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Abstract: We study simultaneous photonic and phononic crystal slabs 
created in Z-cut lithium niobate membranes. Bandgaps for guided waves 
are identified using the three-dimensional finite element method (FEM). 
Three lattices are considered: the square, the hexagonal, and the honeycomb 
lattices. We investigate the evolution of band gaps as a function of 
geometrical parameters such as hole radius and membrane thickness. We 
show the existence of dual photonic and phononic bandgaps in the 
triangular lattice for suitable geometrical parameters and specific modal 
symmetries for both the elastic and the electromagnetic fields. 
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1. Introduction 

An artificial periodic structure can exhibit omnidirectional bandgaps, i.e., frequency ranges 
inside which wave propagation is forbidden regardless the direction of propagation. They are 
referred to as complete bandgaps when they apply to all polarizations. This property has been 
studied both for photons [1, 2] and phonons [3–5], in the so-called photonic and phononic 
crystals. Periodic structures presenting simultaneously photonic and phononic complete 
bandgaps are called phoxonic crystals [6]. The design of such structures drives a growing 
interest since they provide promising means of controlling light and sound. Several 
combinations of materials and lattices have been studied in order to demonstrate the 
occurrence of simultaneous bandgaps. 

Maldovan and Thomas [6] have demonstrated the possibility to obtain simultaneous 
bandgaps in a two-dimensional silicon infinite crystal with a square-lattice array of air holes. 
D. Bria et al. [7] further investigated the evolution of bandgaps with the size of the inclusions 
and their simultaneity for periodic structures based on silicon or sapphire. Three dimensional 
structures with a finite depth have also received a great deal of attention, in particular periodic 
structures formed in membranes. The simultaneity of both photonic and phononic bandgaps 
in silicon membranes has been proven recently by two different authors [8, 9]. Related studies 
have also been conducted on the complementary structure: periodic arrays of silicon pillars 
deposited on a silica substrate [10]. In addition, some papers have discussed the possibility of 
enhanced photon/phonon interaction in strip waveguides [11]. 

Lithium Niobate is an appealing material owing to its particularly high acousto-optic, 
electro-optic and piezoelectric properties. It offers ultrafast modulation because of high 
electro-optic coefficients, and wide intrinsic bandwidth [12]. This material has been widely 
used for various applications like electro-optic / acousto-optic modulators and tunable filters. 
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These properties allow one to design integrated optical modulators with direct acoustic wave 
generation using interdigitated transducer [13]. S. Sadat-Saleh et al. [14] have identified 
phoxonic complete bandgaps for in-plane propagation in two-dimensional Z-cut based 
structures (Z-axis normal to the plate), considering the cases of the square, the triangular, and 
the boron nitride lattices. They have also analyzed the bandgap evolution with respect to the 
filling factor. Semi-infinite structures supporting elastic guided wave propagation at the 
surface have also been considered. For phononic crystals, Yudistira et al. [15] have reported 
the possibility to confine surface acoustic waves on finite depth holes in honeycomb lattice; 
complete band gaps for surface acoustic waves is also possible in the case of arrays of pillars 
on a surface [16,17]. For photonic crystals, Burr et al. [18] have studied the confinement of 
electromagnetic waves within a shallow holes structure drilled on a semi-infinite substrate. 
They concluded that in order to avoid leakage to the substrate, high aspect ratio holes are 
required, which still represents a technological challenge that has not been circumvented in 
semi-infinite Lithium Niobate structures. 

In 2009, the use of Lithium Niobate membranes was suggested in order to circumvent 
deep holes issues [19–21]: the experimental feasibility of a photonic crystal microstructure on 
a LiNbO3 free standing membrane has been demonstrated using Ion Beam Enhance Etching 
(IBEE) technology. More recently, a L3 microcavity in Lithium Niobate membrane has been 
reported [22], it offers a remarkable opportunity for the realization of phoxonic devices. 
Finally, J. Dung et al. measured the optical transmission based on Fano resonances [23] in 
LiNbO3 photonic slabs. Because the refractive indices of LiNbO3 are significantly smaller 
than the refractive index of silicon (about 2.2 as compared to about 3.5), the occurrence of 
phoxonic bandgaps in LiNbO3 is still an open question. It is known that the conditions to 
obtain phoxonic bandgaps are quite different in slabs rather than in the 2D infinite structures 
[8]. Moreover, owing to the piezoelectric nature of LiNbO3, the conditions to obtain 
phononic bandgaps are more demanding; also considering the relatively low refractive index 
of the material, the occurrence of photonic band gaps requirements are more stringent [14], 
especially in the case of slabs considered here. Therefore, we present here a first study of 
phoxonic slabs in piezoelectric materials. 

In this article, we report on the theoretical investigation of complete photonic and 
phononic bandgaps in LiNbO3 Z-cut crystal slabs. We examine the possibility of confining 
optic and acoustic waves in membranes with square, hexagonal and honeycomb micro-
structured lattices. More precisely, our purpose is to determine suitable geometrical 
parameters that provide phoxonic bandgaps. We compute the optical and acoustic bandgap 
maps and identify the optimum couples of geometrical parameters (radius, thickness) for 
phoxonic devices. In order to relax constraints on the optimization process, the consideration 
of the symmetry of modes with respect to the mid-plane of the slab is found to be essential. 
Among the numerical methods that are available to compute photonic and phononic 
dispersion curves, we use the finite element method (FEM) that is well suited for mode 
analysis calculation. Also, the mesh layout adaptability, offered by this numerical method, is 
fully adapted to fit the rather complicated geometries we consider. 

2. Model definition 

Following the traditional procedure, we compute the dispersion curves considering one unit-
cell complimented with Bloch-Floquet periodic boundary conditions applied to the lateral 
boundaries. Regarding the top and bottom slab boundary conditions, we have to distinguish 
the photonic and the phononic simulations: as elastic waves do not propagate in air, free 
boundary conditions are applied at the air/solid interfaces; in the case of photonic crystal, 
periodic conditions are applied on top of a thick air domain. Its height is chosen in order to 
trade-off between accuracy and computation time. In practice, a reasonable size for the air 
domain has to be found ensuring convergence of the computation of photonic modes confined 
in the slab. With regards to leaky modes in the light cone, the bottom and top air boundaries 
introduce spurious modes whose number increases with the air thickness [24]. To dissociate 
confined (guided) and leaky modes, we exploit the concept of the light cone defined from the 
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dispersion relation for light in vacuum, ω = c · k with ω the angular frequency and k the 
wavenumber. With k// the wavevector component parallel to the slab/air interface, the inside 
of the light cone is defined by ω > c · k//. Inside the light cone, the normal component k⊥ in the 
air region is real-valued and the optical energy flux of modes is allowed to leak outside of the 
slab. Outside the light cone, k⊥ in the air region becomes complex imaginary and light is 
confined inside the slab [25]. This last case corresponds to total internal reflection at the slab 
interfaces. 

In this paper we use the material parameters of references [26, 27] and as indicated in [26] 
due to the anisotropic nature of lithium niobate, a special attention to the symmetry of the 
material is required. Indeed, the crystallographic symmetry of the host material may limit the 
overall symmetry of the phoxonic crystal. Consequently, the first Brillouin zone path along 
which the band structure is analyzed has to be adapted. In the case of Z-cut LiNbO3, 
however, the relevant slowness curves (illustrated in Fig. 1(a)) display symmetries of the 
square, the hexagonal, and the honeycomb lattice (depicted in Fig. 1(b)-1(d) respectively). As 
a consequence, one can compute phononic dispersion curves following the standard paths i.e., 
along the irreducible Brillouin zone. Explicitly, dispersion curves were computed using the 
standard unit-cells presented in Fig. 1 with dashed lines and following the irreducible 
Brillouin zone paths around the respective shaded areas of the square, the hexagonal, and the 
honeycomb lattices. 

The choice of Z-cut lithium niobate leads to an isotropic-like optical character for 
wavevectors k laying in the (X,Y) plane. Indeed, modes polarized within the (X,Y) plane 
experience only the ordinary refractive index whilst modes polarized along the optical axis Z 
are subject to the extraordinary refractive index. As a consequence, the symmetry of photonic 
crystal structures in Z-cut LiNbO3 is not altered by material anisotropy and the dispersion 
curves can be displayed along the irreducible Brillouin zones traditionally used for isotropic 
media. 

 

Fig. 1. (a) Slowness curves of Z-cut LiNbO3. The blue, the black, and the red solid lines 
represent the longitudinal, the in-plane, and the out-of-plane shear inverse velocities, 
respectively. (b) Direct and reciprocal square lattice, and corresponding first irreducible 
Brillouin zone. The unit cell is represented with dashed line and the irreducible zone is shaded. 
(c) Triangular lattice and corresponding irreducible Brillouin zone. (d) Honeycomb lattice and 
corresponding irreducible Brillouin zone. 

Likewise, one can take advantage of the symmetry of the geometrical structure and 
impose a symmetry plane midway along the membrane thickness. This allows to reduce the 
size of the model (save computer power and memory) and to separate the computation into 
even and odd modes for both photonic and phononic crystals. 
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3. Results and discussion 

In what follows, we aim at determining photonic and phononic complete bandgaps for the 
square, the honeycomb, and the triangular lattices. The considered geometrical parameters are 
the inclusion radius r, the nearest neighbor distance a, and the membrane thickness h. 
Computations are performed on a suitable range of relative thicknesses h/a varying from 0.4 
up to 0.8, and for relative radius r/a varying from 0.25 up to 0.49, leading to a reasonable set 
of graphs for a good overview of the evolution of bandgaps. Results are presented as a 
function of the acoustic and optical reduced frequencies f·a and ω·a/2π·c respectively, where c 
is the velocity of light in vacuum. 

Figures 2, 3 and, 4 display the evolution of the bandgaps versus the ratio r/a for five 
relative thicknesses h/a. Figure 5 depicts a typical band structure, while Fig. 6 presents the 
results obtained for the corresponding 2D structures; it enables one to foresee the tendency 
when h/a tends towards infinity. In the following, we discuss the impact of the different 
lattices on the band structures and point out the occurrence of simultaneous acoustic and optic 
forbidden bands. 

Figure 2 presents the projected bandgaps of a square lattice LiNbO3 phoxonic crystal slab. 
Phononic and photonic bandgap evolutions are displayed on the top and the bottom of the 
figure, respectively. The unit-cell geometries are inserted on the bottom of each graph. The 
blue and the red colors indicate bandgaps for even and odd modes, respectively, for both 
photonic and phononic properties of the crystal; the pink color represents the complete 
bandgaps; the black horizontal solid lines represent the reduced frequencies (1/2 and 1/√2) at 
the light cone X and M symmetry points respectively. 

We can notice at first glance that even bandgaps are predominant in the phononic 
behavior of the structure and are relatively unaffected by the thickness parameter. Two odd 
bandgaps exist: the first one is situated around f·a = 2250 for h/a = 0.4 and get thinner as the 
membrane thickness increases. The second one appears at higher frequency and gets wider as 
the membrane thickness increases. The anti-symmetric gap is more sensitive to the thickness 
of the plate because some of the dispersion curves of odd symmetry, which have a 
predominant out-of-plane vibration, are more sensitive to the thickness of the plate than other 
branches and define the position and width of the band gap [28]. For photonic modes, the 
even bandgaps are predominant too. The even and odd bandgaps get thinner and split in 
numerous bandgaps for higher membrane thicknesses. The even modes mid-gap frequencies 
are lowering down with increasing thickness. Only the lowest frequency band presents a non 
leaky omnidirectional character as it lies under the reduced frequency limit of 1/2. 

Finally, for any given normalized radius r/a, there is no photonic and phononic bandgaps 
at the same time. The phononic bandgaps appear for the higher range of relative inclusions 
radius parameters, whereas the photonic bandgaps reach the upper limit for non leaky modes. 
This observation holds whatever the value of h/a is, although a dim coincidence of the 
bandgaps appears at h/a = 0.7. As a consequence, we can deduce that the square lattice does 
not allow simultaneous bandgaps for lithium niobate membranes. 
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Fig. 2. Evolution of optical (bottom row) and acoustic (top row) bandgaps for the square lattice 
as a function of r/a, for different values of h/a; blue: symmetric (even) modes bandgaps, red 
anti-symmetric (odd) modes bandgaps, pink: complete bandgaps; black solid lines: reduced 
frequencies (1/2 and 1/√2) at the light cone X and M symmetry points respectively. 

An analogous study was conducted for the honeycomb lattice. Figure 3 shows that the 
even phononic bandgap is predominant and is again practically not affected by the slab 
thickness ratio, similarly to the square lattice case. There is one unique odd bandgap which is 
slightly widening and rising up with the thickness. These gaps are wider than in the square 
lattice case. 

Considering the photonic crystal behavior, the even bandgap is predominant. For both 
symmetries, mid-gap frequencies are dropping down for higher thicknesses; their lower limit 
reaches the normalized frequency value 0.33, which corresponds to the upper limit for a non 
leaky omnidirectional gap for the honeycomb lattice. Only a few non leaky modes exist for 
geometrical parameters where the phononic bandgaps are too thin to be exploitable thus no 
simultaneous bandgaps appear. 
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Fig. 3. Evolution of optical (bottom row) and acoustic (top row) bandgaps for the honeycomb 
lattice as a function of r/a, for different values of h/a; blue: symmetric (even) modes bandgaps, 
red anti-symmetric (odd) modes bandgaps, pink: complete bandgaps; black solid lines: reduced 
frequencies (1/3 and 2/3√3) at the light cone M and K symmetry points respectively. 

Finally, the triangular (hexagonal) lattice results are presented in Fig. 4. As compared to 
the square and the honeycomb lattices, the structure presents thinner phononic bandgaps 
which can be differentiated into thin and moderately thick bandgaps. The thin ones are very 
narrow and are located around f·a = 1000 and f·a = 3000 for the even and odd modes 
respectively, yet they are too thin to be good candidates for acoustical confinement. The 
thicker ones are odd bandgaps, they appear for f·a = 3000 for a low radius up to a thickness 
ratio h/a of 0.6. However, these bandgaps show a non-continuous behavior with increasing 
thicknesses: the moderate bandgaps vanish for reduced thickness higher than 0.6. 

As before, there is a predominance of the even photonic bandgaps. Both odd and even 
bandgap frequencies are lowering down as the membrane thickness increases. Bandgaps, 
especially the odd ones, split with growing membrane thicknesses. One can notice that one 
even bandgap is under the reduced frequency of 1/√3 which corresponds to the non leaky 
omnidirectional gap upper frequency limit. Hence, the hexagonal lattice presents photonic 
bandgaps which extend over a large range of geometrical parameters. 

This allows designing a phoxonic structure which takes advantage of the moderately thick 
phononic odd bandgaps. For instance, the normalized radius range [0.25-0.33] and the 
normalized thickness h/a = 0.6 give simultaneous bandgaps for odd phononic and even 
photonic modes. As an illustrative example, we present in Fig. 5 the dispersion curves 
corresponding to the r/a value of 0.28 which gives an appreciable bandwidth for both waves: 
a phononic fractional bandwidth of 9.21% centered at the reduced frequency f.a = 2811 m/s, 
together with a photonic fractional bandwidth of 11.8% centered at an optical reduced 
frequency of 0.4021. Assuming the telecommunication wavelength of 1550 nm, the 
geometrical parameters are: a = 623 nm, h = 374 nm, and r = 174.5 nm. The corresponding 
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acoustic frequency is 4.51 GHz. These parameters are in good agreement with technological 
feasibility. Polarization dependent structures are still of interest, for polarization purpose as an 
example [29,30]. 

 

Fig. 4. Evolution of optical (bottom row) and acoustic (top row) bandgaps for the triangular 
lattice as a function of r/a, for different values of h/a; blue: symmetric (even) modes bandgaps, 
red anti-symmetric (odd) modes bandgaps, pink: complete bandgaps; black solid lines: reduced 
frequencies (1/√3 and 2/3) at the light cone M and K symmetry points respectively. 
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Fig. 5. Band structure for the triangular lattice for r/a = 0.28, for different values of h/a = 0.6. 
Left: anti-symmetric phononic modes; right symmetric photonic modes, the solid line 
represents the light cone. 

Figure 6 represents the evolution of 2D infinite phononic bandgaps as a function of the 
normalized radius for the square lattice (Fig. 6(a)), the honeycomb lattice (Fig. 6(b)), and the 
hexagonal lattice (Fig. 6(c)). The blue and red bandgaps are the in-plane and out-of-plane 
bandgaps. As compared to slab (3D) calculations, we can notice a similar shape between the 
2D in-plane bandgaps and 3D even phononic bandgaps for all lattices. Even bandgap reduced 
frequencies are relatively constant with respect to the membrane thickness. In contrast, the 
behavior of the 3D odd bandgap and the out-of-plane 2D bandgaps are quite dissimilar. The 
computed 3D odd bandgaps are thinner than even bandgaps and are strongly dependent on the 
membrane thickness. 

Furthermore, by direct comparison with reference [14], optical bandgaps computed for the 
2D model confirm the tendency observed with 3D computations when the thickness is 
increased, especially for the hexagonal lattice. 

 

Fig. 6. Evolution of acoustic bandgaps for the square (a), the honeycomb (b), and the 
hexagonal (c) lattices as a function of the normalized radius. The blue, the red and the pink 
colour bandgaps represent the in-plane polarisation, the out-of-plane polarization and the 
complete bandgaps respectively. 

4. Conclusion 

The opening of simultaneous photonic and phononic bandgaps in lithium niobate slabs has 
been theoretically studied using the finite element method. The square, the triangular and the 
honeycomb lattices have been investigated for a set of geometrical parameters ranging from 
0.4 to 0.8 for the relative slab thickness and from 0.25 to 0.5 for the air inclusion relative 
radius. The square lattice presents moderate bandgaps for photons and phonons but no 
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convincing coincidence is found with respect to the geometrical parameters. The honeycomb 
lattice appears to be the one auguring the wider phononic bandgaps, although no 
omnidirectional photonic bandgap is found outside the light cone. Finally, it is found that the 
hexagonal (or triangular) lattice supports phoxonic bandgaps: it promotes simultaneously the 
widest photonic bandgaps for the even modes and provide at the same time odd phononic 
bandgaps. The geometrical parameters are identified around reduced thickness of 0.6 and 
reduced inclusion radius of 0.3; considering telecommunication optical wavelength, the 
phonon frequencies fall in the GHz range. 

These outcomes will promote the design of phoxonic LiNbO3 slab devices for 
experimental investigations. 
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