving to 1D phononic crystal, we first considered 
a single resonator grafted on the waveguide, as sketched in 
figure 2. As a control experiment, the measurement of sound 
transmission through the bare tube is first presented in figure 3, 
where the wave source is a Gaussian pulse with a central fre-
quency of 330 Hz. A transmission spectrum with a Gaussian 
shape would naively be expected, as propagation in the tube 
is monomodal and dispersionless with velocity c = 343 m s−1 
(the celerity of pressure waves in open air under standard 
temperature and pressure conditions). However, Fabry–Perot 
oscillations [11] are observed, which are due to reflections at 
both ends of the 2 m long waveguide. The fitting line to the 
measured spectrum also indicates that the central frequency 
is shifted to around 280 Hz. This shift is possibly caused by 
frequency-dependent conversion efficiency at the entrance 
and exit of the waveguide. In the following, all experimental 
results are normalized against the measurement with the bare 
tube obtained with the same Gaussian short pulse. It should be 
noted that this normalization only smoothens the Fabry–Perot 
oscillations in the transmission but does not cancel them.

It was observed by Richoux et al that, for Helmholtz reso-
nators, transmission spectra around the Helmholtz band gap 
are very sensitive to the incident signal amplitude [7]. This 
nonlinearity was explained by taking into account the quad-
ratic term in the restoring force exerted on the air moving 

Figure 1. Photograph of one of the 1D phononic crystal samples. The 2 m long tube has a diameter of 10 cm.
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within the neck of the resonator. We note that there is no small 
neck in our samples. The nonlinearity is negligible in our sam-
ples, which we verified by repeating our experiments at dif-
ferent signal levels.

Experimental results for single resonators are presented 
in figure  4. For comparison, numerically simulated results 
are also presented (a mass density ρ = 1.2041 kg m−3 and a 
velocity c = 343 m s−1 are used for air in all of our numerical 
simulations). In order to evaluate numerically the transmis-
sion of our samples, we used a time-harmonic finite element 
model (FEM) of pressure wave propagation. In addition to 
the geometry of the sample, two additional one-wavelength 
long regions (marked as Vl and Vr in figure 3) are added to the 
structure. A radiation boundary condition including an inci-
dent harmonic plane wave with unit amplitude is imposed on 
the left boundary, and a simple radiation boundary condition is 
used on the right boundary. With this setting, reflections at the 
ends of the waveguide are avoided so the Fabry–Perot oscilla-
tions do not appear in the simulated spectra. Transmission can 
be evaluated after the pressure field p inside the waveguide 

has been obtained numerically as ∫ ∫=t p V p Ve d e dkx kx
l

i
r

i .

It can be noticed that the transmissions in figure  4 vary 
with different resonators and different resonant frequencies 

of the same resonator. Transmission dips appear clearly 
around 1459.7 Hz for the short resonator, and around 335.6, 
1000.0, and 1645.8 Hz for the long resonator. The simulated 
and experimental results agree reasonably well with each 
other. Simulated pressure distributions at the frequency of 
the dips are shown as insets in figure 4. Clearly, the pressure 
field is localized inside the resonators. The modal distribu-
tion of these local resonances look very much like the nth (n 
= 0, 1, 2) order natural vibration modes of the resonator. The 
natural frequencies of the isolated resonator with two closed 
ends and length l are given by Ωn/(2π) = nc/(2l), and they are 
clearly different from the resonant frequencies obtained from 
transmission dips, see table 1. In general, the phenomenon of 
transmission cancelling appears at a resonant frequency that 
is different from the natural frequency. In the following sec-
tion this property is explained by the excitation of evanescent 
guided waves attached to the grafting point.

3. Model of local resonance

In this section, a theoretical model is developed to explain the 
transmission cancelling and frequency shift. Let us consider a 
cylindrical waveguide supporting only one fundamental propa-
gating mode for angular frequencies ω < 1.84c/R, with R the 
radius of the waveguide [9]. As depicted in figure 2, a resonator 
is grafted to the side of the waveguide. For our purpose, we 
will not need to explicit precisely the details of the resonator. 
Its resonant behaviour can be simply understood by stating that 
even a vanishingly small excitation can set it into motion, pro-
viding it is applied with the correct frequency. A model of this 
behaviour is the forced harmonic oscillator with equation

 + ∂
∂

= ωCu M
u

t
Fe t

2

2
i (1)

with M being a mass, C a stiffness, and F a force. u here 
represents the displacement of the centre of the mass with 
respect to an equilibrium position. The same simple model is 
found with optical or electrical resonators, for instance, with 
a different physical meaning attached to the parameters of 
the model (i.e. dielectric constant, or capacitance and induc-
tance). Under harmonic motion, = ωu ue ti , and the resonator 
equation becomes

 ω− =C M u F( )2 (2)

Figure 2. Sketch of a single resonator grafted onto a waveguide with a circular section. a1 and b1 (a2 and b2, respectively) are the modal 
amplitudes of the propagating guided mode to the left (right, respectively) of the resonator. c1 (c2, respectively) are the modal amplitudes 
of the first evanescent guided mode decaying toward the left (right, respectively) of the resonator. The additional parts indicated by thin-
dashed lines and marked as Vl and Vr are waveguide regions used in the numerical calculation of the transmission.
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Figure 3. Experimental transmission through a bare tube (solid 
blue line) showing the Fabry–Perot oscillations caused by 
reflections at both ends of the waveguide. The solid red line is a 
fit with oscillations removed and serves to indicate the spectral 
contents of the measurement.
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with Ω = C M/  being the natural frequency. The oscillation 
amplitude u has the Lorentzian frequency dependence

 
Ω ω

ω=
−

=u
F M F

M
L

/
( ).

2 2 (3)

Obviously, u becomes infinite at the resonance condition 
ω = Ω.

Now, we wish to describe the interaction of the waveguide 
with the resonator, and ultimately to compute a reflection and 
a transmission for waves inside the waveguide. As the wave-
guide is monomode, the pressure field far from the resonator 
can be written as the superposition

 
ψ
ψ

=
+ <
+ >

β β

β β

− +

− +⎪

⎪
⎧
⎨
⎩

p
x x a b x

x x a b x
x( )

( , )( e e ) if 0

( , )( e e ) if 0

x x

x x1
1 2 3 1

i
1

i
1

1 2 3 2
i

2
i

1

1 1

1 1
(4)

with wavenumber β = ω/c. The guided mode is thus a prop-
agation channel for waves travelling to the right and to the 
left with complex amplitudes ai and bi. ψ1(x2, x3) is the modal 
transverse distribution.

In close proximity of the resonator, the situation is dif-
ferent. Far from the connection between waveguide and reso-
nator, the force density is identically zero at equilibrium. In 
the vicinity of the connection, however, the boundary condi-
tions are modified and the field inside the waveguide induces a 
force that can drive the resonator. Accordingly, energy from the 
waveguide will be dragged by the resonator and will set it into 
motion. Reciprocally, the motion of the resonator acts back on 
the waveguide and changes its equilibrium very locally. As a 
useful idealization, we will consider that the connection can 
be reduced to a single point at x1 = 0 where the force density is 
proportional to a Dirac delta function δ (x1). Such a localized 

Table 1. Natural frequencies Ωn/(2π) = nc/(2l) and resonant frequencies ω0(2π) of resonators grafted onto the waveguide. Coupling coefficient 
values are obtained from a fit to the single resonator transmission.

Resonator parameters

l = 4 cm l = 24 cm

n = 0 n = 0 n = 1 n = 2

Ωn/(2π) = nc/(2l) (Hz) 0 0 714.6 1429.2
ω0(2π) (Hz) 1459.7 335.6 1000.0 1645.8
κ11 (rad2 m−1 s−2) 1.6  ×  108 7.6  ×  106 6.0  ×  107 7.1  ×  107

κ12 (rad2 m−1 s−2) 8.1  ×  108 5.0  ×  106 2.7  ×  107 2.8  ×  107

Κ22 (rad2 m−1 s−2) 4.3  ×  109 3.2  ×  108 1.2  ×  109 1.1  ×  109

Figure 4. Transmission of a single (a) short and (b)–(d) long resonator grafted onto the waveguide. Panels (b)–(d) show the transmission at 
frequencies related to the 0th, 1st and 2nd acoustic resonance of the single long resonator, respectively. The insets show the vibration modes 
at the resonant frequency obtained from a FEM simulation. The black, blue and green lines represent the experimental, theoretical and 
simulated results, respectively.
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excitation of the waveguide results in the excitation of bound 
modes composed of evanescent waves [12]. There are in prin-
ciple infinitely many evanescent waves in the waveguide [13]. 
For simplicity, we will only retain the dominant evanescent 
guided mode with imaginary part of the wavenumber given by 

α ω= −R c(1.84 / ) ( / )2 2 . There is thus a second channel 
for transmission through the waveguide, centred on the con-
nection point and such that

 
ψ
ψ

=
<
>

α

α−

⎧
⎨
⎩

p
c x x x

c x x x
x( )

( , )e if 0
( , )e if 0

,
x

x2
1 2 2 3 1

2 2 2 3 1

1

1
(5)

where ψ2(x2, x3) is the modal transverse distribution for the 
evanescent guided mode. The appearance of evanescent 
waves inside the waveguide can be understood as arising 
from the Green’s function of the waveguide under the excita-
tion δ(x1).

At any position along the waveguide, except at exactly 
x1 = 0, the total field is the superposition p(x) = p1(x) + p2(x). 
At the connection point, we will assume that the field p is 
continuous. Because the modes are mutually orthogonal, the 
following two conditions should be satisfied,

 + = + =a b a b c cand .1 1 2 2 1 2 (6)

If the field p is continuous at the junction, its first derivative 
∂ ∂p x/ 1 is not. Actually, ∂ ∂p x/2 1 for p2 given by equation (5) is 
clearly discontinuous, and so should the superposition be. We 
write the jump of ∂ ∂p x/ 1 as

 
⎡
⎣⎢

⎤
⎦⎥ ω κ∂

∂
=

−

+
p

x
L x x p x x( ) ( , ) (0, , ),

1 0

0

2 3 2 3 (7)

which can be obtained by integration of the wave equa-
tion  in the waveguide subject to a force density L(ω)κ(x2, 
x3)p(x)δ(x1), meaning that the resonator was initially set into 
motion by the field distribution p(x) at the junction, with a 
resonant line shape given by the Lorentzian line shape L(ω), 
and creates back a stress distribution with some cross-section 
dependence indicated by κ(x2, x3), which is a function of x2 
and x3. Projecting equation (7) on the two modes, we obtain a 
pair of equations

 β β ω κ κ− + − − + = + +a b a b L a b ci ( ) i ( ) ( )( ( ) )2 2 1 1 11 1 1 12 2 (8a)

and

 α ω κ κ− + = + +c c L a b c( ) ( )( ( ) )1 2 21 1 1 22 2 (8b)

with ∫κ κ ψ ψ= x x x x x x x x( , ) ( , ) ( , )d dij i j2 3 2 3 2 3 2 3.

The presence of the discontinuity thus acts as a mixer 
of the two types of modes, which are otherwise completely 
uncoupled along the waveguide.

We define next the coefficients γ1j = L(ω)κ1j/(2iβ) and  
γ2j = L(ω)κ2j/(2α). The equation  system relating outgoing 
amplitudes (a2 and b1) to incoming amplitudes (a1 and b2) can 
then be written as the scattering matrix

 ⎜ ⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛
⎝

⎞
⎠

γ γ
γ γ

γ
γ

−
+

+
= −

−

−a
b
c

a
b

1 1 0
1 / 2 1 / 2

0 1

1
1 / 2

1
1 / 2

0
.11 12

21 22

2

1

2

11

21

1

2

(9)

The solution to this linear system can be obtained exactly as

 ⎜ ⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟ ⎛

⎝
⎞
⎠=

a
b
c

t
r
s

r
t
s

a
b

2

1

2

1

2
(10)

with

 γ γ= + = − = −t D r t s D(1 ) / , 1, and / ,22 21 (11)

where D = (1 + γ11)(1 + γ22) − γ12γ21, r and t have the meaning 
of a reflection coefficient and of a transmission coefficient, 
respectively. s measures the part of the incoming amplitudes 
that are stored in the evanescent wave. For frequencies far 
from resonance, the γij coefficients are negligible and it fol-
lows that t = 1, i.e. waves are simply transmitted through the 
waveguide without reflection and significant excitation of the 
resonator. r and t are generally seen to be related by the simple 
formula r = t − 1, implying that if the transmission vanishes, 
then the incident wave is fully reflected (with a phase shift 
of π). The condition for t = 0 is given by 1 + γ22 = 0, which can 
happen at the resonant frequency

 ω Ω κ
α

= +
2

.0
2 2 22

(12)

Transmission cancelling thus occurs mostly thanks to the 
Lorentzian line shape: even if the coupling strength is small, 
the undamped resonator will be able to cancel exactly the 
transmission through the waveguide at a frequency close to 
but different from the natural frequency Ω. It can be seen that 
this simple model predicts that the shift of the resonant fre-
quency compared to the natural frequency of the resonator, 
as shown in table  1, is due to the excitation of evanescent 
guided modes.

The transmissions predicted by (11) and (12) are also pre-
sented in figure 4, with the fitting parameters κ11, κ12(=κ21) 
and κ22 being listed in table  1. A very good agreement is 
found between the model and numerical simulations, 
meaning that the model captures most of the important fea-
tures of transmission cancelling. The transmission curves 
in the experiment seem more rounded than those obtained 
from simulation and theory, which we attribute to losses 
that are present in the experiment but that are not taken into 
account by either the finite element analysis or the simpli-
fied model.

4. Experiments with periodically grafted resonators

Next we consider periodic arrays of resonators grafted onto 
the waveguide. Experimental samples were prepared with 
five identical resonators each. Considering the two different 
resonator lengths (l = 4 cm and 24 cm) and the two different 
lattice constants (a = 8 and 25 cm), there are four different 
samples. In addition to the experimental results shown in 
 figures 5 and 6, the complex band structures obtained by FEM 
are also displayed. To obtain the complex band structures, we 
substitute the Bloch-Floquet expression = ω −p p e t kxi( )1  with 
p  being a periodic function of space into the acoustic wave 
equation ∂ ∂ = ∂ ∂p t c p x/ /2 2 2 2

1
2. We then get the generalized 

wave equation
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⎛

⎝
⎜

⎞

⎠
⎟ ω∂

∂
− ∂

∂
− + =c

p

x
ik

p

x
k p p2 0.2

2

1
2

1

2 2 (13)

This equation is solved as a generalized eigenvalue problem 
for the wavenumber k. Neumann boundary conditions are 
imposed on all the boundaries, except for the left and the right 
boundaries, which are related by a periodic boundary condi-
tion. The complex band structures can be obtained by letting 
ω sweep the frequency range of interest [14].

Figure 5 shows the results for the lattice constant a = 25 cm. 
LR band gaps appear around the resonant frequencies previously 
found for the single resonators. They are comparatively broader 
than the transmission dips for the single resonator, in accordance 
with the complex band structures computed with FEM.

In the short resonator case, in figure  5(a), an additional 
Bragg band gap appears around 1372 Hz (∼c/a), just below the 
LR band gap. The attenuation inside the LR band gap is found 
to be larger than that inside the Bragg band gap. All these fea-
tures can be clearly explained by the complex band structures. 

The smallest imaginary part of the complex wavenumber for 
the LR band gap is larger than that of the Bragg band gap. As 
a result, a stronger attenuation is expected in the LR band gap 
as compared to the Bragg one. The complex band structure has 
a different shape within the Bragg and the LR band gaps. In 
the Bragg case, the band gap opens at the Γ point of the first 
Brillouin zone and the complex imaginary band connecting the 
entrance and the exit of the band gap is continuous and very 
smooth. In contrast, the entrance and the exit of the LR band 
gap occur at opposite symmetry points of the Brillouin zone 
and the complex imaginary band connecting them is composed 
of two crossing bands forming a cusp.

In the long resonator case, in figures  5(b)–(d), LR band 
gaps appear around the three different resonant frequencies 
under the cutoff frequency for the second guided mode of 
the waveguide. Bragg band gaps are not clearly observed in 
this case due to their small attenuation and to the disturbance 
caused by Fabry–Perot oscillations. Furthermore, there is no 
hybridization of the Bragg bandgap and of the LR bandgap 

Figure 5. Complex band structures (real part on the left and imaginary part in the middle of each panel) and transmission properties (on the 
right of each panel) for 1D phononic crystals with a periodic array of (a) short and (b)–(d) long resonators (lattice constant a = 25 cm). The 
blue and red lines in the complex band structures represent the theoretical and the numerical results, respectively. The black and green lines 
in the transmission spectra represent the experimental and numerical results, respectively. The blue dashed lines mark the LR band gap 
predicted by the theoretical model. The green dashed–dotted lines in panel (a) mark the Bragg band gap predicted by the theoretical model.

J. Phys. D: Appl. Phys. 47 (2014) 475502
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such as reported, e.g. in [15] and [16]. The complex band 
structure around the LR band gaps also has the features dis-
cussed above for the short resonator. It can also be remarked 
that inside the experimental LR band gaps, the transmission 
seems to be a combination of a series of dips. This may be 
due to the interference of guided waves trapped between the 
resonators and creating a super-modal structure of the series 
of five resonators [6].

Next, we consider similar phononic crystals but with the 
smaller lattice constant a = 8 cm. Experimental and numer-
ical results are shown in figure  6. For the short resonators, 
in figure 6(a), only one LR band gap exists around 1420 Hz. 
Compared to the resonant frequency of the single resonator or 
with the long lattice constant (see table 2), a small frequency 
shift thus appears. Since for this frequency the lattice con-
stant is about three times smaller than the wavelength, we sug-
gest that the frequency shift can be due to the interference of 

guided waves reflecting at the resonators. The complex band 
structure obtained by FEM correctly predicts this frequency 
shift. Compared to figure 5(a), a smaller attenuation in the LR 
band gap is also found.

For the long resonators, in figures 6(b)–(d), three LR band 
gaps appear around the resonant frequencies. Compared to the 
long lattice constant case, the attenuation inside the first and 
the second LR band gaps do not change too much. For the third 
LR band gap, however, the attenuation is clearly much poorer. 
It is even smaller than the attenuation for the single resonator 
in figure 4(d). Strikingly, the third LR band gap is not even pre-
dicted anymore by the complex band structure. The appearance 
of the first two LR bands gaps is predicted but the frequency 
ranges do not match well with experiment. Interestingly, all 
three LR band gaps are still correctly predicted by the peri-
odic model that we will introduce in the following section. The 
disagreement between experimental results and the complex 

Figure 6. Complex band structures (real part on the left and imaginary part in the middle of each panel) and transmission properties (on the 
right of each panel) for 1D phononic crystals with a periodic array of (a) short and (b)–(d) long resonators (lattice constant a = 8 cm). The 
blue and red lines in the complex band structures represent the theoretical and the numerical results, respectively. The black and green lines 
in the transmission spectra represent the experimental and numerical results, respectively. The blue dashed lines mark the LR band gap 
predicted by the theoretical model.
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band structure computed with FEM (see table 2) may be again 
attributed to the interference of resonators. For a finite array 
of five resonators, this interference remains limited. However, 
when we compute the complex band structure, an infinite array 
of resonators is considered. Interference becomes very signifi-
cant, and can even close the LR band gap.

5. Periodic model of local resonance

In this section, the theoretical model of section  3 is further 
extended to provide an explicit formula of the complex band 
structure near a local resonance. We first rewrite the scattering 
matrix of equation (10), limited to the amplitudes of the prop-
agating guided mode, as the transmission matrix
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It can be easily verified that the determinant of this trans-
mission matrix is unity. We wish to relate the modal ampli-
tudes at both ends of the unit-cell of the crystal. We thus use 
the propagators
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to obtain
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We can now apply Bloch’s theorem. As the problem is 
scalar, we can write Bloch waves as = −p px x( ) ( )e kx

1 1
i 1 with 

p x( )1  being periodic. In particular, we have the periodic Bloch 
boundary conditions

 = − −p a x x p a x x( / 2, , ) ( / 2, , )e .ka
1 2 3 1 2 3

i (17)

Such periodic boundary conditions are somehow weaker 
than the original Bloch’s theorem, but are sufficient to deter-
mine the solution of the problem. Indeed, they show that  
λ = e−ika is an eigenvalue of the transmission matrix T. In 
order to obtain the eigenvalues, we can look for the zeros of 
the characteristic polynomial det(T − λI), with I the identity 
matrix. A direct calculation shows that

 λ λ λ− = + − − +β β− +T I
t

t rdet( ) 1 [( )e e ].a a2 2 2 i i (18)

Next we note that − = +t r t r2 2 , but also that

 λ
λ

+ = ka
1

2cos( ). (19)

We thus get the dispersion relation

 β β= +ka a
r

t
acos( ) cos( ) i sin( ). (20)

A smooth dependence with frequency enters via the defi-
nition of β, but a sharp dependence around the resonance 
frequency enters via r and t. Formula (20) is different from 
equation (S1) in the supplementary information of [17] in that 
it explicitly takes reflection into account. It also models both 
Bragg and LR band gaps, as we illustrate later.

To understand the physical meaning of this dispersion rela-
tion, let us first remark that whenever reflection is negligible 
(r = 0), transmission is unity (t = 1) and the dispersion relation 
reduces to k =  ±β. Physically, the waves propagating along 
the waveguide do not see the local resonator and nothing par-
ticular happens. Now, as we approach resonance, t becomes 
smaller and r increases. As a result, the second term (sin(βa)) 
will dominate over the first one (cos(βa)) as resonance is 
approached. It is actually useful to express

 ω ακ ω κ κ κ κ
β α ω κ

= − = + −
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r

t

t

t
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Finally, we can express the dispersion relation as
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In the absence of loss, L(ω) is purely real. Assuming fur-
ther that the coupling constants κij are real, the right-hand side 
is real also. The resonant term in factor of sin(βa) goes to ±∞ 
at frequency ω0. Around the resonant frequency, there is a 
range of frequencies where k becomes complex, defined by 
the condition >kacos( ) 1. A band gap is thus introduced by 
the periodic array of resonators grafted on the waveguide.

The complex band structures predicted by this theory are 
presented in figures 5 and 6. They are plotted with exactly the 
same parameters as used in figure 4, i.e. they are fitted from the 
single resonator case. The complex band structures obtained 
from the model are found to be in excellent agreement with 
the FEM results in the long lattice constant case. Inside the 

Table 2. Transmission cancelling frequencies (Hz) for single 
resonators and periodically grafted resonators.

Cases

l = 4 cm l = 24 cm

n = 0 n = 0 n = 1 n = 2

Single resonator Experiment ~1460 ~333 ~989 ~1644
Theory

1460 336 1000 1646
Simulation

Periodically grafted 
resonators (a = 25 cm)

Experiment ~1440 ~330 ~990 ~1651
Theory

1460 336 1002 1646
Simulation

Periodically grafted 
resonators (a = 8 cm)

Experiment ~1420 ~330 ~995 ~1639
Theory 1460 336 1002 1646
Simulation 1424 335 1000 /

Note: The simulation results for the periodic case are obtained from the 
computed complex band structures.
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LR band gap of figure 5(a), the real part of the wavenumber 
reaches 0 at the LR band gap entrance, stays constant until 
the resonant frequency 1459.7 Hz where it suddenly flips 
to π/a, reflecting a sign change as the resonance is crossed. 
Meanwhile, the imaginary part of the wavenumber increases 
from zero at the LR band gap entrance to a sharp maximum 
at the resonant frequency, before dropping again to zero at the 
LR band gap exit, forming a cusp. One may also notice that in 
figure 5(a), the theoretical model also predicts very well the 
Bragg band gap below the local resonance. Even if the reflec-
tion on the resonator is small at this frequency according to 
figure 4(a), it can still produce >kacos( ) 1.

As compared to a full-fledged FEM numerical simulation, 
which includes all possible waves, the model of the complex 
band structure that we have devised in this section only oper-
ates on the propagating guided waves. The evanescent guided 
waves attached to the grafting points are still included, of 
course, via the reflection and transmission coefficients r and 
t, but any possible evanescent coupling between resonators is 
not included. While the model predicts quite accurately the 
features of the long lattice measurements, significant devia-
tions are found, especially at high frequencies, in figure 6 in 
the short lattice case. The model for instance fails to predict 
the shift of the resonant frequency observed experimentally 
in figure  6(a). The FEM complex band structure (for an 
infinite period crystal) is also in very good agreement with 
measurements (for a periodic sequence of five resonators) 
in the long lattice constant case, but disagrees even more 
than the model in the short lattice case. These results suggest 
that the commonly implied assumption that the resonators 
can always be considered to be decoupled may not hold for 
all LR phononic crystals. Such evanescent coupling between 
resonators could seriously impair the band gap properties 
of strongly sub-wavelength LR phononic crystals, e.g. if 
the distance between resonators is decreased below a value 
related to the spatial extent of evanescent waves attached to 
the grafting points.

6. Conclusion

We have investigated the band gap properties of a system con-
taining a single or a periodic array of resonators grafted onto 
the waveguide via experiment, theory and numerical simula-
tion. The LR band gaps were found to be very sensitive to 
the lattice constant. When a single resonator is grafted onto 
the waveguide, transmission dips are observed at frequencies 
different from the natural frequencies of the resonator. A theo-
retical model considering the coupling of the evanescent and 
propagating guided waves was developed to explain this trans-
mission cancelling phenomenon and the frequency shift. Both 
the theoretical and the simulated results are in good agreement 
with the experimental results.

When a finite number of resonators are grafted periodically 
along the waveguide, band gaps appear at the resonant frequen-
cies. In the long lattice constant case, the complex band struc-
ture predicted by the theoretical model is in good agreement 
with the simulated results obtained with FEM. Significantly, it 

is found that the difference between Bragg and LR band gaps 
can be told by observing the shape of the complex band struc-
ture and that the latter can be modelled with a simple explicit 
formula. This observation was confirmed by the experimental 
results in the long lattice constant regime.

When the lattice constant becomes small enough (e.g. when 
it becomes sub-wavelength), the interference between resona-
tors is probably strong enough that it cannot be neglected any-
more. We found numerically that the LR band gap can even 
be almost cancelled. The theoretical model we proposed does 
not consider the interference between resonators and does not 
explain well the experimental observations. Further investiga-
tion of the resilience of LR band gaps when the lattice con-
stant becomes strongly sub-wavelength is required.
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