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Many ultrasonic devices, among which are surface and bulk acoustic wave devices and ultrasonic
transducers, are based on multilayers of heterogeneous materials, i.e., piezoelectrics, dielectrics,
metals, and conducting or insulating fluids. We introduce metal and fluid layers and half spaces into
a numerically stable scattering matrix model originally proposed for solving the problem of plane
wave propagation in piezoelectric and dielectric multilayers. The method is stable for arbitrary
thicknesses of the layers. We discuss how the surface Green’s functions can be computed for an
arbitrary stack of homogeneous materials with plane interfaces. Aditionnally, we set up a
backscattering algorithm to compute the distribution of electromechanical fields at any point in the
stack. The model is assessed by considering some well-known exampl280® American
Institute of Physics.[DOI: 10.1063/1.1621053

I. INTRODUCTION at the opposite interface of the same layer, one needs to

o . L : . calculate exponentials which for inhomogeneous partial
There are many situations in ultrasonics in which one is .
. . . . . “waves can become either very large or very small. When
dealing with multilayers of heterogeneous materials. For in-

. . mixing these terms, numerical underflows can occur while

stance, surface acoustic wave and bulk acoustic wave d?ﬁ : .
. ) . e decreasing terms get lost. Recently, independently and
vices, such as film bulk acoustic resonators, rely on the ex- . 2
nearly simultaneously, Pastureaeidal* and Tan have pro-

citation of a piezoelectric substrate or of a piezoelectric stack osed a stable solution based on the use of scattering matri-

by metallic electrodes. They can operate in air, which can b . .
. . . : . .Ces instead of transfer matrices. However, all these methods
modeled as an insulating fluid, or in some special cases in

water, which is usually considered a conducting fluid. Ultra-Currently apply only to piezoelectric or dielectric layers.

. . . X . In this article, we extend the scattering matrix method to
sonic transducers also require a combination of piezoelectric - . : .

) : ) . . ., Thetals, so that the finite width of electrodes included in

insulating, and metallic materials, and often operate in fluids, "~ ° .

) multilayer structures can be taken into account, and also flu-

In the very common case that the interfaces are plane and tr?g

. o Lo ._1ds, either insulating like air, or conducting like water. In
materials are homogeneous inside each layer, it is practic

and efficient to solve the problem of plane wave propagation> < - Il, after a short review of the so-called Fahmy—Adiler
P b propagationy, ., »lism for piezoelectric and dielectric layers, we discuss

in the multilayer. Specifically, from this spectral domain ap- . . .
) X i e how metal and fluid layers can also be described by a similar
proach the Green'’s function, surface effective permittivity, or . . .
formalism. In Sec. lll, we give an overview of the general

admittance can be obtained. The purpose of this work is tQ ; . : .
X . . Scattering matrix algorithm presented in Ref. 4, and we ex-
present a numerically stable scattering matrix method solv:

: . . tend it to metal and fluid materials. In Sec. 1V, the computa-
ing the plane wave propagation problem in heterogeneou, ; . . : . .

. . . . . ; ion of Green’s functions is outlined and illustrated with the
multilayers of piezoelectric, fluid, and metallic materials.

example of a structure involving piezoelectric, metal, and

Fahmy and Adler have proposed a model based on fui o ) -
. uid layers. In Sec. V, it is shown how physical quantities of

transfer matrix approact to solve the plane wave propaga- . . ! .

. o . . . ; . interest, such as displacements, stresses, electric potential,
tion problem in piezoelectric multilayers, including dielec- . . .

. . and displacement, can be determined in the whole stack of
trics as a subcase. The plane wave solution of the propaga-_, . . . .
. X : " . ~ materials by a simple backscattering algorithm. An example
tion problem is described as the superposition of eight partial_ . . . .

: . . Is given to illustrate the interest of these calculations.
waves in each layer. The global plane wave solutions in a
stack of materials are obtained by transferring boundary con-
ditions from one interface to the other and then solving al. PLANE WAVE PROPAGATION
linear system. The advantage over previous methods, such as _ _
the global matrix methodsee, e.g., Ref. 3, for a revigwis We consider the general case of a multilayer structure of

that the global linear system remains of constant size for an{f'finite extent in thex, and x; directions, assuming axes

number of layers. Although very powerful, this approach suf-conventions given in Fig. 1. We refer to each layer through
fers from numerical instabilities when the thicknesses of thdtS indexn ranging from 1 for the bottom-most layer kbfor
layers or the frequency become too hitfwhen expressing the topmost layer. Each layer is assumed to be homogeneous

electromechanical fields at an interface as a function of field@nd Of constant thickness. o ,
We first focus on the problem of finding the characteris-

tics of monochromatic plane waves propagating in a layer.
dElectronic mail: alexandre.reinhardt@Ipmo.edu Assuming a propagation along the horizontal plane with
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X3 with 7;=—T;;/jw andD;=D;/jw. These vectors allow us
to rewrite Egs(5) and(6) using matrix relations
7= (S1AI1 T S2A 1 T S3A3) U, 9
X where theA;; matrices are functions of the material con-
N ' stants:
layer N !
XN-1 layer N—1 ! Ciiy Ciia Ciza G
1
XN Ciou Ci2a Ciza €2
N-2 1 Ail = . (10)
! Cizay Ciza Ciza €3
1 = X1
! | €1 G2 Gz —€
X2 1 Using the symmetry relations of material tensors, it is pos-
ayer 2 .
X, sible to show that
X, fayer 1 A=A (11
Y Newton’s equation and Poisson’s law in the quasistatic
x approximation can be written as
2
- i JdTii v ;
FIG. 1. Definition of a multilayered structure. h_ 771 12
ax, Pt (12
slownesses; andsg, all physical quantities have a depen- ‘9_Di:O (13)
dency of the form eXpw(t—s;X;—SXo—S:%3) |- X '

) wherei,j=1,2, and 3;v;=4u;/dt is the particle velocity;
A. Fahmy—Adler solution andp is the mass density of the medium. Using the general-
Fahmy and Adlér have proposed an elegant way of ized vectors and the harmonic time and space dependency,
solving the propagation problem in a homogeneous piezothese equations can be reduced to a single matrix relation:

e!ectrlc qu_er. They start from the equations of OU=5,71+Sy75+ Sa73, (14)
piezoelectricity?

Ty = Cija S~ €1 i @ N which matrixg has the form

Di=einSat €;jEj, ) p 000
wherec; , € , ande;; are, respectively, the components of o= 0 p 00 (15)
the elastic, piezoelectric, and dielectric tensors, whijjeand 0 0p O
S, are the components of the stress and strain tensors, and 00 0 O

D; andE; are the components of the electric displacement _ _

and field, respectively. The strain and electric field can be At this stage, we express, and 73 as functions ofr,

related to the mechanical displacementsand the electric @ndu. This is motivated by the fact that the last two vectors

potential ¢ by the relations are continuous across an interface between two media, so
that solutions in two adjacent layers can be related. It is thus

_Lfue 0w possible to introduce the state vector
Sa=21 % Tk @
[ k T
56 h=(u; Uz U3 @ 721 722 723 D) . (16)
E=——. (4)  After some tedious algebra, it is possible to show that a
X B .
solution inside thenth layer of the eigenvalue problem
Equation(4) is a consequence of the quasistatic approxima-
tion. Assuming harmonic time and space dependences, Egs. S2ah=Msh, (17
(1)—(4) become in which the 8<8 matrix M, is given by
Tij= =] 0S(Cjji Uk T &;ij @), 5) . Mnsr Mo "
Di=—jws/(ekluc—€ ). (6) " \Mpar Mpo)’ (
For convenience of notation, we introduce vectors of,arq
generalized displacements and stresses:
__ a1
u=(u; u, us &), @) M 12= —Ags (S1A21+ S3A%), (19
7=(7i1 T2 iz D)7, tS) Mi1z2=Az (20
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My 1= — Sf(An— A12A2‘21A21) —si(Ass— A32A2‘21A23) fluids, the mechanic_al and el_ectrical prob_lems can t_)e tre_ated
independently. We first consider conducting fluids, in which
~5153(Atat Agr— ArA sy Ags— AgpA s Ay no electric components are used, as is the case of metals. We
+o 21) then discuss insulating fluids.
' Under the assumptions we have made, the elastic tensor
My 20= — (S1A12+ 53A32)A2721. (22 has only one independent component so that
The matrixM , depends on the slownessgsands, and on clg 04
the material properties. As a consequence, the slownesses Cij:( 0, 03)- (26)

5(2T1) of the eight partial waves can be computed as the eigen-

values of matrixM,,, while the corresponding eigenvectors The discussion regarding the calculationMf, is the same

F(™ yield their respective polarizations. Solutions for Eq.as in the case of a metal layer, with the difference that it can

(17) can be written in the form be calculated analytically, since the elastic tensor is the only
h=F A (x,) 29) tensor required and has avery simple expression. It is easy to

nn(X2)8, show that7,; and 7,5 vanish identically. The state vector

with An(xz)zdiag{exp(—ws(z’}?xz)] a diagonal matrix hold- then reduces td=(u;,u,,Us,7»,)' and the waves slow-

ing thex, dependence arg, the vector of the amplitudes of nesses are found by solving the secular equation

the partial waves in thath layer.

Using the same basic equations, Peathl.’ arrive at |Mn—szl4|=s§ s§+s§+s§— 3) =0, (27)
the generalized eigenproblem c
A,h=s,B,h. (24)  wherep is the fluid’s mass density.

Equation (27) has a degenerate zero root, that corre-

As in this expression the>88 matrixB, can be inverted, Eq. sponds to two compressive modes in the, ;) plane. As

(24) Is equivalent to Eqe17). The two approaches lead to the they are homogeneous in the thickness of the layer and can-

same results. not radiate energy in another layer, we do not consider them

As can be seen from E@10), matricesA;, remain well . . .
. . . : in the following. The two other eigenvalues correspond to
conditioned even if the components of the piezoelectric ten-

. : . : . modes that are either propagating or evanescent inxthe
sor are zero. For this reason, simple dielectric material can. . -
. . . . irection. Their exact type depends on the characteristic
also be treated using this model. In the following, “piezo-

; 2, 22 ;
X ; PO . . . =plc. < -

electric” will qualify piezoelectric as well as dielectric ma- slownesss, = yp/c. (i) If 51+.S3 Sp then the two elgen

terials. values are real and of opposite sign. The corresponding par-

tial waves are longitudinal and propagating in opposite di-
rections. We will refer to the upward propagating partial
wave as “incident” and to the other as “reflected(ii) If

In this work, we assume perfectly conducting metals.s§+ s§>s§, then the partial waves are inhomogeneous. For
Furthermore, we assume that metal layers are grounded, sompatibility, we will use the incident and reflected denomi-
that the electric potential vanishes on their surfaces. Acoustinations following the partial wave selection rule given next
propagation inside a metal layer is not coupled to electroin Sec. Ill.
magnetic fields. For this reason, the only state equation that Whatever the eigenvalue, the associated eigenvector al-

B. Case of metal layers

can be used for a metal is Hooke’s law: ways assumes the form
Tij = Cijki S« » (25 s
. . . U;==—u,,
whereas only Newton’s law in Eq12) is used as the equi- 17s, 72
librium equation. Despite these differences, the problem re-
mains the same as for a piezoelectric material except that the u =§u (28)
electric components must be removed from the generalized 37, 2

stress and displacement vectors. For this reason, and from
Egs. (9) and (14), the dimension of thévl,, matrix shrinks _pr
. . . . R Too Us.
from eight to six. Physically speaking, only six purely acous- Sz
tic partial waves need to be considered. This shows that only one component of the displacement

In addition, the electric displacement is not Contmuousvector is, indeed, independent. In view of this, we reduce the

across an m_terface between an insulating and a CondL.JCtmsqate vector tch=(U,, ;)" and theF, matrix reduces to
layer. A spatial charge density must then appear at the inters. . . . .
. X e imension 2. Table | gives the expressions for the eigenval-
face, which equals in modulus the electric displacement a(fl . . )
. . . . ues and thé-,, matrix for a conducting fluid.
the insulating side of the interface. : . . . .

For an insulating fluid, the electrical properties of the
layer must be also considered. Therefore, the state vector is
expressed as= (U, ®, 75,,D,) . The fluid is assumed elec-

We are considering perfect fluids that are mechanicallytrically isotropic so that only one dielectric constantis
isotropic without any viscous effects. Since no electromeneeded to describe its electrical properties. In the quasistatic

chanical coupling exists in either conducting or insulatingapproximation, Poisson’s E¢L3) reduces to the relation

C. Case of fluid layers
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TABLE |I. Slownesses and polarization matrices for conducting flusgds the slowness of the longitudinal
mode in the fluids,; ands; are the surface slownesses in #heandx; directions,p is the fluid’s mass density,
andF is the Fahmy matrix describing the polarizations of partial waves. Ad%e,si-i— sg.

2

S <s§: propagating partial wavessz>s§: inhomogeneous partial waves

Incident partial wave slowness S,= ‘/szpfsz S,=] \/szfszp
Reflected partial wave slowness S,=— \/spz— s? S,=—js°— sp2
F matrix sl —lsd il —ilsd
F= F=
p p p p
w?e(S5+s5+53) p=0. (29)  sign indicates whether the inhomogeneous partial wave is

) . . . increasing or decreasing with depth inside the layer.
Then, we obtain that two electrostatic partial waves exist, |, he scattering method, it is necessary to sort partial

with slownesses,= = jys;+s;, which correspond to eva- \yaves according to whether they are incident or reflected.

nescent waves. The two electrostatic partial waves are i”d_el'he partial wave selection rule used has, for instance, been

pendent of the two acoustic partial waves, which are identigegcribed in Refs. 4 and 7. Classification is performed using
cal to the two acoustic partial waves for a conducting fluidi,q following rules. (i) Inhomogeneous partial waves are

with the same mass density and independent elastic constafit;med reflected if they are evanescent in the medium
As in the case of purely acoustic partial waves, we refer (Qynereas they are termed incident if they are growing expo-
one of them as incident and to the other as reflected. Frorﬁentially with depth.(ii) For propagating waves, power is

the Poisson relation we obtain the Fahmy matrix, which is5giated through the interfaces. The direction in which radia-
explicitely shown in Table II. tion occurs is given by the sign of the vertical component of

the Poynting vector defined by
I1l. SCATTERING MATRIX ALGORITHM

In the previous section, we have shown how to describe
fields in a multilayer structure in terms of a superposition of au; D, ?
partial waves whose slownesses and polarizations are ob- Py=——T,+¢——=—Reu* 7). (30

: > ; ot % a2
tained from the material’'s constants. The aim of the scatter-
ing matrix algorithm is to link the behavior of all layers
together in order to obtain the electromechanical response of
the whole stratified structure. In the original scattering matrixThen, if P,>0, the partial wave is termed reflected, while if
approact;® only interfaces between piezoelectric materialsP,<0 it is termed incident. In the rest of this article, we will
were considered. In this work, we consider interfaces beuse this rule and add the superscript)(for incident partial
tween materials of different types, which allows us to studywaves and the superscript-{ for reflected ones. Note that
mode conversions at the interfaces. the partial mode selection rule has already been applied to
fluids in Tables | and Il. A graphical representation of the
classification rule is shown in Fig. 2.

It is possible to demonstrate that because of the symme- Once partial waves have been sorted, fhe and A,
tries of material tensors the eigenvalues of KMhgmatrix are  matrices anda, vector are reorganized accordingly. Then,
found by pairs of conjugate complex or opposite real values.Eq. (23) can be rewritten by introducing the auxiliary vector
In case the imaginary part of the eigenvalue is not zero, ityariableg, defined by

A. Scattering matrix formulation

TABLE Il. Slownesses and polarization matrices for insulating fluéds.the fluid's electric permittivity. Other
definitions as in Table I.

F matrix
Propagating acoustic partial waves 2 2
pagating p Sp—S 0 — pz—s 0
0 1 0 1
F=
p 0 p 0
0 jes 0 —jes
Inhomogeneous acoustic partial waves j /_SZ,S‘ZJ 0 —j \/SZTS‘Z) 0
0 1 0 1
F=
p 0 p 0
0 j€es 0 —jes
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b
reflected 7/ ycident +) Rl = Op ’ (34)

where Q, is the square matrix of dimensiogm whose ele-

imidem& A]md © ments are all zero.

For a plate, the bottom surface is supposed to be stress
FIG. 2. Representation of incident and reflected waves relative to the bottorff€€ and with no electric charge density. This is equivalent to
surface of a layer. zeroing the lower half of the state vector, whatever the type
of layer considered. Then,

_ | A
On(X2) =Fp th(x2) = An(Xo)ay gl(xo)zFll(o‘;)uz B)u, (35)
AL (x 0 (+) . o : : :
:( n o (X2) O (a?_))_ (31  Wherel, is the identity matrix of dimensiop, A andB are
0 Af(X2) )\ @ pXx p matrices, andl is an arbitrary vector. From E¢33) it
Here, incident partial waves are stored in the first half of thdn€n appears that
matrices and vectors, whereas the other half contains the pb_pga-1 (36)
reflected partial waves. With this classification, it is possible ! '
to consider independently the restrictionsgyfto the inci- If the first layer is an insulating material the electric
dent or reflected partial waves, that &, =A{"(x,)al”  behavior of a vacuum under the structure must be taken into
andg!'=A{)(x,)al ") respectively. account. As was discussed in Sec. IIC, a consequence of
O, can be expressed as a functiongﬁff) only by intro-  Poisson’s equation in a vacuum is that the relation between
ducing a reflexion matriR,,(x) defined as normalized electric displacement and electric potential under
. the structure is
g5 (x2) =Rn(X2) g5 (x2). (32
See Sec. I B for a definition of reflection matrices. There- D(zvacuum):jfo|3|¢, where [s|=si+s3, (37)

fore, we have so thatF, in Eq. (35) must be modified according to the rule

|
p i P
Rn(XZ))gr("Jr)(XZ)' (33) FZp,i<_F2p,i_]60|S|Fp,i fOI’ |—1p (38)

wherep=1,2,3, or 4 according to the material tygeis the It can be noticed that all the content of this subsection is

dimension of the reflection matrigsee Table 1ll. Note that ~ formally similar to what was described in Ref. 4; only the
gn(X,) is of dimension . This shows that the problem can dlmeq5|on of .the matrices involved depends on the type of
be solved by considering incident waves only. material considered.

As can be seen from E@32), the reflection matrix is . Transfer of a reflection matrix
defined at any positior, inside a layer. However, it is only

useful to consideR!, at the top ancR® at the bottom of a Let us denotex, andx; two positions inside layen.
given layer in the calculations. From Eqgs.(31) and(32) it can be written

On(X2) =

L) = AL (%= %2) g (%)
B. Boundary conditions = A X %) Ru(X) AL (o — X g (X)),
The first step of the scattering matrix algorithm is to find (39)
the reflection matrices at the bottom of the stack. For this, it
is possible to assume either a mechanical or an electricahat is,
loading. For the sake of simplicity, we only consider here
two specific cases, either a semi-infinite substrate or a free  Ra(X2)=A{ (X3 = X2) Ra(x2) ALY (X2 —X). (40)
bottom surface in a vacuum. The case of a metalized piez
electric bottom surface can always be treated by adding

vanishingly thin metal layer, which is itself mechanically especially useful for transferring from the bottom to the top

free. ;
' : S . of the layer, according to
If the first layer is a semi-infinite substrate, then it can be y g

assumed that no reflection occurs so that R = A (x =X 1)DRPAC) (X1 — Xp). (41)

QEquation(40) shows how a reflection matrix can be trans-
rred from one point to another within the same layer. It is

Once again, this derivation is formally similar to what
TABLE Ill. Dimension p of operators and reflexion matrices. was written in Ref. 4 for piezoelectric layers, but it can be
now used for any type of material. As the moduli of all

Material type Dimension of the problem nonzero components oAS()(xn—xn,l) and Aﬁf)(xnfl
Piezoelectric 4 —Xp) involved in Eq.(41) are all smaller than 1, there is no
Metal 3 exponential increase of terms of the reflexion matrix. This
Insulating fluid 2 ensures that the computation of reflexion matrices remains
Conducting fluid 1

stable whatever the number of layers and their thicknesses.
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D. Mode conversions between two layers

We are now considering the interface between layers
andn+ 1. We assume we have been able to calcuRjtand
we want to determineRﬁH. By noting Ap=p(n+1) 0
—p(n), the difference between the dimensions of the two 9; P
material types given by Table Ill, we have to consider three
possible cases. water

If Ap=0, then the interface is between two materials of
the same type. It is then possible to write that the state vector X

is continuous across the interface, so that aluminum y
L

On+1(Xn) =F 1 Fn (DX, (42) 0s

I (+) (A
R;)gn (Xn) B
If Ap>0, then the reflection matriR?, , to be deter-
mined is of a dimension higher than the known reflection
matrix R}, . Therefore, the continuity of the state vector can-
not be written directly, as the linear system it would lead to %
would not be well conditioned. To equilibrate the system,

additional variables must be introduced, i@),the electric
surface charge densitythat can accumulate at the boundary
between conducting and insulating layers dingthe lateral

FIG. 3. Conventions for studying the reflection at a fluid/metal interface.

surface displacements andus at an interface between fluid o & (46)
and solid layers. Doing so, the relations given in the third lo:) Mij,’

column of Table 1V, lines 2-5, are obtained. These are of the o

same type as Ed42). Gij=6ij+1.J0<I=P.

If Ap<0, then the reflection matriRy, ; to be deter-  Final expressions for the continuity relation are given in the
mined is of a dimension lower than the known reflectionthirq column of Table 1V, lines 6—10, and are again of the
matrix R}, . Continuity relations cannot be written directly as sgme type as Ed42).
all components of the state vector in the lower layer are not | all cases it can be concluded that
independent. This is emphasized by the fact that some

- . — -1
boundary conditions add supplementary relations to the sys- Rn+1=BA ™~ (47)
tem, i.e.,(i) the electrical potential vanishes at the interfaceThjs reflexion matrix can then be transferred as described in
between an insulating and a conductive layer, as it is assec. ||1C to obtainR, ; , which will then be used to com-

sumed that all conductive layers are connected to groungyyte R®, ,, and so on, until all reflexion matrices are ob-
and (i) the shear stresses; and 7,3 vanish at the interface tgjned.
between a fluid and a solid layer since fluids are supposed
ideal. Each of these conditions can be written in the form
E. Example

P
E My;¢;=0, (43 As an example of a reflexion matrix calculation let us
=1 consider a semi-infinite substrate made of métal example

wherek is the index of the line affected by the supplemen-alumi””m covered with a half space of water. We focus on

tary boundary condition, the _reerX|on coefficient of the Iongl.tudlnal wave in water at
the interface between the two media.

I As is well known, at small incidence the incident wave

M=F, R (44) splits into a reflected wave propagating back to the liquid

medium, and two transmitted waves into the solid, one of a
and where/ equalsg|,”) or one of its already reduced forms. |ongitudinal polarization and the other of a shear polariza-
It is then possible to express one of the components, of tion. When the incidence increases and the longitudinal criti-
e.g..{j,, as a function of the other components as cal angle in aluminum is reached, transmitted longitudinal
waves are traveling along the surface and are not transmitted
into the solid medium. After the shear critical angle in alu-
minum there is always total reflection. For a slightly larger
angle, there is a sharp phase shift caused by surface waves
Defining ¢ as the vector obtained by removing componentgetting excited at this incidence. All these phenomena can be
gj, from ¢, the relationf=CZ holds, where the pivot matrix observed in Fig. 4, which has been calculated assurding

p
M .
L= 2 2y (45)

i=17#io Mi j,

C is defined by =tan (s,/s,) and with conventions given in Fig. 3. Results
in Fig. 4 agree closely with those that can be found in the
Cij=46j.1<j<jo, literature(see e.g., Ref.)9
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TABLE V. Expressions for calculating thé and B matrices involved in Eq(47) for each interface type. In these expressions, the projection opefatestricts a
2p(n)-component state vector in layerto its 2p(n+1) components that are continuous across the interface with faydr, £ has dimension g(n
+1)x2p(n) and it is assumed thatpZn+1)<2p(n). Ly is the operator that performs a projection to theand 7,, components onlyC, is the pivot
operator that performs the elimination of one unknown through the fact that the electric potential S,zzlem)dCT23 are the pivot operators that perform the
elimination of one unknown through the fact that the shear stress components must gasigie charge that may have accumulated on electragesnd

usz are the lateral displacements of the solid at the considered interfac®, iaral reduction of they vector after pivot operations. P, M, IF, and CF stand,
respectively, for piezoelectric, metal, insulating fluid, and conductive fluid.

Interface type Expression for matricAsand B Continuity relation
Ap=0
P/P, M/M, IF/IF or A 1 Ip A (+)
CFICF g)=Fn+1Fn ) gn+1(Xp) = B/ % (Xn)
Ap>0
P/M or IF/ICF cC 0
A 0 0 c) I A\ g{P(Xp)
1 _ p(n) _ n n
(B)_Fm—l D o0 where D, _Fn( Rln ) 9n+1(xn)—(B)( q )
0 1
P/IF 0O 1 0
c; 0 O
0O 0 1
Cy (F)(X
A e oo o\ x—( nu<n)
B 7Fn+1 0 0 0 where Cs _Fn R; gn+1( n)7 B ul
3
cg 0 0 Ca
0O 0 O
c, 0 O
M/IF or M/CF 0O 1 0
c 0 O c
A 0 0 1 c’ ( |3)
=F;1 where =F if
(B) "o o o d "\ R, (X0
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longitudinal critical angle in aluminum 0.0005

shear critical angle in aluminum
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'§ ’ 2 FIG. 6. Electrical response of an ultrasound transducer radiating in water.
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Incidence angle (°) . .
. . - . . The w? term must be included since we have chosen to use
FIG. 4. Reflexion coefficient of a longitudinal wave in water at an interface . .
between water and aluminum. D,=D,/(jw) in the state vector.
In the same way, it becomes possible to calculate the

effective permittivity'® which is also simply related t6,,
IV. GREEN'S FUNCTIONS CALCULATION through

After the reflexion matrix on top of the multilayer struc- e w
ture has been calculated, the plane wave solution inside the “®" ¢;|s;|Gys’
stack of materials is fully determined by the top surface

boundary conditions. More generally, it becomes possible tg__ .~ . Ny iy
link the generalized displacements, that is, the first part O{;onsustmg of a 2-mm-thick PZT layer covered by a quarter

the state vector, to the generalized strain, which is its Secon\r/gyavelength layer. We assume excitation electrodes are infi-
' . ' . itely thin so that their mechanical effect is negligible. Fig-
part, and thus to obtain the Green's functions of the y g9ig 9

. " . ure 5 shows the electric response of such a structure. It
multilayer. Writing Eq.(33) on top of the last layer yields agrees with similar responses that have been obtained by

) finite-element analysis or using Mason’s motieh Fig. 6 a
On - (Xn), semi-infinite medium of water has been added. Radiation
(48)  losses cause the two peaks to degenerate into a wide-band
response, which is usually what is wanted when designing
ultrasound transducers.

(51)

As an example let us consider an ultrasound transducer

I (+) E
h(Xn)=Fnan(Xn)=Fn RY 9N Xn=|g

from which we get the expression for the Green’s function
matrix or dyadic as

G=EF1, (49

whereE andF are square matrices of dimensip(IN). . _
In particular, if the topmost layer is piezoelectric, once ~ As already stated, the behavior of waves in the structure

the Green’s functions are known, it is possib|e to obtain d.S known once all reflexion matrices have been calculated.
relation between the electric charge density that appears ufaking use of this property effectively, the amplitudes of all
der the electrode in absence of mechanical loading and th@artial waves can be calculated so that all electromechanical

electrode potential, and thus the electric response of a struéields can be determined through ER3). In this section, we
ture as assume the structure is electrically excited at its top surface,

Y= wZGZ41- (50) ar?d. that the topmost Iayer is piezoglectric. The electric per-
mittivity of the surrounding vacuum is taken into account as
described in Sec. Il B, Eq.39).

V. BACKSCATTERING THROUGH THE STACK

0.01 : : : : ; Boundary conditions at the top surface can be written in
the form
— 1
2 0.005 | 0
@ . i 1 4
g LFn(RtN)gﬁ*EMgtN“): ol (52
E y ,,k 0
2 0 et
1 7 where
T 0001000
02 04 06 08 1 0000100 O
L= , 53
_ Frequency (MHz) o _ 0000O0T100 (53
FIG. 5. Electrical response of an ultrasound transducer with its adaption
layer. 0O 0 0OOO0O 0 1
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T 003 VI. CONCLUSION

% 0.025 We have shown how to introduce metal and fluid layers
4 0.02 | into a scattering matrix model originally proposed for solv-
o 0.015 | ing the problem of plane wave propagation in piezoelectric
8 Water | Aluminum and dielectric multilayers. This scattering matrix approach is
2 001r naturally numerically stable as opposed to transfer matrix
2 0.005k approaches. The incorporation of fluid and metal layers was
g 0 \/\ made possible by reducing the number of plane waves that
g can propagate inside a layer and the dimension of the linear
8 -0.005 0 20 100 150 200 250 300 system that has to be solved for each layer. We have also

shown that despite the possible difference in dimensions be-
tween two layers, it is possible to add or remove an adequate
FIG. 7. Standing wave pattern for a wave excited by a piezoelectric transnumber of unknowns when writing that some electrome-
ducer in water incident on an aluminum substrate with Rayleigh incidencechanica| fields are continuous or not across the interface.
Therefore, it becomes possible to compute the surface
Green’s functions of an arbitrary stack of homogeneous ma-
terials with plane interfaces. Additionally, we have set up a
backscattering algorithm to compute the distribution of par-
tial modes inside the whole layered structure. This latter ap-
(54) proach is particularly important to understand the distribu-
0 tion of acoustoelectric power within the stacked substrate. In
) ~many ultrasonic works, much effort is made to correctly
Reflected modes are known from the reflection matrix onsjmy|ate actual boundary conditions, but generally the wave
top of the layer. Amplitudes of partial modes in the other gjstripution is not regarded. It is, however, of primary impor-
layers are then computed using a recursive scheme. We haygnce to precisely analyze this distribution in layered materi-
shown in Sec. IlIC that for every interface between tWogys in view of optimizing the transducer structure. As it is
layers it is possible to write possible to derive Green’s functions that can be coupled to
A more complete model®.g., finite element method/boundary
On+1(Xn)= ( B)Nn(”(xn), (55  element methox2 our approach provides an attractive way

) ~(+) ) ) to enrich the analysis capabilities of elastic waveguides and,
where expressions foA, B, andg,""’(X,) are given in  mgre generally, of electromechanical transducers.
Table IV. Therefore,

&M=A (=X A g (Xp). (56)
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plitudes of partial transmitted modes, as shown in Q).
As the A matrices have already been calculated in the reflec-
tion matrices computation step, backscattering becomes very

Depth (um)

and, in this case,

ay=A (XM

o O -
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