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A P-Matrix Based Model for SAW Grating
Waveguides Taking into Account Modes

Conversion at the Reflection
Marc Solal, Member, IEEE, Vincent Laude, Member, IEEE, and Sylvain Ballandras

Abstract—Several models exist for analyzing the wave-
guiding effect of a reflective grating. On the one hand, there
are models based on scalar waveguide theory. These mod-
els consider that a device can be described as being made
of several regions having different velocities. On the other
hand, an extension of the coupling of modes (COM) model
taking into account the transverse dimension has been de-
veloped. This paraxial COM model predicts that guidance
is possible even when there is no velocity difference be-
tween the interior and the exterior of the grating region.
Guidance, under such circumstances, is due only to differ-
ences in reflectivity between regions. Following from this
insight, a new approach has been developed: guided modes
and the continuum of radiating modes are first determined.
At each period, reflections then are considered as occur-
ring only in the reflective regions, so that the modes are
truncated. Thus, at each reflection (and transmission), each
mode is converted into a distribution of all modes. Disper-
sion curves very similar to those shown by other researchers
are obtained by this method. They show, in particular, the
existence of guided modes even when the wave velocity in
all regions is identical. This model can be used to more eas-
ily analyze practical devices and exhibits a good agreement
with experimental results.

I. Introduction

Several models exist for analyzing the wave-guiding
effect of a reflective grating. Some authors use mod-

els based on standard scalar theory [1]–[4]. These models
consider that a device can be described as being made
from several layers having different velocities. A general
procedure, using a stack matrix, allows one to derive the
dispersion equation and the mode shapes for an arbitrary
number of layers. All the layers are considered homoge-
neous, i.e., the reflectivity is neglected in the derivation of
modes.

Other models, which have used both reflectivity and
velocity differences to determine dispersion curves, have
been published. The paraxial coupling of modes model de-
veloped originally by Haus [5] allows for the possibility
that there exist guidance due exclusively to differences in
reflectivity between adjacent regions. This approach has
been followed by Hirota and Nakamura [6]. Hartmann et
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al. [7] were able to derive the dispersion curve for grating
waveguides accounting for reflection.

Another approach was initiated by Rooth [8]. The idea
presented is to decompose each period in the transverse
direction into several unit cells. This leads to the definition
of 2D-P matrices recently presented [9].

In [10] and [11], a method based on the P-matrix model
is presented. In this approach, the reflectivity is introduced
at the modes determination stage by choosing for the re-
flective regions a velocity such that the grating period is
equal to half a wavelength for the lower edge frequency of
the stop band. In order to obtain correct results, especially
in the case of weak guiding conditions, the guided modes
are not sufficient, and a continuum of radiating waves has
to be taken into account. A P-matrix-based model taking
into account guided modes and the continuum was devel-
oped. This model allowed us to describe successfully spurii
at high frequencies for transversely coupled filters (TCF).
However, several configurations cannot be analyzed with
this model. In particular, for doubly rotated quartz de-
vices [12], [13], the directivity is such that a mode exists
at both edges of the stop band. Higher Q and transverse
modes have been experimentally observed for the lower
edge resonance, but only one resonance with lower Q is
present for the higher edge resonance. It is our interpere-
tation that the lower frequency resonance is guided but
the higher is not.

The drawbacks of our previous model are, first, that
the reflection coefficient used for the P-matrix is a two-
dimensional (2-D) reflection coefficient that assumes an in-
finite aperture. Second, that the mode shapes are assumed
unchanged after reflection. Modes have been suggested to
be reflected only in reflective regions, implying that the
amount of truncation of reflected modes is not negligi-
ble [4]. However, our previous trials using this assumption
were not successful. Our understanding is that the reflec-
tivity difference already was included in the model by the
velocity choice, and that it did not need to be included
twice.

This paper develops a different approach that is still
based on the P-matrix model. The mode and continuum
determination is done without correcting for the reflectiv-
ity effect in the velocities. In other words, for reflective
regions, the velocity is chosen so that the grating period
is equal to half a wavelength for the Bragg frequency, i.e.,
at the center of the stop band. This results in mode fre-
quencies that do not correlate with experimental results.
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In particular, even the number of guided modes very often
is incorrect.

We use this assumption for the determination of modes
and continuum samples. The difference is now we consider
that at each period reflection is occurring only in the re-
flective regions so modes become truncated at each reflec-
tion. Conversely, transmission is considered to be 1 for
a region with no reflectivity. Thus, at each reflection (or
transmission), each mode is converted into a distribution of
all modes. This approach was implemented and compared
successfully to Haus’ results [5] in the case of isotropic ma-
terial as well as to experimental results for resonators on
a doubly rotated quartz cut.

II. Dispersion Curve and Eigen Modes

A. Determination of Modes and Continuum Samples

The first step in the model is to determine guided modes
and continuum samples. We use a procedure already de-
scribed in detail in [11]. We only recall here the basic prin-
ciples.

We consider a symmetric structure comprising 2N + 1
layers. In this first step, all layers are assumed to be homo-
geneous. The slowness curves for all materials are known,
including the imaginary branches [14]–[16]. The classical
parabolic approximation may be used as well as numerical
results from these more sophisticated methods. The ba-
sic assumptions [1] are that the surface wave is accurately
described by a scalar function, and that the wave polariza-
tions are similar in all regions. Under these assumptions,
it is possible to apply a standard theory:

• The wave vector component kx along the propagation
direction is identical for all layers.

• In each internal layer, indexed i, the transverse wave
vector component ky is known from kx through the
slowness curve of the layer, and two opposite determi-
nations of ky are possible for symmetric cuts. Then in
layer i, the mode amplitude has the form:

gi(y) = Ai cos (ky,iy) + Bi sin (ky,iy) . (1)

For the external medium, depending on kx, the trans-
verse component of the wave vector can be imaginary or
real. In the first case, only the determination correspond-
ing to an exponential decrease is kept, and the mode am-
plitude is:

gN+1(y) = c exp (−b |y − yN |) ,

b = |Im (ky,N+1)| ,
(2)

while in the second case both determinations can be kept:

gN+1(y) = c. exp (−jky,N+1 (y − yN))
+ d. exp (jky,N+1 (y − yN )) .

(3)

Keeping both of the two possible opposite determina-
tions of ky,N+1 in (3) corresponds to considering plane

waves propagating in both the +y and the −y directions
for a given kx. This is strictly similar to the standard an-
gular spectrum of waves theory for diffraction [17] in which
both negative and positive ky,N+1 are considered.

The boundary conditions are applied at the interfaces
between two layers. Under our assumptions, g(y) and its
first derivative along y are continuous. Then, depending
on the evanescent or propagative nature of ky in the ex-
ternal material, the solutions are a set of discrete guided
modes or a continuum of waves. By using a general stack
matrix procedure, one can deal with geometries involving
an arbitrary number of layers.

B. Derivation of the Dispersion Curve

In the following, the amplitude of modes is denoted
gn(y). We assume that the mode amplitudes are orthogo-
nal, i.e.:

∞∫
−∞

gk(y)g∗
1(y)dy = 0 if k and l are different. (4)

The same relation is assumed between two continuum
samples as well as between a continuum sample and a
mode. The discrete modes are normalized in order to have
a unit norm. The continuum is sampled with an increment
∆ky, and the samples are normalized to have a norm equal
to

√
∆ky. With this normalization, discrete modes and

continuum samples are processed exactly in the same way.
In the subsequent presentation, the term mode is used for
both guided modes and continuum samples.

Any wave amplitude f(y) can be projected to the mode
base through:

f(y) ∼=
∑

i

fi.gi(y),

fi =
∫

f(y)g∗
i (y).dy.

(5)

The mode orthogonality assumption was verified by nu-
merically checking the convergence of (5).

We examine here the scattering matrix for one grating
period. This matrix relates outgoing wave amplitudes at
the left and the right period boundaries sg and sd (defined
at the center of spaces between two consecutive electrodes)
to the left and right incoming waves amplitudes eg and ed.

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎣ sg1

·
sgN

⎤
⎦

⎡
⎣ sd1

·
sdN

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎣S11

⎤
⎦

⎡
⎣S12

⎤
⎦

⎡
⎣S21

⎤
⎦

⎡
⎣S22

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎣ eg1

·
egN

⎤
⎦

⎡
⎣ ed1

·
edN

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

. (6)

For a symmetric period, the right and left sides are
equivalent so that S22 = S11 and S21 = S12 by reci-
procity. Directive cuts can be modeled simply by adding a
phase term to S11 and the opposite phase term to S22.
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If we consider the i-th mode entering one period, this
mode propagates half a period before it is reflected or
transmitted. Then, the reflected wave amplitude at the
center of the electrode is:

rect(y).gi(y) =
∑

i

Pi,jgj(y),

Pi,j =
∫

rect(y).gi(y).g∗
j (y).dy,

(7)

where rect(y) is a function defined to be equal to unity
in the reflective regions and to zero in the nonreflective
regions. Assuming that reflection results in a grating of
the mode shapes, the reflection and transmission matrices
are given by:

S11i,j = −j.r.Pj,i. exp
(

−j.
ϕi + ϕj

2

)
= S22i,j,

S12i,j = ((t − 1) + δi,j) .Pj,i. exp
(

−j.
ϕi + ϕj

2

)

= S21i,j,

(8)

where r and t are the reflection and transmission coeffi-
cients for one electrode, ϕi is the phase of the i-th mode
for one period, and δi,j is the Kronecker symbol.

From (6), it is straightforward to derive the transfer
matrix relating waves propagating in the right and left
directions at the left boundary to the waves propagating
in the left and right directions at the right boundary:

[
[sg]
[eg]

]
=

[
T11 T12
T21 T22

][
[ed]
[sd]

]
, (9)

T11 =
(
−S11.S12−1S22 + S12

)
,

T12 = S11.S12−1,

T21 = −S12−1S22,

T22 = S12−1.

(10)

By computing the eigenvalues for different frequencies
of the transfer matrix, it is possible to plot the disper-
sion curve obtained with this model. The eigenvectors of
the matrix T give the eigenmodes of the structure (i.e.,
the transverse amplitudes of the waves in the two direc-
tions) that propagate without deformation. These eigen-
modes are found as linear expansions on transverse modes
and continuum samples. Note that the eigenmodes of the
structure resemble those of the paraxial coupling of modes
(COM) model—an amplitude shape for both the wave
propagating to the right and left directions. In general
these two amplitudes are different; however, they are iden-
tical in the stop band.

C. Results for a Simple Isotropic Case

For validation, we start to consider the very simple case
examined by Haus [5]. One reflective layer of width 2W is
placed in an infinite nonreflective medium. The two ma-
terials are considered isotropic. The reflection coefficient

Fig. 1. Dispersion curves for the simple isotropic case. No veloc-
ity difference, grating aperture = 4.86 wavelengths, reflection coef-
ficient = 0.079365 per period. The frequency is normalized to the
Bragg frequency. Letters refer to the mode shapes plotted in Figs. 2
and 3.

is assumed to be proportional to the frequency. For each
frequency, the number of eigenvalues is 2N where N is
the total number of modes and continuum samples. When
visualizing the dispersion curve, it is difficult to distin-
guish between all these values, but it is easy to visual-
ize the different stop bands, corresponding to eigenvalues
with a modulus that is not equal to 1. Fig. 1 shows the
results obtained for a grating of aperture 2W = 4.86 λ0,
r = .079365, having the same velocity in both inside and
outside regions. The eigenvalues are considered to be of
the form exp(−jφ), so that the stop bands correspond to
imaginary values of φ. The dispersion curve is very similar
to the dispersion curve given in Fig. 1 in [5].

In this case, because there is no velocity shift, no guided
modes exist, and our model uses only the continuum sam-
ples. Figs. 2 and 3 show plots of different eigenmodes,
showing a decreasing behavior outside the grating. Inside
the stop band, the amplitude of propagating waves is the
same in both directions. The shapes found here also are
similar to the shapes found by Haus. A good fit also was
obtained for other configurations published by Haus. These
results validate the chosen model.

III. Devices Simulation

A. Device Simulation

In [11], we described in detail our P-matrix-based model
for the analysis of waveguide devices. The principle is to
derive the P-matrix for a single period, taking into ac-
count modes and continuum samples. This P-matrix model
is generalized in the sense that the number of acoustical
ports is no longer just two as is usually the case (left and
right acoustical port), but two times the number NM of
modes and continuum samples. Obviously, the number of
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Fig. 2. Shapes of the symmetrical eigenmodes for the case of Fig. 1.
Letters refer to Fig. 1. Vertical lines are the limits of the grating.

Fig. 3. Shapes of the antisymmetrical eigenmodes for the case of
Fig. 1. The frequency is normalized to the Bragg frequency. Letters
refer to Fig. 1. Vertical lines are the limits of the grating.

electrical ports may be different from 1 or 2. The P-matrix
relates the currents I in the NE electrical ports and the
NM output waves amplitudes at the left boundary sg and
at the right boundary sd to the voltage V and the input
wave amplitudes at the left and right boundaries eg and ed.

⎡
⎣ [Ii=1,NE ]

[sgi=1,NM ]
[sdi=1,NM ]

⎤
⎦ =

⎡
⎣[M11] [M12] [M13]

[M21] [S11] [S12]
[M31] [S21] [S22]

⎤
⎦ ·

⎡
⎣ [Vi=1,NE ]

[egi=1,NM ]
[edi=1,NM ]

⎤
⎦ . (11)

The scattering matrix is derived above, and the admit-
tance matrix and the electroacoustic and acoustoelectric
matrices are derived in [11].

Fig. 4. Measured conductances for the long devices on doubly rotated
quartz. The curves are shifted artificially.

The second step is to compute the P-matrix of the
complete device by cascading the P-matrices of the unit
cells. This operation needs several CPU hours because it
involves large matrices (typically, we use 100 continuum
samples). But there are methods to reduce this time for a
periodic device either by optimizing the stacking by tak-
ing advantage of the repetition of identical sequences or
by working in the eigenmodes basis.

It also is possible to derive the harmonic admittance
Y (γ) of a periodic structure from the P-matrix of a single
period. The principle is to consider that the waves am-
plitudes at the right boundary are equal to the wave am-
plitudes at the left boundary multiplied by a phase term
exp(−j2πγ). Then, it is straightforward to eliminate waves
amplitudes from (11) and to derive Y (γ). In particular,
Y (1/2) is the admittance of an infinite periodic transducer
excited by an alternate potential figure +V/−V .

B. Results

We used our model to analyze synchronous resonators
made on (Y Xwlt)/−20◦/−35◦/+20◦ quartz. This quartz
cut has a very large reflection coefficient compared to ST
quartz while keeping a parabolic temperature dependence
[12], [13]. It also has the property to be directive in the
sense that the phase between reflection and transduction
is 160◦ (under our notations, this phase is 0◦ for ST quartz
and 180◦ for low metal thickness on 128◦ lithium nio-
bate (LiNBO3)). Then, a synchronous resonator made on
this cut exhibits two resonances (neglecting the transverse
modes). The main resonance is at the upper edge of the
stop band, and the second resonance is at the lower edge of
the stop band. Fig. 4 shows the measured conductances for
long devices on this cut at 200 MHz. The metal thickness
is 3800 Å, the period is 8.671 µm, the mark-to-pitch ratio
is 0.6. The devices are synchronous resonators compris-
ing a 200 wavelength transducer and two 10 wavelength
gratings. Devices with acoustic apertures of 10, 20, and
40 λ were built. It is clearly seen on Fig. 4 that the Q
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Fig. 5. Computed slowness curves for the doubly rotated quartz cut.
The slowness curves are shown in busbars and in the grating for both
the lower and upper edge of the stop band.

of the lower resonance is better than the Q of the higher
frequency resonance, which is degraded when the aperture
decreases. For the lower frequency, transverse modes are
obtained, but the Q remains correct when the aperture
decreases. Fig. 5 shows the computed slowness curves for
our experiments. The slowness curve in the grating is com-
puted using oblique wave finite element method/boundary
element method (FEM/BEM) [15]. In the busbars regions,
the real branches as well as the imaginary branches are
computed [16]. The P-matrix parameters (reflection, ve-
locity, etc.) are computed using the 2-D periodic FEM-
BEM [18], [19]. For the grating region, Fig. 5 shows the
slowness curves for the lower and for the upper edges of
the stopband. It is clearly seen on Fig. 5 that the slowness
curve for the upper edge is very close (and a little smaller)
than the slowness curve for the busbars. This results in
diffraction losses for the upper frequency resonance.

We used our model to compute the harmonic admit-
tances Y (1/2) for these three geometries. The slownesses
used are the slownesses shown in Fig. 5. The parabolic
approximation was used, and the power flow angle was
neglected, although it is possible to include it as well as
real slowness curves in our model. Absolutely no fitting
parameter is used.

Fig. 6 shows the computed harmonic conductances. A
good fit is obtained between the measured and computed
data for the position of the modes as well as for the descrip-
tion of the Q degradation due to the aperture. The major
difference between measurement and simulation is the ex-
istence of nonexpected modes in the measured data. It
appears that these modes are antisymmetrical. For exam-
ple, Fig. 7 shows the dispersion curve for antisymmetrical
modes for the 10-wavelength device. The correspondence
in frequency is very good. Similar results are obtained for
the other apertures. The existence of these resonances is
attributed to the non-null power flow angle.

Figs. 8–10 show the same comparison of the measured
and simulated conductances for the same devices. The sim-

Fig. 6. Simulated harmonic conductances. The curves are shifted
artificially, Re[Y (1/2)] is plotted.

Fig. 7. Simulated dispersion curve for the antisymmetrical modes
and a 10 λ aperture.

Fig. 8. Comparison between measured and simulated admittance for
the 10 λ aperture device.



solal et al.: analysis of wave-guiding effect of reflecting grating 1695

Fig. 9. Comparison between measured and simulated admittance for
the 20 λ aperture device.

Fig. 10. Comparison between measured and simulated admittance
for the 40 λ aperture device.

ulations were performed by cascading the P-matrices of the
unit cells. The 100 continuum samples used for these sim-
ulations and the last continuum sample corresponds to a
frequency in the range of 203 MHz. The results are plotted
on a log scale to see a wide dynamic range. The fit is very
good for the shape of the modes and their resonant fre-
quencies. The difference for low levels of conductance (in
the range of 0.01 to 0.1 mS) may be attributed to ohmic
losses not taken into account in our model. This clearly
demonstrates the validity of our model, which allows for
the analysis of transverse modes as well as diffraction losses
in reflective devices.

IV. Conclusions

A new P-matrix-based model has been developed for
the analysis of surface acoustic wave (SAW) grating de-
vices. This model accounts for the different reflectivities
of the regions in the P-matrix as suggested in [4]. How-
ever, correct results were obtained only after choosing for
the gratings the velocity corresponding the center of the
stop band—which gives an incorrect number of modes—
by including the continuum in the model and by using a
fully populated scattering matrix accounting for all possi-
ble conversions at reflections. Then, results very similar to
the paraxial COM were obtained for simple cases.

Our model allows one to predict both transverse modes
as well as diffraction losses, which is not possible with stan-
dard scalar models. This model was used successfully for
resonators on a directive cut of quartz. Slowness curves,
and reflection coefficient were computed directly from ma-
terial constants without any parameter fit.
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[19] P. Ventura, J. M. Hodé, J. Desbois, and M. Solal, “Combined
FEM and Green’s function analysis of periodic SAW structure,
application to the calculation of reflection and scattering param-
eters,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 48,
pp. 1259–1274, Sep. 2001.

Marc Solal (M’95) was born in 1959. He
received the engineer degree from Ecole Na-
tionale Superieure de Physique de Marseille
in 1981, a Docteur Ingénieur diploma in 1983,
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