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Scattering matrix method for modeling acoustic waves in piezoelectric,
fluid, and metallic multilayers
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Many ultrasonic devices, among which are surface and bulk acoustic wave devices and ultrasonic
transducers, are based on multilayers of heterogeneous materials, i.e., piezoelectrics, dielectrics,
metals, and conducting or insulating fluids. We introduce metal and fluid layers and half spaces into
a numerically stable scattering matrix model originally proposed for solving the problem of plane
wave propagation in piezoelectric and dielectric multilayers. The method is stable for arbitrary
thicknesses of the layers. We discuss how the surface Green’s functions can be computed for an
arbitrary stack of homogeneous materials with plane interfaces. Aditionnally, we set up a
backscattering algorithm to compute the distribution of electromechanical fields at any point in the
stack. The model is assessed by considering some well-known examples. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1621053#
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I. INTRODUCTION

There are many situations in ultrasonics in which one
dealing with multilayers of heterogeneous materials. For
stance, surface acoustic wave and bulk acoustic wave
vices, such as film bulk acoustic resonators, rely on the
citation of a piezoelectric substrate or of a piezoelectric st
by metallic electrodes. They can operate in air, which can
modeled as an insulating fluid, or in some special case
water, which is usually considered a conducting fluid. Ult
sonic transducers also require a combination of piezoelec
insulating, and metallic materials, and often operate in flu
In the very common case that the interfaces are plane and
materials are homogeneous inside each layer, it is prac
and efficient to solve the problem of plane wave propaga
in the multilayer. Specifically, from this spectral domain a
proach the Green’s function, surface effective permittivity,
admittance can be obtained. The purpose of this work i
present a numerically stable scattering matrix method s
ing the plane wave propagation problem in heterogene
multilayers of piezoelectric, fluid, and metallic materials.

Fahmy and Adler have proposed a model based o
transfer matrix approach1,2 to solve the plane wave propag
tion problem in piezoelectric multilayers, including diele
trics as a subcase. The plane wave solution of the prop
tion problem is described as the superposition of eight pa
waves in each layer. The global plane wave solutions i
stack of materials are obtained by transferring boundary c
ditions from one interface to the other and then solving
linear system. The advantage over previous methods, suc
the global matrix method~see, e.g., Ref. 3, for a review!, is
that the global linear system remains of constant size for
number of layers. Although very powerful, this approach s
fers from numerical instabilities when the thicknesses of
layers or the frequency become too high.4,5 When expressing
electromechanical fields at an interface as a function of fie
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at the opposite interface of the same layer, one need
calculate exponentials which for inhomogeneous par
waves can become either very large or very small. Wh
mixing these terms, numerical underflows can occur wh
the decreasing terms get lost. Recently, independently
nearly simultaneously, Pastureaudet al.4 and Tan5 have pro-
posed a stable solution based on the use of scattering m
ces instead of transfer matrices. However, all these meth
currently apply only to piezoelectric or dielectric layers.

In this article, we extend the scattering matrix method
metals, so that the finite width of electrodes included
multilayer structures can be taken into account, and also
ids, either insulating like air, or conducting like water.
Sec. II, after a short review of the so-called Fahmy–Ad
formalism for piezoelectric and dielectric layers, we discu
how metal and fluid layers can also be described by a sim
formalism. In Sec. III, we give an overview of the gener
scattering matrix algorithm presented in Ref. 4, and we
tend it to metal and fluid materials. In Sec. IV, the compu
tion of Green’s functions is outlined and illustrated with th
example of a structure involving piezoelectric, metal, a
fluid layers. In Sec. V, it is shown how physical quantities
interest, such as displacements, stresses, electric pote
and displacement, can be determined in the whole stac
materials by a simple backscattering algorithm. An exam
is given to illustrate the interest of these calculations.

II. PLANE WAVE PROPAGATION

We consider the general case of a multilayer structure
infinite extent in thex1 and x3 directions, assuming axe
conventions given in Fig. 1. We refer to each layer throu
its indexn ranging from 1 for the bottom-most layer toN for
the topmost layer. Each layer is assumed to be homogen
and of constant thicknesstn .

We first focus on the problem of finding the character
tics of monochromatic plane waves propagating in a lay
Assuming a propagation along the horizontal plane w
3 © 2003 American Institute of Physics
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6924 J. Appl. Phys., Vol. 94, No. 10, 15 November 2003 Reinhardt et al.
slownessess1 ands3 , all physical quantities have a depe
dency of the form exp@ jv(t2s1x12s2x22s3x3)#.

A. Fahmy–Adler solution

Fahmy and Adler2 have proposed an elegant way
solving the propagation problem in a homogeneous pie
electric layer. They start from the equations
piezoelectricity:6

Ti j 5ci jkl Skl2eli j El , ~1!

Di5eiklSkl1e i j Ej , ~2!

whereci jkl , eli j , ande i j are, respectively, the components
the elastic, piezoelectric, and dielectric tensors, whileTi j and
Skl are the components of the stress and strain tensors,
Di and Ej are the components of the electric displacem
and field, respectively. The strain and electric field can
related to the mechanical displacementsui and the electric
potentialf by the relations

Skl5
1

2 S ]uk

]xl
1

]ul

]xk
D , ~3!

El52
]f

]xl
. ~4!

Equation~4! is a consequence of the quasistatic approxim
tion. Assuming harmonic time and space dependences,
~1!–~4! become

Ti j 52 j vsl~ci jkl uk1eli j f!, ~5!

Di52 j vsl~eikluk2e i l f!. ~6!

For convenience of notation, we introduce vectors
generalized displacements and stresses:

u5~u1 u2 u3 f!T, ~7!

t i5~t i1 t i2 t i3 Di !
T, ~8!

FIG. 1. Definition of a multilayered structure.
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with t i j 52Ti j / j v andDi5Di / j v. These vectors allow us
to rewrite Eqs.~5! and ~6! using matrix relations

t i5~s1Ai11s2Ai21s3Ai3!u, ~9!

where theAil matrices are functions of the material co
stants:

Ail 5S ci11l ci12l ci13l eli 1

ci21l ci22l ci23l eli 2

ci31l ci32l ci33l eli 3

ei1l ei2l ei3l 2e i l

D . ~10!

Using the symmetry relations of material tensors, it is p
sible to show that

Ail 5Ali
T . ~11!

Newton’s equation and Poisson’s law in the quasista
approximation can be written as

]Ti j

]xi
5r

]v j

]t
, ~12!

]Di

]xi
50, ~13!

where i , j 51,2, and 3;v j5]uj /]t is the particle velocity;
andr is the mass density of the medium. Using the gene
ized vectors and the harmonic time and space depende
these equations can be reduced to a single matrix relatio

%u5s1t11s2t21s3t3 , ~14!

in which matrix% has the form

%5S r 0 0 0

0 r 0 0

0 0 r 0

0 0 0 0

D . ~15!

At this stage, we expresst1 and t3 as functions oft2

andu. This is motivated by the fact that the last two vecto
are continuous across an interface between two media
that solutions in two adjacent layers can be related. It is t
possible to introduce the state vector

h5~u1 u2 u3 f t21 t22 t23 D2!T. ~16!

After some tedious algebra, it is possible to show thath is a
solution inside thenth layer of the eigenvalue problem

s2,nh5Mnh, ~17!

in which the 838 matrix Mn is given by

Mn5S Mn,11 Mn,12

Mn,21 Mn,22
D , ~18!

where

Mn,1152A22
21~s1A211s3A23!, ~19!

Mn,125A22
21 , ~20!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Mn,2152s1
2~A112A12A22

21A21!2s3
2~A332A32A22

21A23!

2s1s3~A131A312A12A22
21A232A32A22

21A21!

1%, ~21!

Mn,2252~s1A121s3A32!A22
21 . ~22!

The matrixMn depends on the slownessess1 ands2 and on
the material properties. As a consequence, the slowne
s2,n

(m) of the eight partial waves can be computed as the eig
values of matrixMn , while the corresponding eigenvecto
Fn

(m) yield their respective polarizations. Solutions for E
~17! can be written in the form

h5FnDn~x2!an , ~23!

with Dn(x2)5diag@exp(2vs2,n
(m)x2)# a diagonal matrix hold-

ing thex2 dependence andan the vector of the amplitudes o
the partial waves in thenth layer.

Using the same basic equations, Peachet al.7 arrive at
the generalized eigenproblem

Anh5s2Bnh. ~24!

As in this expression the 838 matrixBn can be inverted, Eq
~24! is equivalent to Eq.~17!. The two approaches lead to th
same results.

As can be seen from Eq.~10!, matricesAil remain well
conditioned even if the components of the piezoelectric t
sor are zero. For this reason, simple dielectric material
also be treated using this model. In the following, ‘‘piez
electric’’ will qualify piezoelectric as well as dielectric ma
terials.

B. Case of metal layers

In this work, we assume perfectly conducting meta
Furthermore, we assume that metal layers are grounded
that the electric potential vanishes on their surfaces. Acou
propagation inside a metal layer is not coupled to elec
magnetic fields. For this reason, the only state equation
can be used for a metal is Hooke’s law:

Ti j 5ci jkl Skl , ~25!

whereas only Newton’s law in Eq.~12! is used as the equi
librium equation. Despite these differences, the problem
mains the same as for a piezoelectric material except tha
electric components must be removed from the general
stress and displacement vectors. For this reason, and
Eqs. ~9! and ~14!, the dimension of theMn matrix shrinks
from eight to six. Physically speaking, only six purely acou
tic partial waves need to be considered.

In addition, the electric displacement is not continuo
across an interface between an insulating and a conduc
layer. A spatial charge density must then appear at the in
face, which equals in modulus the electric displacemen
the insulating side of the interface.

C. Case of fluid layers

We are considering perfect fluids that are mechanic
isotropic without any viscous effects. Since no electrom
chanical coupling exists in either conducting or insulati
Downloaded 03 Dec 2003 to 195.83.19.253. Redistribution subject to A
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fluids, the mechanical and electrical problems can be trea
independently. We first consider conducting fluids, in whi
no electric components are used, as is the case of metals
then discuss insulating fluids.

Under the assumptions we have made, the elastic te
has only one independent component,c,8 so that

ci j 5S cI3 03

03 03
D . ~26!

The discussion regarding the calculation ofMn is the same
as in the case of a metal layer, with the difference that it c
be calculated analytically, since the elastic tensor is the o
tensor required and has a very simple expression. It is eas
show thatt21 and t23 vanish identically. The state vecto
then reduces toh5(u1 ,u2 ,u3 ,t22)

T and the waves slow-
nesses are found by solving the secular equation

uMn2s2I 4u5s2
2S s1

21s2
21s3

22
r

cD50, ~27!

wherer is the fluid’s mass density.
Equation ~27! has a degenerate zero root, that cor

sponds to two compressive modes in the (x1 ,x3) plane. As
they are homogeneous in the thickness of the layer and
not radiate energy in another layer, we do not consider th
in the following. The two other eigenvalues correspond
modes that are either propagating or evanescent in thex2

direction. Their exact type depends on the characteri
slownesssp5Ar/c. ~i! If s1

21s3
2,sp

2 , then the two eigen-
values are real and of opposite sign. The corresponding
tial waves are longitudinal and propagating in opposite
rections. We will refer to the upward propagating part
wave as ‘‘incident’’ and to the other as ‘‘reflected.’’~ii ! If
s1

21s3
2.sp

2 , then the partial waves are inhomogeneous.
compatibility, we will use the incident and reflected denom
nations following the partial wave selection rule given ne
in Sec. III.

Whatever the eigenvalue, the associated eigenvecto
ways assumes the form

u15
s1

s2
u2 ,

u35
s3

s2
u2 , ~28!

t225
r

s2
u2 .

This shows that only one component of the displacem
vector is, indeed, independent. In view of this, we reduce
state vector toh5(u2 ,t22)

T and theFn matrix reduces to
dimension 2. Table I gives the expressions for the eigen
ues and theFn matrix for a conducting fluid.

For an insulating fluid, the electrical properties of th
layer must be also considered. Therefore, the state vect
expressed ash5(u2 ,f,t22,D2)T. The fluid is assumed elec
trically isotropic so that only one dielectric constante is
needed to describe its electrical properties. In the quasis
approximation, Poisson’s Eq.~13! reduces to the relation
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Downloaded 03 D
TABLE I. Slownesses and polarization matrices for conducting fluids.sp is the slowness of the longitudina
mode in the fluid,s1 ands3 are the surface slownesses in thex1 andx3 directions,r is the fluid’s mass density,
andF is the Fahmy matrix describing the polarizations of partial waves. Also,s25s1

21s3
2.

s2,sp
2 : propagating partial wavess2.sp

2 : inhomogeneous partial waves

Incident partial wave slowness s25Asp
22s2 s25 jAs22sp

2

Reflected partial wave slowness s252Asp
22s2 s252 jAs22sp

2

F matrix
F5Sus2u 2us2u

r r
D F5S jus2u 2jus2u

r r
D
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v2e~s1
21s2

21s3
2!f50. ~29!

Then, we obtain that two electrostatic partial waves ex
with slownessess256 jAs1

21s3
2, which correspond to eva

nescent waves. The two electrostatic partial waves are in
pendent of the two acoustic partial waves, which are ide
cal to the two acoustic partial waves for a conducting flu
with the same mass density and independent elastic cons
As in the case of purely acoustic partial waves, we refe
one of them as incident and to the other as reflected. F
the Poisson relation we obtain the Fahmy matrix, which
explicitely shown in Table II.

III. SCATTERING MATRIX ALGORITHM

In the previous section, we have shown how to descr
fields in a multilayer structure in terms of a superposition
partial waves whose slownesses and polarizations are
tained from the material’s constants. The aim of the scat
ing matrix algorithm is to link the behavior of all layer
together in order to obtain the electromechanical respons
the whole stratified structure. In the original scattering ma
approach,4,5 only interfaces between piezoelectric materi
were considered. In this work, we consider interfaces
tween materials of different types, which allows us to stu
mode conversions at the interfaces.

A. Scattering matrix formulation

It is possible to demonstrate that because of the sym
tries of material tensors the eigenvalues of theMn matrix are
found by pairs of conjugate complex or opposite real value7

In case the imaginary part of the eigenvalue is not zero
ec 2003 to 195.83.19.253. Redistribution subject to A
t,

e-
i-

nt.
o
m
s

e
f
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of
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y

e-

.
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sign indicates whether the inhomogeneous partial wave
increasing or decreasing with depth inside the layer.

In the scattering method, it is necessary to sort par
waves according to whether they are incident or reflect
The partial wave selection rule used has, for instance, b
described in Refs. 4 and 7. Classification is performed us
the following rules. ~i! Inhomogeneous partial waves a
termed reflected if they are evanescent in the mediu
whereas they are termed incident if they are growing ex
nentially with depth.~ii ! For propagating waves, power i
radiated through the interfaces. The direction in which rad
tion occurs is given by the sign of the vertical component
the Poynting vector defined by

P252
]ui

]t
T2,i1f

]D2

]t
5

v2

2
Re~u* Tt2!. ~30!

Then, if P2.0, the partial wave is termed reflected, while
P2,0 it is termed incident. In the rest of this article, we w
use this rule and add the superscript (1) for incident partial
waves and the superscript (2) for reflected ones. Note tha
the partial mode selection rule has already been applie
fluids in Tables I and II. A graphical representation of t
classification rule is shown in Fig. 2.

Once partial waves have been sorted, theFn , and Dn

matrices andan vector are reorganized accordingly. The
Eq. ~23! can be rewritten by introducing the auxiliary vect
variablegn defined by
TABLE II. Slownesses and polarization matrices for insulating fluids.e is the fluid’s electric permittivity. Other
definitions as in Table I.

F matrix

Propagating acoustic partial waves

F5SAsp
22s2 0 2Asp

22s2 0

0 1 0 1

r 0 r 0

0 j es 0 2 j es

D
Inhomogeneous acoustic partial waves

F5S jAs22sp
2 0 2 jAs22sp

2 0

0 1 0 1

r 0 r 0

0 j es 0 2 j es

D

IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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gn~x2!5Fn
21h~x2!5Dn~x2!an

5S Dn
(1)~x2! 0

0 Dn
(2)~x2!

D S an
(1)

an
(2)D . ~31!

Here, incident partial waves are stored in the first half of
matrices and vectors, whereas the other half contains
reflected partial waves. With this classification, it is possi
to consider independently the restrictions ofgn to the inci-
dent or reflected partial waves, that is,gn

(1)5Dn
(1)(x2)an

(1)

andgn
(2)5Dn

(2)(x2)an
(2) respectively.

gn can be expressed as a function ofgn
(1) only by intro-

ducing a reflexion matrixRn(x) defined as

gn
(2)~x2!5Rn~x2!gn

(1)~x2!. ~32!

See Sec. III B for a definition of reflection matrices. The
fore, we have

gn~x2!5S I p

Rn~x2! Dgn
(1)~x2!, ~33!

wherep51,2,3, or 4 according to the material type.p is the
dimension of the reflection matrix~see Table III!. Note that
gn(x2) is of dimension 2p. This shows that the problem ca
be solved by considering incident waves only.

As can be seen from Eq.~32!, the reflection matrix is
defined at any positionx2 inside a layer. However, it is only
useful to considerRn

t at the top andRn
b at the bottom of a

given layer in the calculations.

B. Boundary conditions

The first step of the scattering matrix algorithm is to fi
the reflection matrices at the bottom of the stack. For this
is possible to assume either a mechanical or an elect
loading. For the sake of simplicity, we only consider he
two specific cases, either a semi-infinite substrate or a
bottom surface in a vacuum. The case of a metalized pie
electric bottom surface can always be treated by addin
vanishingly thin metal layer, which is itself mechanical
free.

If the first layer is a semi-infinite substrate, then it can
assumed that no reflection occurs so that

FIG. 2. Representation of incident and reflected waves relative to the bo
surface of a layer.

TABLE III. Dimension p of operators and reflexion matrices.

Material type Dimension of the problem

Piezoelectric 4
Metal 3
Insulating fluid 2
Conducting fluid 1
Downloaded 03 Dec 2003 to 195.83.19.253. Redistribution subject to A
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R1
b50p , ~34!

where 0p is the square matrix of dimensionp whose ele-
ments are all zero.

For a plate, the bottom surface is supposed to be st
free and with no electric charge density. This is equivalen
zeroing the lower half of the state vector, whatever the ty
of layer considered. Then,

g1~X0!5F1
21S I p

0p
Du5S A

BDu, ~35!

whereI p is the identity matrix of dimensionp, A andB are
p3p matrices, andu is an arbitrary vector. From Eq.~33! it
then appears that

R1
b5BA21. ~36!

If the first layer is an insulating material the electr
behavior of a vacuum under the structure must be taken
account. As was discussed in Sec. II C, a consequenc
Poisson’s equation in a vacuum is that the relation betw
normalized electric displacement and electric potential un
the structure is

D 2
(vacuum)5 j e0usuf, where usu5As1

21s3
2, ~37!

so thatF1 in Eq. ~35! must be modified according to the ru

F2p,i←F2p,i2 j e0usuFp,i for i 51¯p. ~38!

It can be noticed that all the content of this subsection
formally similar to what was described in Ref. 4; only th
dimension of the matrices involved depends on the type
material considered.

C. Transfer of a reflection matrix

Let us denotex2 and x28 two positions inside layern.
From Eqs.~31! and ~32! it can be written

gn
(2)~x28!5Dn

(2)~x282x2!gn
(2)~x2!

5Dn
(2)~x282x2!Rn~x2!Dn

(1)~x22x28!gn
(1)~x28!,

~39!

that is,

Rn~x28!5Dn
(2)~x282x2!Rn~x2!Dn

(1)~x22x28!. ~40!

Equation~40! shows how a reflection matrix can be tran
ferred from one point to another within the same layer. It
especially useful for transferring from the bottom to the t
of the layer, according to

Rn
t 5Dn

(2)~xn2xn21!Rn
bDn

(1)~xn212xn!. ~41!

Once again, this derivation is formally similar to wh
was written in Ref. 4 for piezoelectric layers, but it can
now used for any type of material. As the moduli of a
nonzero components ofDn

(2)(xn2xn21) and Dn
(1)(xn21

2xn) involved in Eq.~41! are all smaller than 1, there is n
exponential increase of terms of the reflexion matrix. T
ensures that the computation of reflexion matrices rema
stable whatever the number of layers and their thickness

m

IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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D. Mode conversions between two layers

We are now considering the interface between layern
andn11. We assume we have been able to calculateRn

t and
we want to determineRn11

b . By noting Dp5p(n11)
2p(n), the difference between the dimensions of the t
material types given by Table III, we have to consider th
possible cases.

If Dp50, then the interface is between two materials
the same type. It is then possible to write that the state ve
is continuous across the interface, so that

gn11~Xn!5Fn11
21 FnS I p

Rn
t Dgn

(1)~Xn!5S A
BDgn

(1)~Xn!. ~42!

If Dp.0, then the reflection matrixRn11
b to be deter-

mined is of a dimension higher than the known reflect
matrix Rn

t . Therefore, the continuity of the state vector ca
not be written directly, as the linear system it would lead
would not be well conditioned. To equilibrate the syste
additional variables must be introduced, i.e.,~i! the electric
surface charge densityq that can accumulate at the bounda
between conducting and insulating layers and~ii ! the lateral
surface displacementsu1 andu3 at an interface between flui
and solid layers. Doing so, the relations given in the th
column of Table IV, lines 2–5, are obtained. These are of
same type as Eq.~42!.

If Dp,0, then the reflection matrixRn11
b to be deter-

mined is of a dimension lower than the known reflecti
matrix Rn

t . Continuity relations cannot be written directly a
all components of the state vector in the lower layer are
independent. This is emphasized by the fact that so
boundary conditions add supplementary relations to the
tem, i.e.,~i! the electrical potential vanishes at the interfa
between an insulating and a conductive layer, as it is
sumed that all conductive layers are connected to grou
and ~ii ! the shear stressest21 andt23 vanish at the interface
between a fluid and a solid layer since fluids are suppo
ideal. Each of these conditions can be written in the form

(
j 51

p

Mk jz j50, ~43!

wherek is the index of the line affected by the suppleme
tary boundary condition,

M5FnS I p

Rn
t D , ~44!

and wherez equalsgn
(1) or one of its already reduced form

It is then possible to express one of the components oz,
e.g.,z j 0

, as a function of the other components as

z j 0
52 (

j 51,j Þ j 0

p
Mk, j

M i , j 0

z j . ~45!

Defining z̃ as the vector obtained by removing compone
z j 0

from z, the relationz5Cz̃ holds, where the pivot matrix
C is defined by

Ci , j5d i , j ,1< j , j 0 ,
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Cj 0 , j52
Mi , j

M i , j 0

, ~46!

Ci , j5d i , j 11 , j 0, j <p.

Final expressions for the continuity relation are given in t
third column of Table IV, lines 6–10, and are again of t
same type as Eq.~42!.

In all cases it can be concluded that

Rn11
b 5BA21. ~47!

This reflexion matrix can then be transferred as describe
Sec. III C to obtainRn11

t , which will then be used to com
pute Rn12

b , and so on, until all reflexion matrices are o
tained.

E. Example

As an example of a reflexion matrix calculation let
consider a semi-infinite substrate made of metal~for example
aluminum! covered with a half space of water. We focus
the reflexion coefficient of the longitudinal wave in water
the interface between the two media.

As is well known, at small incidence the incident wav
splits into a reflected wave propagating back to the liq
medium, and two transmitted waves into the solid, one o
longitudinal polarization and the other of a shear polari
tion. When the incidence increases and the longitudinal c
cal angle in aluminum is reached, transmitted longitudi
waves are traveling along the surface and are not transm
into the solid medium. After the shear critical angle in al
minum there is always total reflection. For a slightly larg
angle, there is a sharp phase shift caused by surface w
getting excited at this incidence. All these phenomena can
observed in Fig. 4, which has been calculated assuminu i

5tan21(s1 /s2) and with conventions given in Fig. 3. Resul
in Fig. 4 agree closely with those that can be found in
literature~see e.g., Ref. 9!.

FIG. 3. Conventions for studying the reflection at a fluid/metal interfac
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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TABLE IV. Expressions for calculating theA and B matrices involved in Eq.~47! for each interface type. In these expressions, the projection operatorL restricts a
2p(n)-component state vector in layern to its 2p(n11) components that are continuous across the interface with layern11; L has dimension 2p(n
11)32p(n) and it is assumed that 2p(n11),2p(n). LN is the operator that performs a projection to theu2 and t22 components only.Cf is the pivot
operator that performs the elimination of one unknown through the fact that the electric potential is zero;Ct21

andCt23
are the pivot operators that perform th

elimination of one unknown through the fact that the shear stress components must vanish.q is the charge that may have accumulated on electrodes,u1 and
u3 are the lateral displacements of the solid at the considered interface, andg̃ is a reduction of theg vector after pivot operations. P, M, IF, and CF stan
respectively, for piezoelectric, metal, insulating fluid, and conductive fluid.

Interface type Expression for matricesA andB Continuity relation

Dp50

P/P, M/M, IF/IF or
CF/CF SABD5Fn11

21 FnS Ip

Rn
t D gn11~Xn!5S A

BDgn
(1)~Xn!

Dp.0

P/M or IF/CF

SABD5Fn11
21 SC 0

0 0

D 0

0 1

D where S C
D D5FnS I p(n)

Rn
t D gn11~Xn!5S A

BD S gn
(1)~Xn!

q D
P/IF

S A

BD 5Fn11
21 1

0 1 0

c1 0 0

0 0 1

c2 0 0

0 0 0

c3 0 0

0 0 0

c4 0 0

2 where S c1

c2

c3

c4

D 5FnS I 2

Rn
t D gn11~Xn!5S A

BD S gn
(1)~Xn!

u1

u3

D

M/IF or M/CF

S A

BD 5Fn11
21 S 0 1 0

c 0 0

0 0 1

0 0 0

d 0 0

0 0 0

D where S c
c8
d
d8

D 5FnS I 3

Rn
t D if

M/IF or

S c
dD5FnS 1

Rn
t D

if M/CF

gn11~Xn!5S A
BD S gn

(1)~Xn!

u1

u3

D

P/CF

S A

BD 5Fn11
21 1

0 1 0 0

c 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

d 0 0 0

0 0 0 0

0 0 0 1

2 where S c
dD5FnS 1

Rn
t D gn11~Xn!5S A

BD S gn
(1)~Xn!

u1

u3

q
D

Dp,0

M/P or CF/IF SABD5Fn11
21 LFnS I p(n)

Rn
t DCf gn11~Xn!5S A

BDgn
(1)~Xn!̃

IF/P or CF/M S A

BD 5Fn11
21 LFnS I p(n)

Rn
t DCt21

Ct23
gn11~Xn!5S A

BDgn
(1)~Xn!̃

CF/P S a

bD 5Fn11
21 LFnS I 4

Rn
t DCfCt21

Ct23
gn11~Xn!5S a

bDgn
(1)~Xn!̃

IF/M

S A

BD 5Fn11
21 S c 0

0 0

d 0

0 1

D where S c
dD5LNFnS I 3

Rn
t DCt21

Ct23

gn11~Xn!5S A
BD S gn

(1)~Xn!̃

q
D
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IV. GREEN’S FUNCTIONS CALCULATION

After the reflexion matrix on top of the multilayer struc
ture has been calculated, the plane wave solution inside
stack of materials is fully determined by the top surfa
boundary conditions. More generally, it becomes possible
link the generalized displacements, that is, the first par
the state vector, to the generalized strain, which is its sec
part, and thus to obtain the Green’s functions of t
multilayer. Writing Eq.~33! on top of the last layer yields

h~XN!5FNgN~XN!5FNS I p

RN
t DgN

(1)~XN!5S E
F DgN

(1)~XN!,

~48!

from which we get the expression for the Green’s funct
matrix or dyadic as

G5EF21, ~49!

whereE andF are square matrices of dimensionp(N).
In particular, if the topmost layer is piezoelectric, on

the Green’s functions are known, it is possible to obtain
relation between the electric charge density that appears
der the electrode in absence of mechanical loading and
electrode potential, and thus the electric response of a s
ture as

Y5v2G44
21 . ~50!

FIG. 5. Electrical response of an ultrasound transducer with its adap
layer.

FIG. 4. Reflexion coefficient of a longitudinal wave in water at an interfa
between water and aluminum.
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The v2 term must be included since we have chosen to
D25D2 /( j v) in the state vector.

In the same way, it becomes possible to calculate
effective permittivity,10 which is also simply related toG44

through

eeff5
v

e0us1uG44
. ~51!

As an example let us consider an ultrasound transdu
consisting of a 2-mm-thick PZT layer covered by a quart
wavelength layer. We assume excitation electrodes are
nitely thin so that their mechanical effect is negligible. Fi
ure 5 shows the electric response of such a structure
agrees with similar responses that have been obtained
finite-element analysis or using Mason’s model.11 In Fig. 6 a
semi-infinite medium of water has been added. Radiat
losses cause the two peaks to degenerate into a wide-
response, which is usually what is wanted when design
ultrasound transducers.

V. BACKSCATTERING THROUGH THE STACK

As already stated, the behavior of waves in the struct
is known once all reflexion matrices have been calculat
Making use of this property effectively, the amplitudes of
partial waves can be calculated so that all electromechan
fields can be determined through Eq.~23!. In this section, we
assume the structure is electrically excited at its top surfa
and that the topmost layer is piezoelectric. The electric p
mittivity of the surrounding vacuum is taken into account
described in Sec. III B, Eq.~38!.

Boundary conditions at the top surface can be written
the form

LFnS I 4

RN
t DgN

t(1)5MgN
t(1)5S 1

0
0
0
D , ~52!

where

L5S 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

D , ~53!

n

FIG. 6. Electrical response of an ultrasound transducer radiating in wa
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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and, in this case,

aN5DN
(1)~2XN!M 21S 1

0
0
0
D . ~54!

Reflected modes are known from the reflection matrix
top of the layer. Amplitudes of partial modes in the oth
layers are then computed using a recursive scheme. We
shown in Sec. III C that for every interface between tw
layers it is possible to write

gn11~Xn!5S A
BDgñ

(1)~Xn!, ~55!

where expressions forA, B, and gñ
(1)(Xn) are given in

Table IV. Therefore,

añ
(1)5Dn

(1)~2Xn!A21gn11
(1) ~Xn!. ~56!

The actualan
(1) vector is obtained~i! directly if Dp50, ~ii !

by keeping only the first relevant components ifDp.0, and
~iii ! by expressing the components that have been remo
as a function of the ones that have been kept ifDp,0.

Amplitudes of partial reflected modes are calculated
ing the reflexion matrix at the top of the layer and the a
plitudes of partial transmitted modes, as shown in Eq.~32!.
As theA matrices have already been calculated in the refl
tion matrices computation step, backscattering becomes
fast to perform.

A. Example

Let us go back to the example started in Sec. III E. W
assume that waves are excited by a simple piezoele
transducer radiating in water and that the incident wa
reaches the water/aluminum interface close to the Rayle
incidence. To simulate this situation,s1 is set so thatu i

5tan21(s1 /sp)'30°. In Fig. 7,T22 in solids and the acousti
pressure in water are plotted versus the depth inside
structure. The transducer operates in a half-wavelength m
and radiates in water. The stress vanishes smoothly
depth inside the aluminum as the incidence is above
shear critical angle. A standing wave pattern is establis
inside the two first layers because of the total reflection at
upper interface and on the aluminum half space.

FIG. 7. Standing wave pattern for a wave excited by a piezoelectric tr
ducer in water incident on an aluminum substrate with Rayleigh incide
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VI. CONCLUSION

We have shown how to introduce metal and fluid laye
into a scattering matrix model originally proposed for so
ing the problem of plane wave propagation in piezoelec
and dielectric multilayers. This scattering matrix approach
naturally numerically stable as opposed to transfer ma
approaches. The incorporation of fluid and metal layers w
made possible by reducing the number of plane waves
can propagate inside a layer and the dimension of the lin
system that has to be solved for each layer. We have
shown that despite the possible difference in dimensions
tween two layers, it is possible to add or remove an adequ
number of unknowns when writing that some electrom
chanical fields are continuous or not across the interfa
Therefore, it becomes possible to compute the surf
Green’s functions of an arbitrary stack of homogeneous m
terials with plane interfaces. Additionally, we have set up
backscattering algorithm to compute the distribution of p
tial modes inside the whole layered structure. This latter
proach is particularly important to understand the distrib
tion of acoustoelectric power within the stacked substrate
many ultrasonic works, much effort is made to correc
simulate actual boundary conditions, but generally the w
distribution is not regarded. It is, however, of primary impo
tance to precisely analyze this distribution in layered mat
als in view of optimizing the transducer structure. As it
possible to derive Green’s functions that can be coupled
more complete models~e.g., finite element method/bounda
element method!,12 our approach provides an attractive wa
to enrich the analysis capabilities of elastic waveguides a
more generally, of electromechanical transducers.
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