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The basic properties of nonlinear global filtering techniques are analyzed. A nonlinear processor for
pattern recognition that is optimum in terms of discrimination and that is tolerant of variations of the
object to be recognized is presented. We compare this processor with power-law and nonlinear joint
transform correlators.
1. Introduction

Nonlinear joint transform correlators1 1JTC’s2 have
been shown to be attractive for pattern-recognition
applications. However, their basic properties in
terms of signal processing and pattern recognition are
still an intensive subject of investigations.
For optical correlation, different criteria have been

proposed to characterize the filter performances.2
Among them, it has been shown2 that some of the
most interesting are related to noise robustness of the
filter and sharpness of the correlation function.
Furthermore, the importance of finding trade-offs
among different criteria is now well established.2,3
It has been shown that this approach3 leads to useful
filters and figures of merit. However, up to now, the
discrimination capabilities of linear filters were opti-
mized indirectly by the minimization of the sharpness
of the correlation function,3 the energy of the correla-
tion function with false objects 1that is, objects to be
rejected2, or background models to be discriminated
against.4
Alternatively, nonlinear JTC’s have been shown to

be very discriminant with good correlation perfor-
mance.1 Optimal methods for discrimination capa-
bilities of the processor for which a priori knowledge
of the false objects or of the background4,5 is not
needed result in nonlinear filtering techniques.

P. Réfrégier is with ENSPM, Signal and Image Laboratory,
Domaine Universitaire de Saint-Jérôme, 13 397Marseille cedex 20,
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Furthermore, the optimal processor introduced in
Ref. 5 presents strong analogies with nonlinear JTC’s.1
In this paper we analyze the basic properties of

nonlinear global filtering 1NGF2 techniques. We intro-
duce new definitions that allow us to derive naturally
the different solutions introduced previously for a
nonlinear JTC.1 We thus can emphasize the proper-
ties that are satisfied in each case and then generalize
and enhance the solution given in Ref. 5. We also
provide numerical simulations results that empha-
size analogies with and differences from other nonlin-
ear JTC’s.
In Section 2, we introduce our notations and recall

themain results of the basic problem of discrimination.
We introduce the basic definitions and properties of
NGF techniques in Section 3. In Section 4, we derive
the optimal nonlinear filtering method for discrimina-
tion. In Section 5, we illustrate the relevance of this
approach with numerical simulations. In Section 6,
we summarize our results.

2. Background

In the analysis, monodimensional notations are used
for simplicity with no loss of generality. Let r and s
denote, respectively, the reference and the input
images. The output of a processor is denoted as c.
All these images are assumed to be sampled on N
pixels, and their values at location t are, respectively,
r1t2, s1t2, and c1t2, where t varies between 0 and N 2 1.
r, s, and c are thus vectors inCN, whereC is the set of
complex numbers. Their Fourier transforms are de-
noted, respectively, as r̂, ŝ, and ĉ, or r̂1k2, ŝ1k2, and ĉ1k2 at
frequency k. When the output of the processor, c,
can be written as a correlation between a filter h and
the input image s, we write

c1t2 5 3h sp s41t2 5 o
t8
h*1t82s1t 1 t82, 112
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or, in the Fourier domain, we write

ĉ1k2 5 ĥ*1k2ŝ1k2. 122

For simplicity, discrete notations are used below for
both the image and the reference. Generalization to
continuous Fourier transforms and notations can be
obtained by the use of integrals instead of discrete
summations. The translation operation Tt applied
to an image is defined by

g 5 Ttf ⇔ g1t2 5 f 3ModN1t 2 t24, 132

where ModN is the moduloN operation defined by

ModN1t 2 t2 5 t 2 t 1 mN, 142

and where the integerm is defined such that

0 # t 2 t 1 mN , N.

When written in two-dimensional notation, Eq. 142
should be clearly understood as cyclic boundary condi-
tions in both x and y directions.
It can be important to improve the discrimination

capabilities of a filter between the object to be recog-
nized and the objects to be rejected. For this pur-
pose, a method discussed in Ref. 4 can be generalized.
Let y l denote 1with l 5 1, . . . , P2 P objects to be
rejected. For improving the discrimination capabili-
ties of a filterh, a possiblemethod consists of minimiz-
ing the energy of the correlation with the images y l,
with the constraint that the correlation with the
object r to be recognized is equal to a given value.
In this case, the criterion to minimize is

DE 5 o
l51

P

o
k

0 ĥ1k2 02 0 ŷl1k2 02. 152

Let Ŝ 1rj21k2 5 ol51
P

0 ŷl1k2 02 be the average spectral den-
sity of patterns to be rejected. An optimal filter for
this purpose is given by4

ĥ1k2 5
r̂1k2

Ŝ 1rj21k2
. 162

Then, optimizing the discrimination capabilities leads
to the consideration of a matched filter with a spectral
density of noise equal to Ŝ 1rj21k2. Indeed, realizations
of noise can be considered as images to be rejected.
In that case, ol51

P
0 ŷl1k2 02 will converge to an ensemble

average and then to the true spectral density of the
noise.
However, the general question is how to infer the

appropriate images ŷ l that correspond to objects to be
rejected is not obvious. The same problem arises for
the matched filter for which it is assumed that the
spectral density of the noise Ŝ is known. This is not
the case in general in image processing, in which, in
contrast to radar processing, it is difficult to estimate
the spectral density of the noise. Then an important
question in the context of pattern recognition is the
3916 APPLIED OPTICS @ Vol. 34, No. 20 @ 10 July 1995
determination of an appropriate model for the spec-
tral density Ŝ. Furthermore, there is no reason to
consider that the realizations of noise 1or of the
images to be rejected2 are obtained with a temporal
stationary density probability law. For example, this
is clear if images of the ground obtained from an
airplane are considered. If the background is mod-
eled by a noise, its spectral density can be very
different for the sea, mountains, or fields.
A new approach to overcome this drawback was

recently proposed in Ref. 5. The main idea is to
process the input image adaptively. Indeed, a dis-
criminant filter for the input image is obtained by the
minimization of the energy of the correlation function
between the filter and the input image:

ES 5 o
k

0 ĥ1k2 02 0 ŝ1k2 02. 172

Of course, minimization of the criterion of Eq. 172 alone
leads to the null filter. However, if this minimization
is performed under the constraint that there still is a
correlation peak at the location of the target, then it is
shown below that this approach can be attractive if
correctly regularized. The new point here is that ES
is not a fixed value as, for example, DE but is
dependent on the input image s. As we show in
Section 4, this leads to a nonlinear processor.

3. Definitions and Properties of Global Filtering
Operations

To clarify the nonlinear filtering operations that have
been analyzed in the past or that are considered
below, we review and propose an analysis of the
properties of such techniques.
Let us consider a general filtering processor. The

output that is denoted as c is a function of both the
reference r and the input image s. We do not con-
sider amultireference problem here. Then, formally,
we can write

c 5 H 3r, s4, 182

or, equivalently,

c1t2 5 H 3r, s41t2. 192

Equation 192 means that, for every location t, the
complex number c1t2 is a function of vectors r and s.
The input is s, the output is c, and r is a model of the
target that is being looked for. Equation 182 can be
alternatively written in the Fourier domain:

ĉ 5 Ĥ 3r̂, ŝ4, 1102

or, equivalently,

ĉ1k2 5 Ĥ 3r̂, ŝ41k2, 1112

where k is the spatial frequency, and r̂ and ŝ are,
respectively, the Fourier transforms of r and s. The
equivalence of Eqs. 182 and 1112 is obvious, given that
the same information is contained in the image and



its Fourier transform, and is merely a coordinate
transformation in phase space.
A global filtering is said to be linear if, for every r, s,

s8, and complex number l, the following properties
hold:

H 3r, ls41t2 5 lH 3r, s41t2, 112a2

H 3r, s 1 s841t2 5 H 3r, s41t2 1 H 3r, s841t2, 112b2

that is, the global filtering is linear with the input
scene. This is the case with classical convolution
filtering that is widespread in optical processing.
It is clear that, in general, only the squared modulus
of the output of a coherent optical correlator can be
obtained, so that we have to consider linearity before
the squaring operation in that case. The linearity
conditions of Eqs. 1122 imply that the global filtering
can be written as

c1t2 5 o
t8
A3r41t, t82s1t82, 1132

where A3r41t, t82 is a matrix element.
It is interesting to note that we do not require that

the global filtering be linear with the reference image,
which we would then write as

H 3lr, s41t2 5 lH 3r, s41t2, 114a2

H 3r 1 r8, s41t2 5 H 3r, s41t2 1 H 3r8, s41t2, 114b2

for every r, r8, and s. This has been a confusion in
the past in denoting filters that do not satisfy Eqs. 1142
as nonlinear filters.
For some applications, although linearity is not

necessary, it can be useful to satisfy a weaker condi-
tion, that is, for every r, s, and complex number l,

H 3r, ls41t2 5 g1l2H 3r, s41t2, 1152

where g1l2 is a function of l. This means that a
variation of the illumination of the input image does
not alter the shape of the output of the global filtering,
even though it modifies the absolute values. It is
then easy to show that g1l2must be of the form

g1l2 5 ma exp1inf2, 1162

where m is the modulus of l and f is its phase, and
where a is a real number and n is an integer. The
proof of this point is given in appendixA.
In the same way, one could require that

H 3lr, s41t2 5 g1l2H 3r, s41t2, 1172

whatever the complex number l, or one could require
a even more stringent property,

H 3lrr, lss41t2 5 gr1lr2gs1ls2H 3r, s41t2, 1182

whatever the complex numbers lr and ls. For ex-
ample, the normalized correlation introduced in Ref. 6
corresponds to gr 5 gs 5 1.
Let us now analyze the property of stationarity. A
global filtering is said to be cyclostationary if, for
every r, s, t, and t, the following property holds:

H 3T2tr, s41t2 5 H 3r, Tts41t2 5 TtH 3r, s41t2. 1192

If the global filtering is linear and cyclostationary,
then Eq. 1132 becomes

c1t2 5 o
t8
A3r43ModN1t 2 t824s1t82, 1202

which is nothing but a convolution of periodic signals.
This clearly corresponds to the case of classical linear
correlation filters.
It is clear from these definitions that nonlinearity

and noncyclostationarity do not allow one to character-
ize global filtering techniques. For this reason, we
now define some properties that allow us to obtain
better insight into NGF operations. Below, we ana-
lyze nonlinear but cyclostationary global filtering.
Among the nonlinear cyclostationary global filter-

ing there is a special class that we call local Fourier
cyclostationary global filtering. It is particularly
interesting to introduce this definition because most
cases of NGF that have been implemented optically
until now satisfy this property. This class of global
filtering is easily defined in the Fourier domain. A
global filtering is said to be local Fourier if the
following property holds:

Ĥ 3r̂, ŝ41k2 5 Ĥ3r̂1k2, ŝ1k24. 1212

In other words, Ĥ 3r̂, ŝ4 is no longer a general operator
on vectors r̂ and ŝ that depends on 2N variables, but
for every spatial frequency k the output of the proces-
sor is a function of only two complex numbers r̂1k2 and
ŝ1k2. Note that the letter H is then used in place of
H . Nonlinear joint Fourier correlation systems
achieve, in general, local Fourier cyclostationary
NGF’s. One can note that the hypothesis of Fourier
locality is not necessary from a pure signal point of
view, but is often true in optical correlation when the
processing is done in a Fourier plane.
Let us now analyze the example of the power-law

correlator@nonlinear JTC introduced in Ref. 1. In
that case, the output of the system is given by

ĉ1k2 5 0 r̂1k2ŝ1k2 0b21r̂1k2*ŝ1k2, 1222

where b is a real number between 0 and 1. The
binary JTC, or pure phase correlation, corresponds to
b 5 0. It is easy to check that this NGF is local
Fourier, cyclostationary, and satisfies the weak linear-
ity condition of Eq. 1182.
But it is possible to derive the power-law JTC from

some of the definitions that we have given above.
Let us first consider that the global filtering satisfies
the weak linearity condition of Eq. 1182; we then have

Ĥ 3lrr̂, lsŝ41k2 5 gr1lr2gs1ls2 Ĥ 3r̂, ŝ41k2, 1232

and, taking Eq. 1162 into account,

Ĥ 3lrr̂, lsŝ41k2 5 1mr2
ar1ms2

asexp1inrfr2

3 exp1insfs2 Ĥ 3r̂, ŝ41k2, 1242
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wheremr 1ms2 is the modulus of lr 1ls2 and fr 1fs2 is the
phase of lr 1ls2. ar and as are real numbers, and nr
and ns are integers.
Now let us include the condition of Fourier locality,

which yields

Ĥ3lrr̂1k2, lsŝ1k24 5 1mr2
ar1ms2

asexp1inrfr2

3 exp1insfs2Ĥ3r̂1k2, ŝ1k24. 1252

Because Eq. 1252must be satisfied for every lr, ls, r̂1k2,
and ŝ1k2, we can consider the following transforma-
tions:

lr = r̂1k2,

ls = ŝ1k2,

r̂1k2 = 1,

ŝ1k2 = 1, 1262

from which we end up with

ĉ1k2 5 Ĥ3r̂1k2, ŝ1k24 5 B 0 r̂1k2 0ar 0 ŝ1k2 0as

3 exp1inrfr̂1k22exp1insfŝ1k22, 1272

where B 5 Ĥ31, 14 is a constant. In addition to the
weak linearity condition of Eq. 1182 and the assump-
tion of Fourier locality that we have used, let us add
the condition of stationarity. In the Fourier plane a
translation operation of shift t results in the modula-
tion of the Fourier transform by an exponential factor
exp122ipkt@N2. For expression 1272 to be cyclostation-
ary, it is then required that

nr 5 21,

ns 5 1, 1282

which, in turn, yields

ĉ1k2 5 B 0 r̂1k2 0ar21 0 ŝ1k2 0as21r̂1k2*ŝ1k2. 1292

This expression is similar to the definition of the
power-law nonlinear JTC of Eq. 1222, except that the
exponent on the absolute values of the reference and
the input image can be different. If we want them to
be equal, we need a further property that can be
written as

H 3s, r41t2 5 H 3r, s4*1t2, 1302

that is, the global filtering is invariant, apart from a
complex conjugation, under the exchange of the refer-
ence and the input images. We denote as joint
Fourier such NGF’s that are also cyclostationary.
This property can be interesting for some applications.
Indeed, let us consider, for example, a tracking prob-
lem. In this case r can be the image at time n 2 1
and s can be the image at time n but one can wish that
the result be invariant by the permutation of Eq. 1302.
We have then shown that if a NGF satisfies the
3918 APPLIED OPTICS @ Vol. 34, No. 20 @ 10 July 1995
hypotheses of Fourier locality of Eq. 1212, the weak
linearity of Eq. 1182, and is joint Fourier 3as defined by
Eq. 13024 and cyclostationary 3Eq. 11924, then it is
necessarily a power-law nonlinear JTC as given by
Eq. 1222.

4. Optimal Adaptive Discriminant Processors

We now derive a nonlinear processor for pattern
recognition that is optimum in terms of discrimina-
tion and that is tolerant to variations of the object to
be recognized.
We have seen that the output of a nonlinear proces-

sor can be written as

ĉ1k2 5 Ĥ 3r̂, ŝ41k2. 1312

We assume that we can write this expression as

ĉ1k2 5 ĥ3r̂, ŝ4*1k2ŝ1k2, 1322

as this is equivalent to assuming that ĉ1k2 5 0 if ŝ1k2 5
0. Equation 1322 can be written as a correlation in
the object domain:

c1t2 5 o
t8
h3r, s4*1t82s1t 1 t82 5 1h3r, s4 sp s21t2. 1332

To be precise we need to define the problem in more
details. We consider that in the input image there is
an object analog to the reference image that we
denote as r8 or r̂8 in the Fourier domain and that is
translated in the input image at location t. We can
then write

s 5 Ttr8 1 b, 1342

which defines b as the background image, that is,
everything in the input image that is not r8. Further-
more, it is always possible to write

r8 5 r 1 dr, 1352

where dr appears as a perturbation of the reference
image, and thus

s 5 Tt1r 1 dr2 1 b. 1362

In Eq. 1362 r and s are images that are known, but dr
and b are unknown, together with the actual location
t of the target. However, we consider that we know
more about dr than we do about b. Indeed, the
uncertainty dr can arise in practice from a distortion
of the reference image or an acquisition noise. In
any case, we consider that we have a model of the
spectral density of dr that we denote as s21k2. Note
that we do not require a similar condition for the
background image b.
We want to derive a processor that has the follow-

ing desired properties:

1i2 It should yield a correlation peak at location t
that is close to a Dirac function,

1ii2 It should be robust to the perturbation dr,
1iii2 It should be robust to the background b.



With the model of Eq. 1362, we can write the correla-
tion of Eq. 1332 as

1h3r, s4 sp s21t2 5 1h3r, s4 sp r21t 2 t2

1 1h3r, s4 sp dr21t 2 t2

1 1h3r, s4 sp b21t2. 1372

Let us define the notation E1f 2 as the total energy of
the correlation of the filter h3r, s4with the image f:

E1f 2 5 o
k

0 ĥ3r, s41k2 02 0 f̂ 1k2 02. 1382

Let us start with condition 1i2. We can minimize the
energy of the correlation function of the filter with the
input scene E1s2:

E1s2 5 o
k

0 ĥ3r, s41k2 02 0 ŝ1k2 02, 1392

under the constraint that

c1t2 5 1h3r, s4 sp s21t2 5 co, 1402

where co is a given constant. But obviously this
constraint is unusable because the location t of the
target is unknown. However, using conditions 1ii2
and 1iii2 in Eq. 1372, we should have approximately

1h3r, s4 sp s21t2 < 1h3r, s4 sp r2102. 1412

For this to be true, conditions 1ii2 and 1iii2 must make
the contributions to the correlation function at loca-
tion t of the perturbations dr and of the background b
negligible. We then replace the constraint of Eq. 1402
by

1h3r, s4 sp r2102 5 co, 1422

which no longer involves the unknown location t.
For condition 1ii2 to hold, we can minimize the

energy of the correlation function with the perturba-
tions E1dr2:

E1dr2 5 o
k

0 ĥ3r, s41k2 02 0dr̂1k2 02, 1432

This term accounts for the regularization of the
solution, as discussed in Ref. 7. Instead of the exact
power spectral density 0dr̂1k2 02 that might not be
known exactly, we can still use a model s21k2. For
example, we could use s21k2 5 7 0dr̂1k2 028 where 7.8 repre-
sents the ensemble average over possible situations,
or any of the stabilizing functionals discussed in Ref.
7. We then write Eq. 1432 in the modified form:

E1dr2 5 o
k

0 ĥ3r, s41k2 02s21k2. 1442

Similarly, for condition 1iii2 to be true, we should
require that the energy of the correlation function
with the background E1b2 be minimized:

E1b2 5 o
k

0 ĥ3r, s41k2 02 0 b̂1k2 02. 1452

But we have no knowledge of the background image
b, so expression 1452 cannot be actually used. How-
ever, remarking that

b 5 s 2 Tt1r 1 dr2, 1462

we can make use of the Minskowski inequality8

because ŒE1f 2 defines a norm of the image f:

ŒE1b2 # ŒE1s2 1 ŒE1r2 1 ŒE1dr2. 1472

In this expression, E1r2 is the classical correlation-
plane energy 1CPE2 criterion.2
We have shown that conditions 1i2, 1ii2, and 1iii2 can be

fulfilled by the simultaneous minimization of E1s2,
E1dr2, and E1b2, under the constraint of Eq. 1422. We
can perform this simultaneous minimization by find-
ing the optimal trade-off3,9 1OT2 solutions for the
previous criteria. But the problem of finding the OT
solutions forE1s2,E1dr2, andE1b2 can be replaced by the
problem of finding the OT solutions for E1s2, E1dr2, and
E1r2, as is implied by the inequality of Eq. 1472. We
obtain these solutions by minimizing the following
functional:

C1ĥ3r̂, ŝ42 5 aE1s2 1 bE1dr2 1 gE1r2

2 2l o
k
ĥ3r̂, ŝ41k2r̂1k2, 1482

where a, b, and g are real positive numbers to balance
the trade-off between the three criteria,10 and l is a
real number that has to be identified after minimiza-
tion. To minimize C1ĥ3r̂, ŝ42, we impose

≠C1ĥ3r̂, ŝ42

≠ĥ3r̂, ŝ41k2
5 0 1492

for each spatial frequency k. We thus have

ĥ3r̂, ŝ41k23a 0 ŝ1k2 02 1 bs21k2 1 g 0 r̂1k2 024 5 lr̂1k2, 1502

and then

ĉ1k2 5
lr̂*1k2ŝ1k2

a 0 ŝ1k2 02 1 bs21k2 1 g 0 r̂1k2 02
. 1512

Because a constant multiplicative factor is not rel-
evant for our purpose, we can simplify Eq. 1512 to

ĉ1k2 5
r̂*1k2ŝ1k2

s21k2 1 a 0 ŝ1k2 02 1 g 0 r̂1k2 02
. 1522

It is obvious from Eq. 1522 that this optimal processor
is a global nonlinear filter, as it requires nonlinear
transformation of the input-image Fourier transform.
The nonlinearity clearly results from minimizing the
10 July 1995 @ Vol. 34, No. 20 @ APPLIED OPTICS 3919



criterion ES defined by Eq. 1392. This nonlinear pro-
cessor is adaptive because the filter function is depen-
dent on the input-image energy spectrum. If a is
equal to 0, this filtering method becomes linear and is
analogous to a linear OT filter.3 Different but re-
lated results have also been obtained with different
assumptions.11
It is also interesting to remark that this global

nonlinear filtering satisfies the cyclostationarity and
Fourier locality conditions. However, if we choose
s21k2 independently of ŝ1k2 it does not satisfy the weak
linearity condition with the input scene of Eq. 1152,
although it is linear with the reference function. It is
not joint Fourier either, except for the particular
trade-off given by a 5 g:

ĉ1k2 5
r̂1k2*ŝ1k2

s21k2 1 a 0 r̂1k2 02 1 a 0 ŝ1k2 02
. 1532

For the sake of simplicity, we consider this law below
3the generalization to Eq. 1522 is straightforward4.
The NGF of Eq. 1532 does not satisfy the weak linearity
condition of Eq. 1152. However, it is still possible to
satisfy this property, for example, if both the reference
and the input images are normalized with their
energies:

ĉ1k2 5
r̂1k2*ŝ1k2

s21k2 1 a
0 r̂1k2 02

o
k8

0 r̂1k82 02
1 a

0 ŝ1k2 02

o
k8

0 ŝ1k82 02

, 1542

but now the Fourier locality condition is no longer
valid.

5. Illustration with Numerical Simulations

Let us now illustrate the performance of the optimum
nonlinear processor with numerical simulations per-
formed on images of 2563 256 pixels with gray levels.
The reference image r is a car shown in Fig. 1 in an
array of 64 3 64 pixels. The input image is shown in
Fig. 2 and contains the reference object placed both on
the top left-hand side and in the center of the input.
On the bottom right-hand side, the reference object
has been rotated by 7°. This composite image has
been placed in the presence of a 1@f colored noise.
The noise is additive except within the object in the
center, where it is spatially disjoint or nonoverlap-
ping.12 As a result, the reference objects with overlap-
ping noise are not clearly visible in Fig. 2 because the
very low input signal-to-noise ratio 127 dB2. The
convention of denomination for the different correla-
tion peaks is shown in Fig. 3.
Numerical experiments were performed with the

nonlinear filter given by expression 1532. The spec-
tral density s21k2 is chosen to be a constant, equal to
s2. It is clear that this choice for the spectral density
of dr, the variation added to the reference object, is a
white envelope and is different from the actual addi-
tive 1@f noise spectral density, which also produces
the background.
3920 APPLIED OPTICS @ Vol. 34, No. 20 @ 10 July 1995
The projections of the normalized modulus squared
of the correlation functions are shown in Fig. 4.
More precisely, the following function is represented:

I1 y2 5
maxx 0c1x, y2 02

maxy maxx 0c1x, y2 02
, 1552

where the maximum correlation intensity has been
normalized to unity for all the plots. Figure 4 shows
plots of I1 y2 for values of s2 ranging from 1024 to 107
and for a 5 1. For large values of s2, the NGF
converges to the classical correlation 3ĉ1k2 5 r̂*1k2ŝ
1k2@s24. The very low correlation-peak value for the
reference object in the center of the input image is
due to the low mean value of the object in comparison

Fig. 1. 64 3 64 pixel reference image used for numerical simula-
tions.

Fig. 2. 256 3 256 pixel input image used for numerical simula-
tions that shows zero-mean additive 1@f noise that is disjoint to the
central object.



with themean value of the background noise, which is
spatially disjoint with the object in the center.12 The
classical correlation is identical to the filtering with
thematched filter for white noise. Its performance is
very poor for the image in the context of spatially
disjoint noise.12
As s2 increases, optimum detection changes be-

tween the three inputs as follows: 112 detection in
disjoint noise appears optimal in Fig. 41b2, 122 detec-
tion in additive noise appears optimal in Figs. 41b2 and
41c2, and 132 detection for the rotated input in additive
noise appears optimal in Figs. 41d2 and 41e2. In gen-
eral, when s2 decreases, it can be seen that the
correlation peak that corresponds to the car located at
the center of the input image increases. The nonlin-
ear operation allows one to be less sensitive to this
situation of disjoint noise. When s2 becomes smaller,
the correlation peaks become sharper. However, the
background level increases as a consequence of the
decreasing of the regularization term s2.
In Fig. 5 we show the results obtained with the

power-law correlator1 using the NGF of Eq. 1222.
When b 5 1, the classical correlation is obtained.
The pure phase correlation or binary nonlinear JTC is
obtained with b 5 0. One can see that the best
results correspond to values of b approximately equal
to 0.5, as shown in Fig. 51d2. We observe that this
NGF leads to a higher level of background in the
correlation plane. However, it is not clear whether
that higher level of background can have a strong
influence in the pattern-recognition or signal-process-
ing task.
In order to understand better the differences and

analogies between the different NGF techniques in
Fig. 3. Convention of denomination of the different objects
present in the input image and the corresponding correlation
peaks.

Fig. 4. Normalized projection of the modulus squared of the
correlation functions for the NGF of Eq. 1532 for a 5 1. This
shows the performance trade-off in the selection of the following
values of s2: 1a2 s2 5 1024, 1b2 s2 5 1022, 1c2 s2 5 1021, 1d2 s2 5 1,
1e2 s2 5 102, 1f 2 s2 5 103, 1g2 s2 5 104, 1h2 s2 5 107.
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the presence of noise, further theoretical investiga-
tions are needed.

6. Conclusion

We have analyzed the basic properties of NGL tech-
niques. This analysis allowed us to designed a pro-
cessor that is optimum in terms of discrimination and
input-noise robustness and to understand better the
basic assumptions that lead to the power-law
correlator@nonlinear JTC previously introduced in
the literature.1 This optimum processor is a nonlin-
ear filter that can be implemented by a nonlinear JTC
and yields a new theoretical insight into obtaining
optimal nonlinear transformations. Computer simu-
lations have illustrated the performance of the proces-
sor for noisy and distorted objects in the presence of
both overlapping and nonoverlapping input noise.

Fig. 5. Normalized projection of the modulus squared of the
correlation functions with the power-law correlator@nonlinear JTC
of Eq. 1222.1 This shows the performance trade-off in the selection
of the following values of b: 1a2 b 5 0.0, 1b2 b 5 0.2, 1c2
b 5 0.4, 1d2 b 5 0.5, 1e2 b 5 0.6, 1f 2 b 5 0.7, 1g2 b 5 0.8, 1h2 b 5 1.0.
3922 APPLIED OPTICS @ Vol. 34, No. 20 @ 10 July 1995
Further studies are necessary to characterize the
performance of NGF techniques quantitatively.

Appendix A.

The term g1l2, as defined by Eq. 1152, is a multiplicative
function because it holds g1ll82 5 g1l2g1l82. Let us
define the modulusm and the phase f of the complex
number l. Then one can define

g3m exp1if24 5 M1m2P1f2.

One should have P1x 1 y2 5 P1x2P1 y2, where x and y are
real numbers, P102 5 1 3as P102 5 P102P1024. If one
defines Q1x2 5 ln3P1x24, this property can be written as
Q1x 1 y2 5 Q1x2 1 Q1 y2, from which it follows that Q1x2
5 iax, where a is a priori a complex number and then
P1x2 5 exp1iax2. However, one needs to have P1x 1 2p2
5 P1x2, and then amust be an integer.
Let us now analyze the function M1x2. M1x2 sa-

tisfies the following property: M1xy2 5 M1x2M1 y2.
Let us introduce N1x2 5 ln3M1x24 and H 3ln1x24 5

N1x2. It is possible to introduce ln1x2 because the
modulus x is positive. The property to satisfy is
now H3ln1x2 1 ln1 y24 5 H3ln1x24 1 H3ln1 y24 and thus
H3ln1x24 5 b ln1x2, where b is a priori a complex number
1let us introduce b 5 c 1 id2. Thus one has N3x4 5

b ln1x2 and then

M1x2 5 exp3c ln1x24exp3id ln1x24 5 xc exp3id ln1x24.

Let us now come back to the physical problem.
The phase of g3m exp1if24 should exist when m goes to
0 and thus the limit of the phase of M1x2 should exist
when x goes to 0. This is the case only if d 5 0. One
thus finds that the general solution is

g3m exp1if24 5 mc exp1inf2,

where c is a real number and n is an integer.

The authors are grateful to J.-P. Huignard for his
support in this work, and acknowledge fruitful discus-
sions with S. Formont, B. Granier, and S. Tonda.
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5. Ph. Réfrégier, B. Javidi, and V. Laude, ‘‘Nonlinear joint Fourier
transform correlation: an optimal solution for adaptive im-
age discrimination and input noise robustness,’’ Opt. Lett. 19,
405–407 119942.

6. F. M. Dickey and L. A. Romero, ‘‘Normalized correlation for
pattern recognition,’’ Opt. Lett. 16, 1186–1188 119912.



7. Ph. Réfrégier, ‘‘Application of the stabilizing functional ap-
proach to pattern recognition filters,’’ J. Opt. Soc. Am. A 11,
1243–1251 119942.

8. N. Boccara, Functional Analysis 1Academic, Boston, 19902, pp.
72–73.
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