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Arbitrary dispersion control of ultrashort
optical pulses with acoustic waves

Frédéric Verluise, Vincent Laude, Jean-Pierre Huignard, and Pierre Tournois

Thomson-CSF, Corporate Research Laboratory, Domaine de Corbeville, F-91404 Orsay Cedex, France

Arnold Migus

Laboratoire pour l’Utilisation des Laser Intenses, Ecole polytechnique, Centre National de la Recherche Scientifique,
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Acousto-optic programmable dispersive filters (AOPDF) can compensate in real time for large amounts of
group-delay dispersion. This feature can be used in chirped-pulse amplification femtosecond laser chains to
compensate adaptively for dispersion. An analytical expression relating the group delay at the output of the
AOPDF to the input acoustic signal is obtained with coupled-wave theory in the case of collinear and quasi-
collinear bulk acousto-optic interactions and also in the case of planar waveguides and optical fibers. With
this relation, the acoustic signal that will induce an arbitrary group-delay variation with frequency can be
easily obtained. Numerical simulations are shown to support the principle of arbitrary group-delay control
with an AOPDF. © 2000 Optical Society of America [S0740-3224(00)01701-X]
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1. INTRODUCTION
Even though femtosecond oscillators can deliver approxi-
mately dispersion-free laser pulses, the subsequent
propagation through the amplifiers and the chirped-pulse
amplification components introduces huge amounts of
group-delay dispersion, which in turn broaden the pulse
and generate artifacts. The importance of spectral phase
control has been stressed by ultrafast laser users who
typically need extremely short pulses but with no pedes-
tals and with a given temporal shape. This calls for pro-
grammable devices capable of compensating for large
amounts of dispersion over large spectral bandwidths.
Most pulse-shaper devices that have been proposed are
based on the use of liquid-crystal spatial light modulators
in the Fourier plane of a zero-dispersion line (see, e.g.,
Refs. 1–6). The main drawbacks of such systems are a
limited dynamic range and the coupling of the spatial and
temporal aberrations of the laser beam.

Recently, the use of an integrated acousto-optic tunable
filter for pulse shaping was proposed,7 and the implemen-
tation of a notch filter was demonstrated in a bandwidth
of ;8 nm around 1530 nm. However, in an integrated
acousto-optic tunable filter, although the frequency of the
acoustic wave is an adjustable constant, it does not allow
for true control of the optical spectral phase. Tournois
later proposed the use of a collinear acousto-optic interac-
tion in a bulk device termed an acousto-optic program-
mable dispersive filter (AOPDF)8 and in a first experi-
ment demonstrated the compression of Ti:sapphire
femtosecond pulses in the 100-fs range with a tellurium
dioxide (TeO2) acousto-optic modulator. In Tournois’ de-
sign the acousto-optic interaction is collinear to maximize
the interaction length, whereas the acoustic frequency is
a variable function of time and provides control over the
0740-3224/2000/010138-08$15.00 ©
group delay of the diffracted optical pulse. Note that the
acousto-optic modulator used experimentally by Tournois
was not designed for collinear interaction but was still
able to provide for the desired dispersion. The AOPDF in
collinear configuration is in principle free of spatiotempo-
ral coupling effects and can provide for large dispersion
compensation ranges; it thus overcomes the two main
limitations of spatial light modulator–based zero-
dispersion lines. Deviations from this ideal behavior
when a quasi-collinear interaction is used will be dis-
cussed in Subsection 4.B.

Our goals in this paper are to demonstrate that an ar-
bitrary, although monotonic, variation of the group delay
can be added to an optical short pulse with a frequency-
modulated acoustic wave and to provide for expressions
that relate the induced optical group delay to the acoustic
instantaneous frequency. These expressions can be used
either for predicting the dispersion characteristics of the
optical pulse when it leaves the acousto-optic crystal or,
more interestingly, for computing the acoustic wave func-
tion needed to control the optical group delay arbitrarily.
This arbitrary control has immediate applications to
adaptive dispersion compensation in chirped-pulsed am-
plification laser chains and to femtosecond pulse shaping.

The paper is organized as follows. In Section 2 we will
present a simple phenomenological description of the
principle used for arbitrary group-delay control. In Sec-
tion 3 coupled-wave theory9 will be used to model the in-
teraction accurately and will be shown to support the pre-
vious phenomenological model. In Section 4 the practical
issues arising when volume gratings in acousto-optic crys-
tals are created will be considered, and numerical simu-
lations will illustrate the operation of a quasi-collinear
TeO2 AOPDF.
2000 Optical Society of America
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2. PHENOMENOLOGICAL APPROACH
The idea underlying the control of the optical group delay
with an acousto-optic interaction as proposed by
Tournois8 is depicted in Fig. 1. Suppose an acoustic
wave is launched in an acousto-optic device by use of a
transducer excited by a rf temporal signal as is usual in
acousto-optics. The acousto-optic interaction can be ei-
ther a bulk collinear or a quasi-collinear interaction, in
which case the optical modes can be approximated by
plane waves, or an acousto-optic interaction in a wave-
guide or optical fiber, in which case the transverse profile
of the optical modes must be taken into account. The
acoustic wave propagates with a certain velocity V along
the z axis and hence reproduces spatially the temporal
shape of the rf signal. As the velocity of optical waves is
usually much larger than that of the acoustic wave, and
because we assume ultrashort optical pulses in the pico-
second or femtosecond range, the incident optical pulses
will see a fixed dielectric grating inside the device. We
neglect here and in the following the small Doppler fre-
quency shift that is always present with acousto-optic in-
teractions. Let us now assume that the rf signal is
chirped; i.e., its instantaneous frequency is a continuously
varying function of time. The acoustic wave will then re-
produce this behavior spatially, and its local spatial fre-
quency will also be chirped. It is well known9 that two
optical modes can be coupled efficiently by an acousto-
optic interaction only in the case of phase matching be-
tween the two optical modes and the acoustic wave.
Since locally there is only one spatial frequency in the
acoustic grating, only one optical frequency can be dif-
fracted at a certain position z. This situation is depicted
in Fig. 1. The incident optical short pulse has a spectrum
extending from va to vb and is initially in mode 1. Every
frequency v between va and vb travels a certain distance
before it encounters a phase-matched spatial frequency in
the acoustic grating. At this position z(v), part of the
energy in mode 1 is diffracted into mode 2 and travels
subsequently on that mode. For simplicity, the polariza-
tions of both modes are assumed orthogonal, but this re-
quirement is not compulsory for the principle of the
AOPDF. The pulse leaving the device on mode 2 will be
made of all spectral components that have been diffracted
at various positions. If the velocities of the two modes
are different, then each frequency will see a different time
delay. Then by properly choosing the temporal form of
the rf signal, and hence the spatial form of the acoustic

Fig. 1. Schematic representation of the AOPDF principle. The
acoustic wave and the incident and diffracted optical waves are
collinear and propagating along the z axis. See text for details.
wave, we can create an almost arbitrary group-delay dis-
tribution as a function of frequency. This physical dis-
cussion qualitatively explains the principle of the
AOPDF, but to obtain the exact relation between the op-
tical group delay and the acoustic wave we propose to for-
malize it on the basis of coupled-wave theory in Section 3.
However, the mathematics therein are a direct transcrip-
tion of the physical analysis of this section.

3. COUPLED-WAVE ANALYSIS
A. Notations
We consider a fixed dielectric perturbation in a birefrin-
gent crystal that is directed along the z axis and is created
by an acoustic wave. We use the approximation of the
fixed dielectric perturbation, since the light velocity is
much larger than the acoustic velocity as discussed in
Section 2. We assume that the acoustic wave is a
frequency-modulated signal, so that the dielectric pertur-
bation reads as

e~z ! 5 e 1 2e1~z !cos@c ~z !#, (1)

with the acoustic phase given by

C~z ! 5 E
0

z

K~z !dz. (2)

Here e is the unperturbated dielectric tensor, which has
only diagonal elements in the reference frame of Fig. 1,
e1(z) is the perturbated part of the dielectric tensor that
will result in coupling of the optical modes, and K(z) is
the instantaneous spatial frequency of the acoustic wave.
To simplify the mathematical derivations, we will assume
that K(z) is a monotonic function of z; i.e., it is either in-
creasing or decreasing. This assumption is not strictly
required for the AOPDF principle to apply; however, it is
needed to define the function z(v) introduced physically
in Section 2 and used extensively in this section. The
possible amplitude variations of the acoustic wave are
contained in e1(z), but they are not central to the present
discussion and are indicated here only for completeness.
Note that usually e1(z) is much smaller than e, so that
only its off-diagonal elements need to be considered.

The two optical modes are also propagating along the z
axis in the direction of positive z; the case of quasi-
collinear optical modes and the acoustic wave will be
treated in Subsection 4.B. The optical pulses can be rep-
resented as a spectral superposition:

E~t, r! 5 E E~v, r!exp~ivt !dv. (3)

In the following we implicitly consider separately the
propagation of the different angular frequencies v that
make up the spectrum of the optical pulses. When no
acoustic wave is applied, the modes are plane waves
whose electric field vectors can be written as

Em~v, r! 5 AS~v!em exp@2ikm~v!z#, (4)

with m 5 1, 2, km(v) 5 nm(v)v/c, and where

em 5 F 2m0v

km~v!
G1/2

pm . (5)
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pm , m 5 1, 2, are the unit vectors describing the polar-
ization of the waves and are assumed to be along the or-
dinary and extraordinary axes, respectively, so that n1
5 n0 and n2 5 ne ; furthermore, p1 • p2 5 0. em is nor-
malized so as to represent a power flow of 1 W/cm2 in the
z direction,9 and S(v) gives the proportion of this power
flow for every frequency in the power spectrum of the
pulse.

B. Wave-Equation Solution
The electric field vector in the crystal must satisfy the fol-
lowing wave equation:

d2

dz2 E~v, r! 1 v2m0e~z !E~v, r! 5 0. (6)

This second-order differential equation depends only on z,
and its solution is given by Eq. (4) in the case e1(z) 5 0.
Its general solution can be written as

E~v, r! 5 AS~v!$A1~z !e1 exp@2ik1~v!z#

1 A2~z !e2 exp@2ik2~v!z#%, (7)

where Am(z), m 5 1,2 are arbitrary but supposedly
slowly varying functions of z. By inserting Eqs. (1) and
(7) into Eq. (6), neglecting the second derivative of Am(z),
and projecting the resulting equation on e1 and e2 , re-
spectively, we are led to the following coupled-wave equa-
tions:

d

dz
A1~z ! 5 2ik~z !A2~z !$exp@2if1~z !#

1 exp@2if2~z !#%, (8)

d

dz
A2~z ! 5 2ik~z !A1~z !$exp@if1~z !# 1 exp@if2~z !#%,

(9)

with

f6~z ! 5 @k2~v! 2 k1~v!#z 6 c ~z !, (10)

k~z ! 5
v2m0

2@k1~v!k2~v!#1/2 p1 • e1~z ! • p2 . (11)

It is well known9 that with coupled-wave equations like
Eqs. (8) and (9), nonnegligible energy transfer between
the two modes is obtained only in the case of phase
matching between optical and acoustic waves, that is,

d

dz
f6~z ! 5 0 5 k2~v! 2 k1~v! 6 K~z !. (12)

The choice of the sign in this equation depends solely on
the sign of k2 2 k1 , i.e., on the sign of n2 2 n1 ; we will
assume this sign negative in the following, so that only
f(z) 5 f1(z) will be considered. From Eq. (12) and from
the monotonicity of K(z), we see that for every angular
frequency v, there is a unique position z(v) in the crystal
in which energy transfer occurs between the two modes
and that is given by

K@z~v!# 5 k1~v! 2 k2~v! 5
v

c
@n1~v! 2 n2~v!#. (13)
Moreover, if z(v) is itself monotonic, then there is for ev-
ery position z inside the crystal a unique angular fre-
quency v(z) for which energy transfer occurs signifi-
cantly.

An exact solution of the coupled-wave equations (8) and
(9) can be obtained only numerically, and we will present
such a numerical simulation in Subsection 4.C, but much
more insight can be obtained with some minor additional
assumptions. Suppose all energy is in mode 1 at the en-
trance of the crystal [i.e., A1(0) 5 1 and A2(0) 5 0].
This repartition will be conserved almost exactly until the
vicinity of z(v) is reached and will then remain almost
constant. In the vicinity of z(v), k(z), and f(z) can be
considered roughly constant so that the solution of Eqs.
(8) and (9) can be obtained analytically (see, e.g., Ref. 9).
The main result that is then obtained is that

A2~z ! ' a~v!exp$if@z~v!#%, z . z~v!, (14)

where a(v) has a modulus smaller than 1. When it
leaves the crystal at position z 5 L, mode 2 has acquired
the following phase:

w~v! 5 k2~v!L 2 f@z~v!#

5 k1~v!z~v! 2 c@z~v!# 1 k2~v!@L 2 z~v!#. (15)

The three terms in this equation correspond to propaga-
tion on mode 1 for distance z(v), interaction with the
acoustic wave, and propagation on mode 2 for distance
L 2 z(v), respectively. The group delay encountered by
every spectral component is the derivative of the above
spectral phase and reads as

t~v! 5
dz~v!

dv
$k1~v! 2 k2~v! 2 K@z~v!#%

1
dk1~v!

dv
z~v! 1

dk2~v!

dv
@L 2 z~v!#. (16)

The first term is zero according to the phase-matching
condition [Eq. (12)]. With the group velocity defined by
vg(v) 5 dv/dk(v), the group delay becomes

t~v! 5
z~v!

vg1~v!
1

L 2 z~v!

vg2~v!
. (17)

The physical explanation of this equation is rather
simple: Propagation occurs at velocity vg1(v) for dis-
tance z(v) and subsequently at velocity vg2(v). As the
interaction was assumed to be localized around z(v), it is
no surprise that the influence of this interaction has dis-
appeared in terms of the group-delay time. We thus
have proved that the phenomenological approach of Sec-
tion 2 is indeed supported by coupled-wave analysis, pro-
vided that the interaction region for each frequency is
small. The quality of the resulting prediction for the
group delay, Eq. (17), will then depend on the ratio of this
interaction length to the crystal length L.

C. Group-Delay Control
We now discuss the control of the group-delay distribu-
tion through specification of the acoustic wave character-
istics. It is useful to introduce the differential group ve-
locity between the two modes as
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Dvg~v! 5 @1/vg1~v! 2 1/vg2~v!#21, (18)

so that Eq. (17) becomes

t~v! 5
z~v!

Dvg~v!
1

L

vg2~v!
(19)

or, equivalently,

z~v! 5 Dvg~v!F t~v! 2
L

vg2~v!
G . (20)

Note that although we have chosen to express the previ-
ous equations by use of group velocities, we could equally
well have used group indices defined by ng(v) 5 (d/dv)
3 @n(v)v# and Dng(v) 5 ng1(v) 2 ng2(v), since then
vg(v) 5 c/ng(v) and Dvg(v) 5 c/Dng(v). Given a de-
sired group-delay distribution, Eq. (20) dictates the posi-
tion of phase matching for every frequency. Note that if
the crystal were not dispersive, this relation would be lin-
ear. The phase-matching condition [Eq. (13)] then speci-
fies the form of the acoustic signal and can be rewritten as

K@z~v!# 5
v

Dvp~v!
, (21)

where Dvp(v) 5 c/@n2(v) 2 n1(v)# is the differential
phase velocity between the two modes. Eqs. (20) and (21)
determine completely the form of the acoustic wave when
an arbitrary group delay is specified. This process is
summarized in Fig. 2. The first step is to specify t(v) as
a function of v, then to compute z(v) from Eq. (20), and
finally to obtain K@z(v)# from Eq. (21). Hence a para-
metric representation of K(z) as a function of z is ob-
tained.

In the important case of a linear chirp, or

t~v! 5 Dv 1 t0 , (22)

where D is group-delay dispersion (GDD) in squared fem-
toseconds and t0 some constant delay time, insertion of
Eqs. (19) and (22) into Eq. (21) gives

K@z~v!# 5
1

DDvp~v!
F z~v!

Dvg~v!
1

L

vg2~v!
2 t0G . (23)

If the different velocities involved would have constant
values, which is the case for small bandwidths, then the

Fig. 2. Graphical representation of the computation of the
acoustic signal given a desired group-delay function t(v). The
group-delay equation (20) gives z(v); i.e., the position at which
phase matching should occur for each frequency (arrow 1). The
phase-matching condition [Eq. (21)] then gives the acoustic fre-
quency K(z) (arrow 2).
acoustic signal would also be linearly chirped, with a
slope given by (DvpDvgD)21.

D. Self-Compensation
In some applications, before trying to introduce a given
group-delay distribution, the material dispersion of the
crystal itself should first be compensated for. When self-
compensation is obtained, the group delay should be a
constant value T for every frequency v, and Eq. (20) gives

z~v! 5 Dvg~v!FT 2
L

vg2~v!
G . (24)

It is then clear that the bandwidth that can be accommo-
dated for is limited by the condition that some delay T can
be found such that 0 < z(v) < L for every frequency v in
that bandwidth. Expliciting this condition with the as-
sumption Dvg(v) . 0 simply gives that for every fre-
quency

L

vg2~v!
< T <

L

vg1~v!
, (25)

which is equivalent to the following condition:

max
v

@vg1~v!# < min
v

@vg2~v!#. (26)

This inequality would be reversed if Dvg(v) , 0. Equa-
tion (26) defines the bandwidth in which the acoustic in-
teraction is able to compensate for the dispersion of its
host crystal. It means that the group velocity of the fast-
est frequency for mode 1 should be less than the group ve-
locity of the slowest frequency for mode 2. This condition
is illustrated by Fig. 3. For every frequency v, the effec-
tive group velocity on propagation through the crystal is
given by

vg~v! 5 F z~v!

L

1

vg1~v!
1

L 2 z~v!

L

1

vg2~v!
G21

. (27)

It is obviously a weighted average of the group velocities
for both modes. As depicted in Fig. 3, for every fre-
quency, the effective group velocity has a range of pos-
sible values extending from vg1(v) to vg2(v). If all fre-
quencies have to share a common effective group velocity
V, i.e., a common group delay T 5 L/V, then V has to be
in the range of all frequencies, hence condition (26). This
representation can be immediately generalized for an ar-
bitrary group-delay function t(v), just by defining the ef-
fective group velocity vg(v) 5 L/t(v) that must satisfy

Fig. 3. Determination of the compensation bandwidth. vg1(v)
and vg2(v) are the optical group velocities on modes 1 and 2, re-
spectively; vg(v) is the group delay of the diffracted pulse.
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Eq. (27). As depicted in Fig. 4, the required trajectory
vg(v) must lie within the region delimited by curves
vg1(v) and vg2(v).

4. ACOUSTO-OPTIC INTERACTION
A. Collinear Interaction
The volume gratings that have been considered in Section
3 were assumed static. However, the acoustic waves
usually used are progressive with a given velocity V and
are generated by applying a rf signal to a transducer
bonded to the crystal. Like optical waves, the acoustic
wave is dispersive; i.e., a phase velocity and a group ve-
locity can be defined. Anyway, it is the phase velocity we
are concerned with through phase matching. For the
sake of simplicity, we will consider this velocity constant
in the following. The rf signal must have the form

s~t ! 5 cosF E
0

t

V~t !dtG , (28)

with the instantaneous frequency V(t) given by

V~t ! 5 VK~Vt !. (29)

Hence the temporal signal to be applied to the transducer
can be computed easily from K(z). For instance, in the
case of the linear chirp of Eq. (22), the corresponding tem-
poral chirp would be

V~t ! 5
V

Dvp

V

Dvg

t

D
1 V0 , (30)

where V0 is some constant frequency.
Another consequence of the progressive nature of the

acoustic wave is that a sequence of short pulses will see
the fixed acoustic grating that is the same but that starts
at a different location z0 (z0 5 0 was assumed in the pre-
ceding analysis). For each frequency, propagation will
occur for distance z0 1 z(v) on mode 1 and then for dis-
tance L 2 z0 2 z(v) on mode 2. The group delay will
then be

tz0
~v! 5 t~v! 1

z0

Dvg~v!
, (31)

where t(v) is the group delay of Eq. (19). The second
term in Eq. (31) is a variable jitter. For most applica-
tions, the existence of this jitter will not be a problem,
provided that it remains nondispersive, a condition that

Fig. 4. Possible group-delay trajectories. The AOPDF can im-
pose an arbitrary group-delay variation t(v) on the diffracted op-
tical pulse, provided that the corresponding group velocity
vg(v) 5 L/t(v) remains between vg1(v) and vg2(v).
can hold only for small bandwidths in general. If it is
dispersive, then this effect can be corrected by synchroni-
zation of the acoustic wave generation with the pulsed la-
ser source.

B. Quasi-Collinear Interaction
In the preceding analysis, we have considered implicitly
that the optical and acoustic waves were collinear in both
the phase and the group-velocity sense. However, in the
vast majority of efficient acousto-optic interactions, this
assumption is not verified, and all six directions defined
by the phase and the group velocities of the two optical
waves and of the acoustic wave can be different. Any-
way, this situation has been treated extensively; see, e.g.,
Ref. 9, at least for the case of the diffraction of a mono-
chromatic optical wave on a fixed-frequency acoustic
wave. We will restrict our attention to the quasi-
collinear case depicted in Fig. 5. We still assume that
the phase velocity of the acoustic wave is directed along
the z axis, but the wave vectors of the two optical modes
now have an x component and Eq. (4) becomes

Em~v, r! 5 AS~v!em exp@2ikm~v! • r#

5 AS~v!em exp$2i@am~v!x 1 bm~v!z#%,

(32)

with the normalization of Eq. (5) unchanged. The phase
and group velocities are different for axes x and z and
read, respectively, vpmx 5 v/am(v) and vpm
5 v/bm(v), and vgmx 5 dv/dam(v) and vgmz
5 dv/dbm(v). The wave equation (6) is unchanged, and
the mode envelopes A1 and A2 depend only on z as before.
Replacement of Eq. (4) by Eq. (32) then leads to the same
coupled-wave equations as in Subsection 3.B but with

f~z ! 5 @b2~v! 2 b1~v!#z 2 c ~z ! (33)

and the phase-matching conditions

a2~v! 5 a1~v!, (34)

K~z ! 5 b2~v! 2 b1~v!. (35)

The first condition implies that the phase velocity and the
group velocity are identical for both modes along the x
axis, and the last condition still defines z(v). The phase
of Eq. (15) at any point r after the interaction has oc-
curred becomes

Fig. 5. Representation of the quasi-collinear acousto-optic inter-
action geometry.
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w~v! 5 k2~v! • r 2 f@z~v!#. (36)

The derivative of this phase is the group delay and reads
with r 5 (x, L):

t~v! 5
z~v!

vg1z~v!
1

L 2 z~v!

vg2z~v!
1

x

vgx~v!
. (37)

Note that the interaction length L is measured along the
z axis, and x is the abscissa of the output beam at the end
of the crystal. Expression (37) for the group delay in the
quasi-collinear case is identical to expression (17) for the
group delay in the collinear case, except for the spatial
chirp term x/vgx(v). This group-delay term is directly
connected to the geometrical walk-off between the inci-
dent beam and the diffracted beam and has no influence
on the group-delay control. If the spatial chirp is to re-
main small, and when the finite size of the beams is taken
into account, the collinearity or quasi-collinearity of the
group velocities of the two optical modes should be
stressed. However, for the AOPDF operating in a quasi-
collinear configuration described in Ref. 10, the spatial
chirped was not observed.

C. Numerical Simulations
To illustrate the previous mathematical development, we
have performed numerical simulations for the interaction
geometry in a L 5 3-cm-long TeO2 crystal in a quasi-
collinear configuration.10 This geometry is intended for
group-delay control of titanium:sapphire ultrashort laser
pulses, i.e., with a central wavelength of 800 nm, and has
been designed so that the interaction is efficient. The
two modes used are polarized along the ordinary and ex-
traordinary axes; at l 5 800 nm, n0 5 2.226, and
ne 5 2.374. Dispersion data for TeO2 are taken from
Ref. 11, page 33.66. The application of the criterion [Eq.
(26)] indicates that dispersion compensation can be ob-
tained at least from 700 to 900 nm; the corresponding rf
frequency range extends from 40 to 60 MHz. In this case
the acoustic signal occupies ;58% of the crystal length.
Figure 6 shows the spectral intensity and phase that are
induced on mode 2 when the acoustic signal is computed
from Eq. (24). The constant group delay T equals ;240
ps. Propagation is simulated frequency by frequency by
numerical integration of the coupled-wave equations, i.e.,
without the further approximations used to derive an
analytical formula for the group delay. The coupling con-
stant is chosen so that kL 5 30; i.e., this is a rather
strong coupling. The spectral intensity has a shape char-
acteristic of the Gibbs phenomenon, well known in Fou-
rier analysis12: The amplitude of the acoustic signal is
constant between 700 and 900 nm, and zero elsewhere;
high spatial frequencies are not resolved by the diffracted
optical beam and result in rapid oscillations of the spec-
tral intensity. Anyway, these could be reduced by an ad-
equate apodization. The target phase vT has been re-
moved from the computed phase to show that the desired
goal has been achieved: Only slight high-frequency
phase fluctuations remain around the mean value. The
parabolic variation of the phase outside the target band-
width is characteristic of the material dispersion. The
group delay computed by numerical differentiation from
the spectral phase of Fig. 6 is shown in Fig. 7. The oscil-
lations of the spectral phase are seen to be amplified by
the differentiation but still have the same high-frequency
character with a zero mean. Experimentally, such oscil-
lations in the spectral phase or in the group delay cannot
be resolved during measurement, and a mean value
would be obtained instead. Furthermore, the effect on
the temporal shape of the diffracted pulse of the oscilla-
tory behavior of the spectral phase is integrated [see Eq.
(3)]. This should result in the temporal domain in a
modulation of the pulse some distance away from the cor-
rectly compressed central part of the pulse. To verify
this assumption, we simulated the propagation of a 15-fs
Gaussian pulse through the crystal. Figure 8 shows the
incident 15-fs pulse and the 3.3-ps dispersed pulse at the
output of the crystal on mode 1 if no acoustic signal were
applied. When the acoustic signal is computed from Eq.
(24), a 15.3-fs pulse is retrieved on mode 2, as shown also

Fig. 6. Spectral intensity and phase induced on mode 2 when
the acoustic signal is computed from Eq. (24) for a 3-cm-long col-
linear AOPDF. The inset shows a magnified portion of the spec-
tral phase versus frequency curve.

Fig. 7. Group delay computed from the spectral phase of Fig. 6.
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in Fig. 8. It can be seen that the rapid oscillations in the
spectral intensity and phase caused by the acousto-optic
interaction yield only small pulse pedestals, as predicted.

As said above, the acoustic signal needed to compen-
sate for the dispersion of the TeO2 crystal occupies ;58%
of the crystal length for the 700- to 900-nm bandwidth,
and this corresponds to a total group delay of ;9.2 ps.
The remaining 42% of the crystal length can induce a fur-
ther total of 6.7 ps of programmable negative dispersion.
Figure 9 shows five examples of such group-delay control.
The desired dispersion is specified by the values of the
GDD, in squared femtoseconds, and of the third-order dis-
persion, in cubed femtoseconds, as listed in Table 1. Ex-

Fig. 8. Numerical simulation of the propagation of an incident
15-fs Gaussian pulse through a 3-cm-long collinear AOPDF.
The spectrum of the incident pulse is centered on 380 THz and is
29.4-THz FWHM large. The inset shows the magnified central
portion of the curves.

Fig. 9. Five examples of group-delay control. Table 1 lists the
designed versus the obtained dispersion values.
ample number 3 yields the largest total group delay and
corresponds to an acoustic signal that occupies ;95% of
the crystal length. Also listed in Table 1 are the values
of the GDD and the third-order dispersion obtained when
the group-delay curves obtained are fitted with a polyno-
mial model of the second degree. It can be seen that the
obtained dispersion values are not exactly those that were
designed, although they remain relatively close, and that
this mismatch increases with the desired dispersion.
Note that the effect seems absent when a constant group
delay is required, as shown in Fig. 7. We believe that the
mismatch between the predicted value of the group delay
and the simulated value comes from the stationary phase
approximation used, i.e., in Eq. (14), but we are unable
presently to provide a sound argument to support this hy-
pothesis and leave this discussion open. Anyway, from a
practical point of view, if one is to obtain a specific group-
delay variation specified, e.g., by its GDD and third-order
dispersion, a computer optimization can be performed to
obtain the required acoustic signal. However, the prac-
tical usefulness of such an approach will depend on the
computation time. For the examples presented in Fig. 9,
8196 sampling points are used for the z axis, while 4096
sampling points are used for the optical angular fre-
quency axis. These rather large numbers are dictated by
the necessity of resolving the acoustic fringes and the
rapid fluctuations of the group delay, respectively. The
overall computation time per curve is ;15 min on an Ul-
tra 1 Sun workstation. Reduction of this computation
time is needed for implementing an optimization proce-
dure; this could probably be achieved by improving the
numerical simulation method used.

5. CONCLUSION
We have studied the operation of AOPDF’s in either bulk
or integrated configurations. We have obtained a simple
analytical expression for the group delay imposed on a
diffracted optical short pulse by a general chirped acous-
tic wave. Furthermore, we have shown that an arbi-
trary, although monotonic, group delay can be obtained
by proper specification of the acoustic signal. This trans-
position of the control of the spectral phase of an optical
pulse to the control of a rf temporal signal has the strong
practical advantage of direct computer control with an ar-
bitrary accuracy. Computer simulations were performed
to verify the theoretical predictions and were shown to
support them except for a slight mismatch for large dis-
persions.

Table 1. Designed Versus Obtained Dispersion
Values for the Five Examples of Fig. 9

Curve Designed Obtained

GDD (fs2) TOD (fs3) GDD (fs2) TOD (fs3)
1 21000 0 2996 34
2 25000 0 24690 21185
3 210000 0 27652 28610
4 0 240000 196 237850
5 25000 230000 24244 224955
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