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Propagation of elastic waves in acoustic metamaterials based on locally resonant viscoelastic phononic crystals
is discussed. A variational formulation of the complex band structure for in-plane polarized waves is proposed
and used to formulate a finite element model. Two different types of locally resonant band gaps are found
for quasilongitudinal and quasishear waves, with distinct features in terms of complex bands and transmission
bandwidth. The influence of viscosity on the complex band structure, transmission properties, and effective
dynamic mass density of two-dimensional locally resonant metamaterials is further investigated. It is found that
bands that were degenerate in the elastic case are separated when viscosity is introduced, and that sharp corners
at high symmetry points become rounded. Transmission is generally worsened in passing bands, while it is
enhanced inside locally resonant band gaps, contrary to what was observed previously for Bragg band gaps. All
changes in the complex band structure and transmission spectra are solely due to the dispersive and dissipative
effects of viscosity. It is also found that the negative mass density property may also disappear when viscosity is
introduced. These results are relevant to practical applications of elastic and viscoelastic metamaterials.
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I. INTRODUCTION

The study of elastic wave propagation in periodic composite
materials or structures has attracted a growing interest in recent
years. Phononic crystal (PC) [1], which may induce band
gaps, is a kind of periodic composite containing two or more
component materials with different elastic constants and mass
densities. The phononic band gap is a frequency range within
which all propagating Bloch waves are prohibited regardless
of their wave vector and polarization. Major mechanisms
that can generate band gaps are Bragg scattering [1] and
local resonance [2]. The presence of a local resonance is a
key feature of acoustic/elastic metamaterials (which exhibit
properties generally going beyond what we expect to find in
natural or conventional materials), with potential application
in the reduction of noise and vibration at low frequencies [3].

Numerous studies have explored the properties of PCs
and metamaterials. Nonetheless, most reported theoretical
works consider systems with elastic (undamped) constituents,
within which waves can propagate without attenuation on
propagation. Ideal materials of this kind do not exist in nature,
although weakly damped materials are often approximated in
this manner. In actual experiments, one or more constitutive
materials can present both elastic and viscous properties. The
famous quote of Heraclit, “All entities move and nothing
remains still,” indeed implies that everything has viscosity.
In other words, the constituents may be viscoelastic in the
frequency range of interest. The presence of viscosity results in
temporal damping or spatial attenuation of waves as they freely
propagate through the periodic medium [4]. Taking viscosity
into account may obviously lead to changes in band structures
as well as in transmission spectra.

Although several viscoelastic models have been used
to describe propagation losses, material loss has not been
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extensively considered in the various theories of PCs [4]. The
existing studies can be generally classified into the following
two different types.

First, some studies were concerned with the transmission
properties of finite structures. Merheb et al. [5] studied the
effect of viscoelasticity on the transmission properties of
rubber/air PCs under the standard linear solid model by using
a finite difference time domain (FDTD) method. Psarobas
[6] theoretically obtained the transmission spectrum of a
three-dimensional (3D) sonic crystal composed of viscoelastic
rubber spheres in air with the Kelvin-Voigt model. By using
the FDTD method in conjunction with a Kelvin-Voigt model
with fractional derivatives, Liu et al. [7] examined 2D PCs
constituting of aluminum cylinders in a rubber matrix. In their
model, viscosity in rubber was limited to low frequencies.
Oh et al. [8] investigated wave attenuation and dissipation
mechanisms in viscoelastic PCs with inclusions of different
material types.

Second, infinite periodic crystals have been described by the
transformation of their band structure. Research in this area can
be divided into two categories [3]: either free wave propagation
which is usually associated with impulsive loading, or time-
harmonic wave propagation which is useful for comparison
with experiments on long PC systems subjected to forced
harmonic loading.

Free wave propagation only considers a real wave number
k (or only propagating modes), and the frequency is allowed to
become complex, ω = ω′ + iω′′, where the imaginary part ω′′
measures damping of the mode in time. Mukherjee and Lee
[9] studied the dispersion relations of laminated solid/fluid
composites by using finite difference methods back in 1975,
where the fluid was considered to be viscoelastic. Sprik and
Wegdam [10], and Zhang et al. [11] investigated the complex
bands of similar systems with three- or two-dimensional
periodicity by using the plane wave expansion (PWE) method.
Zhao and Wei discussed the effects of the viscoelasticity on the
band gaps of one- [12] or two-dimensional [13] solid/solid PCs
by using the PWE method. The effect of Rayleigh damping on
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the band structure of solid/solid systems was also studied by
Hussein [14] and co-authors [15].

In this paper, we consider time-harmonic wave propagation,
a physically more realistic case [16], arguably, where a forcing
frequency is taken as the real independent variable and the
solution of the propagation problem results in a complex
wave number describing the spatially attenuated Bloch wave
[17]. The complex band structure is then obtained, where
the real part and the imaginary part of the wave vector
are presented separately. Sprik and Wegdam [10] studied
the effects of a viscous fluid on the complex bands of the
one-dimensional solid/fluid system. Moiseyenko et al. [18]
investigated the influence of material loss on the complex
band structure and group velocity in PCs assuming viscosity
increasing linearly with frequency. The extended plane wave
expansion (EPWE) method was used in this case, and only
pure shear wave propagation was considered. Collet et al. [19]
illustrated the complex band structure of a 2D damped PC
slab with stubbed surfaces by using variational formulations.
A theoretical analysis was carried out by Laude et al. [20] to
investigate the transformation of the complex band structure
of photonic and phononic crystals under the influence of
loss. Andreassen and Jensen [21] compared the complex band
structures for free and time-harmonic wave propagation, and
found that those were in good agreement for small to medium
amounts of material dissipation and for long wavelengths.

Moreover, the basic mechanism of local resonance inside
metamaterials can give rise to material properties that are
outside the realm provided by Nature at long wavelengths, such
as negative mass density (NMD) related to a dipolar resonance
[2]. Various metamaterials with different components, i.e.,
fluid/solid systems [22–27] and solid systems with different
phases [26–31], were designed and investigated in this respect.
Lattice systems with masses and springs [32–34] were also
used to construct simplified models to illustrate the physical
mechanism of the negative properties of metamaterials. How-
ever, for almost all reported metamaterials, viscosity is not
taken into account when calculating the effective mass density.

In this paper, we study the complex band structure and
the transmission properties of a 2D viscoelastic metamaterial
composed of circular metal bars coated with rubber and
periodically embedded in a polymer matrix. Either the coating
or the matrix is considered viscoelastic. An algorithm for
calculating the complex band structure for in-plane polarized
waves is developed based on a finite element method (FEM).
The effect of viscosity on the complex band structure [35] is
discussed for the viscoelastic metamaterial. The transmission
through a finite viscoelastic metamaterial is also calculated.
The effective mass density of the viscoelastic metamaterial is
used to explain some of the observed features.

II. MODELS AND FORMULATIONS

For linearly viscoelastic materials, loads and deformations
are linearly related. The deformation depends not only on
the present magnitude of the loads but also on the history
of the loading process. The constitutive equations are thus
different from those of elastic materials. The general relation
between the components of the stress and strain tensors for an

anisotropic and linear viscoelastic medium is given by [36]

TI (r,t) = ψ̇IJ (t) ∗ SJ (r,t), (1)

where t is the time variable, r is the position vector, the asterisk
(∗) indicates time convolution, and ψIJ are the 21 independent
components of the relaxation function with indices I,J =
1,2,3,4,5,6 satisfying the following relationship [37]:

1 ↔ xx, 2 ↔ yy, 3 ↔ zz, 4 ↔ yz,zy,
(2)

5 ↔ xz,zx, 6 ↔ xy,yx,

T = [σxx,σyy,σzz,σyz,σxz,σxy]T, and

S = [εxx,εyy,εzz,εyz,εxz,εxy]T (3)

are the stress and the strain vectors written in contracted forms,
respectively. For a time-harmonic plane wave with angular
frequency ω propagating in the viscoelastic medium, a general
solution for the displacement is of the form

uj (r,t) = ũj (r)eiωt , (4)

with i = √−1, j = 1,2,3, and ũj (r) being a function of the
position, independent of time. The stress and the strain vectors
also have a similar form,

Tj (r,t) = T̃j e
iωt and Sj (r,t) = S̃j e

iωt . (5)

The constitutive relation in Eq. (1) can then be rewritten as

T̃ = Cv(iω) · S̃, (6)

where the components of the complex stiffness matrix Cv are

Cv
IJ (iω) =

∫ ∞

−∞
ψ̇IJ (t)e−iωtdt. (7)

In this paper, either the coating or the matrix can be
viscoelastic. Viscosity is assumed to increase linearly with
frequency as is proper to polymers. The complex stiffness
matrix can be expressed as [37]

Cv = C + iωη. (8)

The viscosity matrix η, derived from the phonon viscosity
tensor, has the same symmetries as the elastic matrix C. The
governing equation for a three-dimensional anisotropic linear
viscoelastic medium in absence of body force is then

∇jI T̃I (r) = −ρω2ũj , (9)

where ∇jI is the divergence operator defined by

∇jI =

⎡
⎢⎣

∂/∂x 0 0 0 ∂/∂z ∂/∂y

0 ∂/∂y 0 ∂/∂z 0 ∂/∂x

0 0 ∂/∂z ∂/∂y ∂/∂x 0

⎤
⎥⎦.

(10)

In this paper, we consider two-dimensional ternary vis-
coelastic metamaterials, as depicted in Fig. 1. The geometry
parameters of the ternary metamaterial are exactly the same as
those of Fig. 2(b) in Ref. [38]. The z axis is parallel to the axis
of the cylindrical bars. Then if elastic waves propagate in the
transverse plane (x-y plane) with displacements independent
of the z coordinate, they can be decoupled into mixed and shear
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FIG. 1. (Color online) (a) Sketch of the unit cell of the square-
lattice metamaterial. The inner and outer radii of the coating are r1

and r2, respectively. The lattice constant is a. (b) Band structures are
plotted along path �-X-M delimiting the irreducible Brillouin zone.

modes. Accordingly, the wave equation for mixed modes is

∇ · (μ∗∇ũl) + ∇ ·
(

μ∗ ∂

∂xl

ũ
)

+ ∂

∂xl

(λ∗∇ · ũ)

= −ρω2ũl , l = x,y. (11)

Here, ρ is the mass density; λ∗ = Cv
12(r,iω) and μ∗ =

Cv
44(r,iω) are the complex Lamé constant and the shear

modulus; ũ = (ũx,ũy) is the displacement vector in the
transverse plane; ∇ = (∂/∂x,∂/∂y) is the 2D gradient operator.
According to Bloch’s theorem, the displacement field for
eigenmodes can be expressed as

ũl(r) = e−i(k·r)ũlk(r), l = x,y, (12)

where r = (x,y); k = (kx,ky) is the wave vector whose real
part can be restricted to the first Brillouin zone of the reciprocal
lattice; ũlk(r) is a periodical function with the same periodicity
as the crystal lattice. Substitution of Eq. (12) into Eq. (11)
yields

(∇ − ik) · [μ∗(∇ − ik)ũlk] + (∇ − ik) · [μ∗(∇ − ik)l ũk]

+ (∇ − ik)l[λ
∗(∇ − ik) · ũk] = −ρω2ũlk, (13)

where ũk(r) = [ũxk(r),ũyk(r)]. Equation (13) may be rewritten
in the integral form [39]∫




(∇ − ik)υ · μ∗(∇ − ik)ũlkdr

+
∫




(∇ − ik)υ · μ∗(∇ − ik)l ũkdr

+
∫




(∇ − ik)lυ · λ∗(∇ − ik)ũkdr

= ω2
∫




ρũlkῡ dr, (14)

where 
 is the unit cell and υ is an arbitrary periodic function
in L2(
).

The governing equation (13) for wave propagation in
viscoelastic materials is similar to the one for elastic materials
[40] and they are identical under the following replacement:

λ∗ ↔ λ, μ∗ ↔ μ. (15)

It is noted that λ∗ and μ∗ are material constants for
viscoelastic materials, while λ and μ are for elastic materials.
According to the elastic-viscoelastic correspondence principle
for harmonic waves, the dispersion relation for the viscoelastic
metamaterial can be obtained by replacing the corresponding
elastic material parameters with the viscoelastic ones [41].

In Eq. (11), either k or ω can be considered as the real-
valued independent variable [16]. In this paper, we consider
time-harmonic wave propagation under a forcing frequency,
and the complex band structure with complex wave numbers
is obtained. The finite element method is used for calculations.
Details are given in the Appendix.

III. RESULTS AND DISCUSSION

In this section, complex band structures and transmission
properties of the viscoelastic metamaterial are calculated and
discussed. Results for the lossless metamaterial are presented
for comparison. The effective mass density of the viscoelastic
metamaterial is also investigated.

A. Lossless case

1. Complex band structure

The complex band structure of the considered periodic
elastic metamaterial is shown in Fig. 2. The material pa-
rameters are the same as those in Ref. [38]. The color scale
in Fig. 2 represents the degree of longitudinal polarization
(displacement along the x axis). For the classical band
structure, it can be obtained as [42]∫

S
|ux |2dS∫

S
(|ux |2+|uy |2)dS

=
∫
S
|uxk|2dS∫

S
(|uxk|2+|uyk|2)dS

, (16)

where S is the whole unit cell. Values range from 0 (blue
color) to 1 (red color) and measure the change in polarization
from pure shear to pure longitudinal. For the complex band
structure, Eq. (16) should be modified as

∫
S
|uxke

−Re(�)x |2dS∫
S

(|uxke−Re(�)x |2+|uyke−Re(�)x |2)dS
, (17)

so that the spatial decay of evanescent Bloch waves is properly
included in the integrals.

Complex band structures are divided into two panels,
showing the frequency as a function of the real and of the
imaginary part of the wave vector. The real part of the
wave vector is displayed within a range slightly exceeding
the first Brillouin zone in order to highlight periodicity.
In contrast, the imaginary part of the wave vector is not
subjected to periodicity. It is displayed within a limited range
(|Im(ka/(2π ))| < 3), but there are other complex bands outside
this range, obviously.

The classical (real-valued) band structure of Ref. [38] is
displayed in Fig. 2 with the solid line for visual comparison.
It can be seen that complex and classical computations give
exactly the same result for real k inside the first Brillouin
zone. Purely real wave numbers correspond to Bloch waves
propagating without loss. However, in the real part of the
complex band structure, additional modes with different dis-
persion are also present, that cannot be revealed by the classical
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FIG. 2. (Color online) Complex band structure of the elastic metamaterial computed by FEM. The left and the right panels show the
reduced frequency as a function of the real and the imaginary part of the wave vector, respectively. The solid line in the left panel is the classical
(real-valued) band structure in Ref. [25]. The frequency band gap is underlined with the black dashed line.

band structure. These modes have a nonzero imaginary part
of their wave vector. They are termed evanescent Bloch
waves and propagate inside the PC with a spatial attenuation
determined by the value of the imaginary part of the wave
vector.

Because of the periodicity of the system, Bloch waves can
be expanded in a series of harmonics, with each harmonic
corresponding to the real part of k taken inside the first
Brillouin zone and shifted by a reciprocal lattice vector. The
imaginary part of k, however, is unique for each Bloch wave
and determines its evanescence at a given frequency. The
complex band structure shows the entire range of possible
complex values of k as a function of frequency. Transmission
inside a band gap is multiexponential and is dominated by
the smallest nonzero value of the imaginary part of the wave
vector [43], as was verified by experiment [44].

There is no physical way to excite evanescent modes in
perfect (infinite) crystals because these modes do not satisfy
the discrete translational symmetry [45] and they diverge as
the thickness goes to infinity along the propagation direction.
It is however possible to use them to explain intuitively the
physics of modes inside band gaps. Furthermore, in the real
world there are no infinite crystals, and any defect or edge
in an otherwise perfect crystal can terminate the exponential
decay and sustain evanescent modes.

Significantly, the occurrence of a band gap is not indicated
by an absence of bands but by the evanescent character of
Bloch waves: all Bloch waves must be evanescent within a
band gap. In practice, this is a more direct and a computa-
tionally more efficient definition for a band gap, since it can
be checked at an arbitrary frequency without plotting the full
band structure. In the classical band structure, the number of
bands at a given frequency varies. There are as many bands as
degrees of freedom at low frequencies, none inside band gaps,
and generally their number increases as frequency increases.
In contrast, the complex band structure never misses a band,
since by construction there are as many k eigenvalues as the
size of the matrices, which is a constant. Complex bands

are always continuous (they do not appear and disappear).
Through this mechanism, the overall number of bands at any
frequency is globally preserved. There is a straight connection
at high symmetry points of the Brillouin zone, implying
that infinite group velocity can be found in conjunction with
exponential decay on propagation. The physical picture in the
latter case is that of classical wave tunneling [46] in periodic
structures.

Following the evolution of bands with increasing frequency,
initially evanescent Bloch waves can become propagating
above given cutoff frequencies. This can be understood in
analogy to frustrated diffraction waves in diffraction gratings
(see Refs. [47,48] for more details). As a result, it leads
us to infer that the complex bands of a two-dimensional
metamaterial are each associated with some diffraction order
identified by a pair of indices (n1,n2), with n2 defined by
the modal distribution in the transverse direction. To illustrate
this, we present in Fig. 3 the modal distribution at selected
points of the complex band structure of Fig. 2, normalized to
the maximum amplitude of the displacement in each case. For
each Bloch wave, there is a dominant displacement component,
in agreement with the polarization degree shown in Fig. 2.
The modal distributions of the dominant component at points
A–E show no oscillation in the transverse direction; they are
frustrated (0, 0) diffraction orders [47]. Above the upper band
gap edge of the classical band structure, the band supporting
point A gets hybridized with the fifth propagating band.
Other bands show similar hybridizations as the frequency
increases. There is exactly one oscillation in the transverse
direction at points F–H; those Bloch waves are frustrated
(0, 1) diffraction orders. The modal distribution at point I
lead us to associate it with frustrated (0, 2) diffraction orders.
By using the dominant displacement component to define the
diffraction order, it can be seen that the other component is
apparently one order higher. This situation results from the
connection between displacements through their derivatives in
the governing equation (11). Besides, the larger the diffraction
order n2, the larger the imaginary part of the wave vector.
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FIG. 3. (Color online) Modal distribution of the displacement component (top) u and (bottom) v at the marked points in Fig. 2. For each
Bloch wave, displacements are normalized to the maximum total displacement.

Let us consider more precisely the complete band gap that
is opened around reduced frequency 0.1 in Fig. 2. It was
shown in Ref. [38] that this band gap is of locally resonant
origin. The complex band structure shows in addition that the
quasilongitudinal and the quasishear evanescent Bloch waves
form quite distinct sub-band structures within it. The two
quasilongitudinal LR bands with the smallest imaginary part
form the characteristic shape of a cusp, a feature of the LR band
gap for pressure waves described in Ref. [49]. Point A belongs
to the uppermost of these two complex bands; point C belongs
to the continuation of the other complex band after their cross-
ing. In contrast, the quasishear LR sub-band structure does not
form a cusp but an avoided crossing in the complex plane; point
B belongs to the complex band joining two extremal points
(with vanishing slope) for the imaginary part of the complex
band structure. The frequency range over which the smallest
imaginary part retains a significant value is larger than that for
the quasilongitudinal LR case. As will be seen next, this prop-
erty transfers to the width of the associated transmission dip.

2. Transmission properties

The transmission properties of a finite metamaterial system
composed of eight unit cells were evaluated. The calculation
model is shown in the inset of Fig. 4. An incident plane
wave with unit amplitude is launched at the left boundary
and propagates along the x direction. Periodic boundary
conditions are still applied along the y direction. In this paper,
transmission is defined as

T C = log

(∫ |ut |
/
L0ds

|ui |
)

, (18)

where |ut | and |ui |(=1) are the amplitudes of the transmitted
and incident waves, respectively; s is the right boundary with
the length L0 where the transmitted wave is recorded. As
a note, transmission thus defined can exceed unity without
violating energy conservation.

Transmission spectra for the metamaterial without viscosity
are presented in Fig. 4. Both x- and y-polarized wave sources
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FIG. 4. (Color online) Transmission properties of the elastic
metamaterial with 1 × 8 unit cells. The solid and dashed lines
represent the x- and y-polarized wave sources, respectively. The
inset shows the calculation supercell. An incoming wave with unit
amplitude is incident on the left boundary, and the amplitude of the
trasmitted wave is recorded on the right boundary.

are considered. It is seen that transmission is clearly attenuated
inside the band gap and that the band gap width is almost the
same for both sources. The shapes of the transmission curves,
however, are different and are related to the variations of the
smallest imaginary part of the wave vector in the complex band
structure. For the x-polarized source, the transmission has a
sharp minimum at the crossing point of the two longitudinal

bands supporting points A and C. For the y-polarized source,
the transmission dip is larger and deeper, and appears at
frequencies where the imaginary parts of the dominantly
transverse bands are degenerate, including point B. The
attenuation of the y-polarized wave is larger than that of the
x-polarized wave at all frequencies within the band gap. In the
complex band structure of Fig. 2, the smallest imaginary part
of the wave vector is always for the dominantly longitudinal
wave, with the consequence that the displacement amplitude
of the dominantly longitudinal wave decreases more slowly.
The dominantly shear and dominantly longitudinal band gaps
are opened starting from points J and K, respectively. The
displacements distribution at these two points is shown in
Fig. 5. Though they have slightly different frequencies, these
two Bloch waves sitting at the X point of the first Brillouin
zone clearly originate from a twice-degenerate resonance of
the coated bar embedded in the matrix. The Bloch wave at point
A has a definite resemblance with the dominantly longitudinal
Bloch wave at point K. The Bloch wave at point B also has
some resemblance with the dominantly shear Bloch wave at
point J, but it extends in the matrix as much as in the central
bar. The exit of both band gaps is at the degenerate points L1

and L2, also shown in Fig. 5 for completeness. There are also
some enhanced transmission peaks at frequencies outside the
complete band gap, which can be attributed to the Fabry-Pérot
oscillations in the crystal [7,49].

B. Viscoelastic case

1. Viscoelastic coating

We now turn our attention to the influence of viscosity
and start with the case of a viscoelastic coating. Complex

FIG. 5. (Color online) Bloch waves at the marked points in Fig. 2(a). The arrows represent the amplitude and direction of vibrations.
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FIG. 6. (Color online) Complex band structures of lossy metamaterials with viscoelastic coating computed by FEM. The geometry
parameters of the unit cell are the same as those used in Fig. 2. The viscosity of the viscoelastic coating is increased from (a) to (c).

band structures for increasing viscosity values are shown in
Fig. 6. It should be noted that many different polymer or
rubber compositions can be obtained experimentally, and that
they can have quite different values of viscosity. The values
for viscosity in this paper are arbitrary and are intended

for qualitative comparison only [18]. Here the normalized
viscosity η̄44 = η44cs/(C44a) is used, where η44 is the viscosity,
a is the lattice constant, and cs and C44 are the transverse
velocity and the shear modulus of the corresponding lossless
material, respectively. When a small viscosity is considered
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for the coating [Fig. 6(a) with η̄
coating
44 = 4.53 × 10−4], the first

visible effect is the separation of initially degenerate bands,
especially in the high frequency range. All sharp corners at
high symmetry points of the Brillouin zone become rounded.
The straight connections at high symmetry points become
divergent. Compared to the lossless case of Fig. 2, it is easier
to follow the evolution of complex bands. When considering a
larger viscosity value [Fig. 6(b) with η̄

coating
44 = 6.79 × 10−3],

rounding effects get more pronounced. The real wave vector
of band a in Fig. 6(b) even does not occupy every value
in the range [0, 0.5], so that a wave number band gap is
apparent [15]. When viscosity is further increased [Fig. 6(c)
with η̄

coating
44 = 1.13 × 10−2], the wave number band gap is

enlarged. It is also interesting to observe that the addition
of viscosity can break the continuity of complex bands, as

predicted theoretically in Ref. [20]. For example, the two bands
supporting points A and C are crossing in the lossless case.
When a large viscosity value is introduced, these bands are
reshaped and are avoiding each other.

The rounding of sharp corners of the complex band
structure at high symmetry points was precisely described by
considering the transformation of implicit dispersion relations
in presence of loss [20]. Let us outline here a simple alternative
explanation inspired by the case of photonic crystals [45].
Examining bands in the immediate vicinity of the gap in the
lossless case, let us try to approximate the first band near the
gap by expanding ω(k) in powers of complex k about the zone
edge k0 = π/a (X point of the first Brillouin zone) or k0 = 0
(� point of the first Brillouin zone) via a Taylor expansion
[45]. Because of time-reversal symmetry, the expansion cannot

FIG. 7. (Color online) Transmission properties of a metamaterial with viscoelastic coating with increasing viscosity values from (a) to (c),
shown with thick lines. The results of the elastic metamaterial (no viscosity) in Fig. 4 are shown with thin lines. Panel (d) shows the zoomed
complex band structure for the viscoelastic coating with η̄

coating
44 = 1.13 × 10−2. Open circles represent the results for the elastic coating.
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FIG. 8. (Color online) Complex band structures of lossy metamaterials with viscoelastic matrix computed by FEM. The geometry
parameters of the unit cell are the same as those used in Fig. 2. The viscosity of the viscoelastic matrix is increased from (a) to (c).

contain odd powers of k, so to lowest order,

�ω = ω(k) − ω(k0) ≈ ζ (k − k0)2 = ζ (�k)2 = ζ (f + gi)2,

(19)

where ζ is a constant related to the second derivative of the
band. For �ω > 0 and for the lossless case, we are within the

gap and �k is purely imaginary (f = 0,g 	= 0). For the same
�ω > 0 and for the lossy case, g becomes either larger or
smaller. A nonzero f is however needed to satisfy Eq. (19).
Thus the real part of the wave vector inside the irreducible
Brillouin zone gets either smaller or larger but changes
continuously in any case and results in a rounding of the band.
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Transmission curves for the metamaterial with viscoelastic
coating are shown in Fig. 7. When a small viscosity is
introduced [Fig. 7(a)], transmission peaks become smooth,
especially at high frequencies. Meanwhile, transmission inside
the band gap is almost unaffected. When viscosity is increased
[Figs. 7(b) and 7(c)], transmission peaks disappear completely
above the band gap and are replaced by transmission dips.
There is no clear upper band gap edge anymore, and the lower
band gap edge apparently shifts down, following the rounding
of complex bands. Transmission is generally decreased outside
of the band gap. At the LR band gap frequencies, however,
transmission is instead increased. This effect can be explained
by the change in the complex band structure, as shown in
Fig. 7(d). The separation of the originally degenerate bands
results effectively in a smaller minimum imaginary part for the
wave number. As a consequence, the wave decays more slowly
along the propagation direction, and a larger transmission
is observed at the exit of the finite metamaterial. For the

longitudinal wave, the same effect is less pronounced but the
reconstruction of the bands under viscosity also gives rise to a
smaller minimum imaginary part of the wave number around
the initial crossing point. As a result, the transmission dip is
less deep as well.

2. Viscoelastic matrix

Complex band structures for a viscoelastic matrix with
different viscosity values are presented in Fig. 8. Similar
to the case of the viscoelastic coating, shown in Fig. 7(a),
for a small viscosity value of the matrix [Fig. 8(a) with
η̄matrix

44 = 5.61 × 10−2] there is a clear influence on the real
part of the bands, especially at high symmetry points, but
the imaginary part remains mostly unaffected. For a larger
viscosity value [Fig. 8(b) with η̄matrix

44 = 1.12], the effect gets
more pronounced. Some degenerate modes are separated,
such as the real part of the band supporting point B and

FIG. 9. (Color online) Transmission properties of a metamaterial with viscoelastic matrix with increasing viscosity values from (a) to (c),
shown with thick lines. The results of the elastic metamaterial (no viscosity) in Fig. 4 are shown with thin lines, for comparison. The third
panel in (b) is a zoom of the complex band structure in the band gap range.
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the imaginary part of the bands supporting points G and
H in the lossless case. Viscosity has mostly a linear effect
on the complex bands, where the imaginary or the real part
increases or decreases linearly. For example, the real part of
band b decreases linearly, while the imaginary part of band
c increases linearly, as shown in Fig. 8(b). It is also noted
that cusps are formed at the band gap edges of the real part
of the band structure, where their first order derivatives are
not continuous, which is different from the results with the
viscoelastic coating. Complex bands at low frequencies are
also affected: the imaginary part of band d decreases and that
of band e increases. When viscosity is increased even more
[Fig. 8(c) with η̄matrix

44 = 2.81], the above phenomenon gets
even more pronounced.

Figure 9 presents transmission spectra for the viscoelastic
matrix with different viscosity values. For passing bands, the
effect of viscosity is similar to the case of the viscoelastic
coating. We observe again that inside the LR band gap,
transmission is increased in the viscous case compared to the
elastic case. The increase in transmission, moreover, is mostly
linear with frequency for the y-polarized wave, which was not
the case for the viscoelastic coating case in Fig. 7.

All changes in the complex band structures and in trans-
mission spectra are a result of the dispersive and dissipative
effects of viscosity. The effect of dispersion is chiefly to
displace bands in the complex plane; sharp corners become
rounded and initially propagating waves become evanescent.
The effect of dissipation is to enhance attenuation in passing
bands but to enhance transmission in LR band gap ranges. It
is expected that transmission should be decreased in passing
bands when viscosity is introduced, because viscosity then
implies attenuation on propagation just as in homogeneous
media. Viscosity also decreases transmission inside Bragg
band gaps [7], in accordance with the transformation of the
complex band structure [18]. In contrast, the opposite effect of
viscosity at the transmission dip caused by a local resonance

is less intuitive. We think that viscosity damps the local
resonators, making the physical mechanism creating the dip
less efficient, because the resonators are less prone to storing
the incident energy. Though the phenomenon is certainly
captured by the complex band structure, providing a complete
physical explanation remains a challenge for future work.

C. Effective mass density

Here we use FEM [28–31] to calculate the effective mass
density of the viscoelastic metamaterial. The four boundaries
of the unit cell are assumed to be subjected to a global
displacement ui . In the study, displacement phase differences
among the four boundaries of the unit cell are ignored
according to the long wavelength assumption. Therefore, the
effective mass density of the unit cell can be determined
through the averaged reaction force at the boundary nodes,
and is given by

ρeff
ij = Fi

/
Üj , (20)

where Fi = S−1
∫
∂S

σijnjdl is the averaged resultant force
on the boundaries and Üi = L−1

∫
∂S

üidl is the averaged
acceleration; i,j = 1,2, σij , ui , and üi are the local stress,
displacement, and acceleration fields, respectively; ni denotes
the unit vector normal to the boundary; S and ∂S denote the
area and external boundary with length L of the unit cell.
Anisotropic mass density may appear for metamaterials with
symmetries other than the square and hexagonal symmetry
[24] or for an elastic metamaterial when rotating an elliptical
coating [29]. For the circular coating with high symmetry
considered in this paper, we have an isotropic effective mass
density, i.e., ρeff

11 = ρeff
22 and ρeff

12 = ρeff
21 = 0.

The effective mass density of the lossless metamaterial is
shown as a function of frequency in Fig. 10 with the thin
solid line. Two NMD regions are observed, i.e., 0.07 < 
 <

0.131 and 0.244 < 
 < 0.274, corresponding to the dipolar

FIG. 10. (Color online) Effective mass density of the metamaterial with viscoelastic (a) coating and (b) matrix calculated by FEM. Results
are normalized to the mass density of the elastic matrix.
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resonances of the core and of the coating, respectively; see the
vibration modes in Figs. 5(b) and 5(e). For the viscoelastic
coating in Fig. 10(a), the viscosity value has little effect on
the NMD region at low frequencies, but has some influence
on the value of the NMD. In contrast, it has a strong influence
on the NMD region at high frequencies, corresponding to local
vibration of the coating in Fig. 5(e). A larger viscosity value
(η̄coating

44 = 1.13 × 10−2) for the coating can even result in the
disappearance of this region.

Contrary to the case of the viscoelastic coating, the viscosity
of the matrix has almost no influence on the two NMD regions,
but has little influence on the value of the NMD, as apparent
in Fig. 10(b), because these two NMD regions are generated
by the local vibration of the inner core or of the coating, while
the matrix almost stands still.

The NMD can also be evaluated by the Lorentz model [32]:

ρeff = S−1

(
m2 + m1K̄

K̄ − m1ω2

)
= S−1π (C44 + iω2η44)

× r1(2 − 2ν)
/

(1 − 2ν) + r2

r2 − r1
, (21)

where the effective stiffness,

K̄ = π (r1C11 + r2C44)

r2 − r1
= (r1(2 − 2ν)/(1 − 2ν) + r2)

r2 − r1
πC44,

(22)

is obtained by Eq. (5) in Ref. [38]. Here only the viscoelastic
coating is considered, because the matrix has no contribution
to the effective stiffness K̄ in the model.

Figure 11 shows the effective mass density calculated using
the Lorentz model. The result is in good agreement with the
FEM result in Fig. 10(a) for the low frequency resonance.
However, the Lorentz model fails to predict the NMD region at
high frequencies, because the corresponding vibration locates

FIG. 11. (Color online) Effective mass density of the metamate-
rial with viscoelastic coating as predicted by using Lorentz’s model.
Results are normalized to the mass density of the elastic matrix.

in the coating which is considered to be solely a spring in the
model.

IV. CONCLUDING REMARKS

Wave propagation in two-dimensional viscoelastic meta-
materials has been investigated. An algorithm for calculating
the complex band structure for in-plane waves was developed
based on a FEM implementation. Propagating and evanescent
Bloch waves were calculated and analyzed in order to
understand the physical meaning of the associated complex
bands. Viscosity was considered for either the matrix or the
coating. Its effect on the complex band structure of the infinite
metamaterial and on the transmission properties through a
finite piece of metamaterial was examined. The effective mass
density was also studied. From the calculated results and
discussions we can draw the following conclusions.

(1) The proposed method provides an exact result for the
complex band structure, the real part of which is the same
as the classical band structure. Complex bands are associated
with diffraction orders determined by the modal distribution
of the dominant displacement component, while the other
displacement is one order higher.

(2) When viscosity is introduced, the degeneracy of bands
in the elastic case is lifted, and the sharp corners at high
symmetry points of the Brillouin zone become rounded.

(3) In the passing bands, the transmission of a finite but
viscoelastic metamaterial gets worsened. In contrast, inside
locally resonant band gaps the transmission around the dip
frequency is enhanced due to the separation of initially degen-
erate complex bands. The lower band gap edge shifts down,
while the upper edge eventually becomes fuzzy. All changes in
the complex band structures and in transmission spectra are a
result of the dispersive and dissipative effects of the viscosity.

(4) Compared to viscosity of the matrix, viscosity of the
coating has a stronger influence on the effective mass density,
especially at high symmetry points. Furthermore, viscosity of
the coating can increase the magnitude of the negative mass
density, and even result in its disappearance for a resonance
localized in the coating.
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APPENDIX

In this appendix, we detail the calculation process of the
complex band structure by using the commercial software
Comsol Multiphysics. Due to the periodicity of the PCs,
the calculation is implemented in a representative unit cell.
Periodic boundary conditions based on the Bloch’s theorem
Eq. (12) are applied to relate the two opposite boundaries of the
unit cell. The unit cell is meshed by using a quadrilateral mesh
with Lagrange quadratic elements. Eigenfrequency analysis is
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FIG. 12. (Color online) Convergence of the complex bands calculated by FEM with triangular and quadrilateral elements at the reduced
frequency 
= 0.05. The real (imaginary) part of the wave vector is shown in the left (right) panel.

performed and SPOOLES [50] is selected as the linear system
solver. The frequency ω is swept in the desired frequency
range, so as to obtain the complex band structure. In practice
for the figures of this paper, 450 frequency points are selected
and 240 eigenvalues are solved for each frequency.

Numerical calculations are implemented by utilizing the
PDE (Partial Difference Equation) module of Comsol. The
PDE module is an application mode for equation-based
modeling, and Coefficient form is for linear or almost linear
PDE formulations. With two independent variables, the PDE
problem in coefficient form results in the following eigenvalue

equation system:

ea�
2U − da�U − ∇ · (c : ∇U + αU − γ ) + bU + β · ∇U

= f in 
, (A1)

To obtain an eigenvalue problem for k(ω), we write
k = kθ [34], where k is the amplitude of the wave vector
along the propagation direction at a given frequency, and
θ = (cos θ, sin θ ) is a unit direction vector along the elastic
wave propagation. The eigenvalue is set to be �(k) = −ik. By
comparing Eq. (13) with Eq. (A1), the nonzero coefficients in
Eq. (A1) are obtained, i.e.,

c =

⎛
⎜⎝

((λ + 2μ) 0
0 μ

) (0 λ

μ 0

)
(0 μ

λ 0

) (
μ 0
0 (λ + 2μ)

)
⎞
⎟⎠, (A2a)

ea =
(−(λ + 2μ)cos2θ − μ sin2θ −(λ + μ) sin θ cos θ

−(λ + μ) sin θ cos θ −μ cos2θ − (λ + 2μ)sin2θ

)
, (A2b)

α =

⎛
⎜⎜⎝

((λ + 2μ)� cos θ

μ� sin θ

) (
λ� sin θ

μ� cos θ

)
(
μ� sin θ

λ� cos θ

) (
μ� cos θ

(λ + 2μ)� sin θ

)
⎞
⎟⎟⎠, (A2c)

β =
(

(−(λ + 2μ)� cos θ −μ� sin θ ) (−μ� sin θ −λ� cos θ )

(−λ� sin θ −μ� cos θ) (−μ� cos θ −(λ + 2μ)� sin θ )

)
, (A2d)

b =
(−ρω2 0

0 −ρω2

)
. (A2e)

The quadratic eigenvalue problem of Eq. (A1) is next reformulated as a linear eigenvalue problem by the following
transformation:

V = �U, ea�V − ∇ · (c : ∇U + αU) + bU + β · ∇U = 0. (A3)

After constraint handling, it is possible to write the system in the form Ax = �Bx. Finding the eigenvalues is equivalent to
computing the largest eigenvalues of the matrix

C = A−1B. (A4)
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To do this, the solver uses the ARPACK Fortran routines for
large-scale eigenvalue problems [51]. C is a skew-symmetric
matrix in the elastic case, and the obtained eigenvalues are
quadruples (�, − �,�̄, − �̄), with �̄ being the complex con-
jugate of �. In the viscoelastic case, the obtained eigenvalues
are couples (�, − �).

It is also noted that since C in Eq. (A4) is skew-
symmetric in the elastic case, a large number of degree
of freedom is needed to get a convergent result. It is

expected that this property remains true in the viscoelastic
case, by continuity. Convergence of the complex bands
calculated using triangular and quadrilateral elements is
compared in Fig. 12 at 
= 0.05. The convergence for the
triangular mesh is a little worse than that of the quadrilat-
eral mesh. The results converge when the number of the
degree of freedom is about 3 × 105, which is about two
orders higher than the results of the real band structure in
Ref. [38].
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