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Abstract: The interaction of light and sound waves at the 
micro and nanoscale has attracted considerable interest 
in recent years. The main reason is that this interaction 
is responsible for a wide variety of intriguing physical 
phenomena, ranging from the laser-induced cooling of a 
micromechanical resonator down to its ground state to the 
management of the speed of guided light pulses by exciting 
sound waves. A common feature of all these phenomena 
is the feasibility to tightly confine photons and phonons 
of similar wavelengths in a very small volume. Amongst 
the different structures that enable such confinement, 
optomechanical or phoxonic crystals, which are periodic 
structures displaying forbidden frequency band gaps for 
light and sound waves, have revealed themselves as the 
most appropriate candidates to host nanoscale structures 
where the light-sound interaction can be boosted. In this 
review, we describe the theoretical tools that allow the 
modeling of the interaction between photons and acous-
tic phonons in nanoscale structures, namely cavities and 

waveguides, with special emphasis in phoxonic crystal 
structures. First, we start by summarizing the different 
optomechanical or phoxonic crystal structures proposed 
so far and discuss their main advantages and limita-
tions. Then, we describe the different mechanisms that 
make light interact with sound, and show how to treat 
them from a theoretical point of view. We then illustrate 
the different photon-phonon interaction processes with 
numerical simulations in realistic phoxonic cavities and 
waveguides. Finally, we introduce some possible applica-
tions which can take enormous benefit from the enhanced 
interaction between light and sound at the nanoscale.
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1  Introduction and basics
Light and sound can propagate through a wide variety 
of materials in the form of electromagnetic and elastic 
waves, respectively. From a quantum perspective, both 
kinds of waves can be described in terms of physical par-
ticles: photons for the case of light and phonons for the 
case of sound. Besides propagating independently from 
each other, photons and phonons may also interact. The 
interaction between light and sound, usually called acou-
sto-optic (AO) interaction, has been routinely used for 
many years in a variety of optical devices to achieve active 
control of light via elastic waves [1]. Interestingly, when 
optical and elastic waves are confined at the micro- and 
nano-scale,1 their interaction can be strongly enhanced 
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as a consequence of the increased density of states. As 
a result, AO interaction in micro- and nano-structures 
enabled by the advances in nanotechnology has received 
considerable interest in recent years due to the intriguing 
effects it can provide [2–17]. For instance, light and sound 
can strongly interact in cavities supporting both con-
fined photonic and acoustic modes. This is the basic idea 
behind cavity optomechanics [2–4], which has emerged as 
an extremely powerful paradigm to couple photons and 
phonons in unprecedented ways, giving rise to a wide 
variety of striking phenomena, including laser sideband 
cooling and optomechanically-induced transparency [7–
9]. Besides cavities, light-sound interaction can also take 
place in properly designed nanoscale waveguides, where 
such interaction can be enhanced by several orders of 
magnitude as compared to the effects observed in struc-
tures with larger dimensions [15].

Although first attempts to couple light and sound in 
optical cavities made use of ultra-high Q-factor micro-
spheres [16] or micro-toroids [9], phoxonic [11, 12] or 
optomechanical (OM) [6] crystals have emerged as an 
interesting platform to observe all the previous effects 
at the nanoscale. The main reason is that this approach 
enables a huge confinement of both kinds of fields down 
to their corresponding wavelengths size (diffraction limit). 
In addition, it potentially allows for the integration of 
thousands of AO components (cavities, waveguides, etc.) 
on a single chip using mainstream semiconductor fabrica-
tion techniques. Phoxonic or OM crystals put together two 
well-known concepts: photonic [18] and phononic crys-
tals [19, 20]. The main idea behind photonic (phononic) 
crystals is the introduction of periodicity in the refrac-
tive index (acoustic impedance) of a certain propagating 
medium to get energy intervals for which light (sound) 
cannot propagate inside the medium: the so-called for-
bidden bandgaps. We can go a step further and think 
about introducing periodicity in both the refractive index 
and the acoustic impedance (for instance, by inserting 
a periodic array of holes in a slab made of a transparent 
material) so that bandgaps exist simultaneously for both 
kinds of waves. The result is a phoxonic crystal: a peri-
odic structure that when properly designed can possess 
forbidden bandgaps for both light and sound. Phoxonic 
crystals thus provide a systematic way to engineer point 
and linear defects that break the periodicity locally and 
give rise to cavities [21] and waveguides [22] that can ulti-
mately support the confinement and propagation of light 
and sound waves at certain frequencies within the cor-
responding bandgaps. It has to be emphasized that these 
two concepts, OM and phoxonic crystals, are essentially 
the same: periodic structures that behave simultaneously 

as photonic and phononic crystals. Throughout this work 
we will use preferably the term phoxonic crystal.

As a result of wave interference effects, photonic and 
phononic bandgaps in phoxonic crystals occur at wave-
lengths of the order of twice the crystal periodicity a. 
Therefore, photons and phonons controlled by introduc-
ing defects in phoxonic crystals have similar wavelengths, 
which plays a role in what refers to the momentum conser-
vation in an interaction process. However, since light and 
sound propagation velocities in solids differ by several 
orders of magnitude, the frequencies of the interacting 
photons (ω) and phonons (Ω) in cavities and waveguides 
will be very different. For instance, typical phoxonic crys-
tals displaying a photonic bandgap for infrared photons at 
about 200 THz (telecom wavelengths), would show a pho-
nonic bandgap for phonons with frequencies of several 
GHz (hypersound) [6, 14]. Since energy (in addition to 
momentum) is also conserved, more than two particles 
will be involved in any AO interaction process, being the 
most typical one the interaction between two photons and 
one phonon.

In this review we focus on the description of the AO 
interaction when both optical and elastic (acoustic) waves 
are localized in small modal volumes (such as nanoscale 
cavities or waveguides). Our analysis includes the basic 
mechanisms taking place in OM systems but also attempts 
a step forward since it includes a full picture of the light-
sound interaction at the nanoscale. Notice that OM 
systems are essentially optical and mechanical oscillators 
coupled through an AO interaction so that, depending on 
the coupling strength, the coupled oscillator system could 
be driven into different regimes [23, 24]). As a result of our 
analysis, the proposed methods as well as the underlying 
structures could be used to implement miniaturized AO 
modulators, to enhance the stimulated Brillouin scatter-
ing (SBS) process in waveguides [15], and even to pave the 
way towards stimulated phonon generation and hybrid 
photonic-phononic circuits where light and elastic waves 
are used together to achieve novel functionalities like 
optical storage [25] or dual sensors.

Since we pay special attention to phoxonic crys-
tals as a systematic way to observe strong light-sound 
interaction at the nanoscale, we start our review by 
describing the most suitable structures to get phoxonic 
bandgaps (Section 2). The different AO interaction pro-
cesses that can take place in nanoscale structures are 
described in Section 3. Section 4 shows several exam-
ples of AO interactions in nanoscale cavities and wave-
guides. Finally, some applications resulting from the 
enhanced AO interaction at the nanoscale are reviewed 
in Section 5.
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2   Phoxonic crystals: periodic 
 structures to manage light 
and sound at the nanoscale

2.1  Materials for building phoxonic crystals

As a general picture, phoxonic crystals consist of a host 
medium in which periodic inclusions (typically made by 
removing the material, for instance, by perforating it with 
holes) are inserted. The host material has to be transpar-
ent for both photons and phonons at the frequencies of 
interest and has to exhibit high optical/acoustic imped-
ance in order to produce wide bandgaps when the peri-
odicity is inserted. Some employed host materials are 
silicon (Si) [6], silicon nitride (SiN) [5], indium phosphide 
[10], aluminum nitride (AlN) [26], and lithium niobate 
(LiNbO3) [27]. In general, light is produced outside and 
injected into the phoxonic crystal via optical fibers. In con-
trast, phonons are created inside the phoxonic structure. 
In some cases, phonons come from thermal fluctuations 
which are transduced to the light confined into a high-Q 
cavity [5]. Phonons can also be created optically by some 
of the mechanisms discussed in Section 3 (for instance, 
via radiation pressure). If the host medium displays piezo-
electric properties, such as AlN and LiNbO3, hypersound 
phonons can also be produced via electro-acoustical 
transducers [28, 29]. This last choice is extremely pow-
erful since it allows for creating photons and phonons 
independently so that their interaction can be tailored at 
will. However, and despite some recent attempts [30], the 
integration of electrically-controlled GHz phonon sources 
so that acoustic waves can be generated in a controlled 
and efficient way still remains a formidable technologi-
cal challenge. Although in the examples below we focus 
mainly on phoxonic crystal structures built on silicon 
slabs, all the models explained in this review can be used 
for all the possible host materials.

2.2  Types of phoxonic crystals

The simplest way to classify phoxonic crystals is according 
to the number of dimensions for which periodicity occurs. 
Thus we can have one dimensional (1D), two dimensional 
(2D) and three dimensional (3D) phoxonic crystals. Only 
the latter can provide a full 3D phoxonic bandgap, this 
is, the existence of frequency intervals in which light and 
sound propagation is completely inhibited no matter the 
propagation direction we consider. However, 1D and 2D 

phoxonic crystal structures can also display very interest-
ing features and, importantly, can be much more easily 
modeled numerically as well as manufactured than their 
3D counterparts. As a result, 1D and 2D structures have 
received most attention so far and we focus mainly on 
them.

In all the considered structures, the introduction of 
defects into the otherwise perfect structure can enable 
the existence of photonic and phononic frequency bands 
inside the band gap. These modes cannot propagate out 
of the defect and, as a result, their energy will be localized 
in the defect region, which can have a transverse size as 
small as half the wavelength. For instance, we can intro-
duce point defects in order to create phoxonic cavities (in 
which light and sound can be simultaneously confined) 
[6, 7], or linear defects to create waveguides with special 
dispersion properties, e.g., slow photons/phonons [14, 22], 
not achievable simultaneously in conventional homoge-
neous materials. Notice that wave confinement in defects 
can be also achieved without having a full phoxonic 
bandgap, but partial phoxonic bandgaps for photonic and 
phononic modes of a given symmetry only, as discussed 
below. Phoxonic confinement (in the sense of being for 
both photons and phonons simultaneously) is then effec-
tive only for waves respecting this particular symmetry 
and incident wave fields have to be prepared accordingly. 
However, fabrication imperfections in a real structure can 
lead to symmetry breaking, which could result in unde-
sired coupling to modes with other symmetries. The exist-
ence of a full phoxonic bandgap would completely avoid 
such coupling, which could have a strong impact when 
creating phoxonic cavities and waveguides.

2.3  1D and 2D infinite phoxonic crystals

We start the description of phoxonic crystal structures 
with the simplest one: a 1D phoxonic crystal, which is 
formed by an infinite periodic sequence of layers of two 
(or more) materials having different refractive indices 
and acoustic impedances, such for instance Si and SiO2 
(see Figure 1A). Since this structure displays transla-
tional symmetry with no boundaries in the dimensions 
perpendicular to the periodic one, propagation is con-
sidered to be uniquely along the z-axis, whilst wave 
vector components along x and y are neglected. Under 
these conditions, a 1D phoxonic bandgap for modes 
propagating along z can appear and the insertion of a 
point defect, as depicted in Figure 1A, can lead to the 
simultaneous localization of light and sound at certain 
frequencies [31]. Notice that a very similar 1D structure 
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Figure 1 Different phoxonic crystal structures shown in increasing degree of complexity.  
(A) A 1D phoxonic crystal is periodic along one dimension (z-axis) by including alternating layers of silicon and silica; a defect layer, 
created by increasing the thickness of a silica layer up to 2a, a being the period, can lead to the localization of light and sound in a certain 
regions and at certain frequencies (picture from Ref. [31]). (B) Electric (top) and displacement (down) fields in a point defect created in 
a 2D infinite phoxonic crystal made of silicon perforated by a square lattice of circular holes frequencies (picture from Ref. [21]). (C), (D) 
Scanning electron images of phoxonic cavities created on two different types of 1D silicon phoxonic crystal slabs. In (C) (picture from Ref. 
[7]) a series of elliptical holes perforates a silicon strip, which gives rise to partial photonic and phononic bandgaps. A modulation of the 
ellipses dimensions allows for the creation of a point defect at the middle of the strip. The strip is surrounded by a 2D phononic crystals 
structure displaying a full phononic bandgap which contributes to reduce mechanical losses. In (D) (picture from Ref. [32]) a series of 
stubs is added to the array of circular holes in order to provide a full 1D phononic bandgap. (E) Electric (top) and displacement (down) 
fields at resonance in a point defect created in a 2D “snowflake” phoxonic crystal slab frequencies (picture from Ref. [33]). (F) a 3D array of 
metallic nanospheres provides a full 3D phoxonic bandgap (Ref. [ 34]). All figures are reproduced with permission of the different editori-
als (APS, NPG and AIP).

was first considered by Trigo et al. [35] much before the 
concept of the phoxonic crystal was proposed. In those 
experiments, a phononic cavity (super-lattice with perio-
dicity of a few nanometers) was enclosed within two pho-
tonic Bragg mirrors forming a Fabry-Perot cavity (a few 

100  nm periodicity). THz phonon generation attributed 
to the strong confinement of both fields was achieved. 
Because the phononic and photonic periodicities are 
well different (and also the resulting wavelength of the 
confined photons and phonons), the structure is not 
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strictly speaking a phoxonic crystal as we defined before, 
since different periodicities are considered for localizing 
phonons and photons. However, it perfectly illustrates 
the power of the simultaneous confinement and interac-
tion of photons and phonons in nanoscale volumes.

If we add periodicity in another dimension, we get a 2D 
phoxonic crystal. It was for this geometry that Maldovan 
et  al. introduced the phoxonic crystal concept [21]. Spe-
cifically, they considered the case of air holes in silicon as 
well as the inverse situation, silicon pillars in air. As in the 
1D case, the analysis is limited to wave vectors contained 
in the periodicity plane, so the problem is completely 
2D. They found that the first case (holes on silicon) was 
the most promising, because of the interesting phononic 
properties of the structure. Figure 1B shows the confined 
electric and displacement fields at frequencies within the 
obtained 2D phoxonic band gap obtained when a point 
defect is inserted in such 2D phoxonic crystal [21]. Clearly, 
it can be seen the capabilities of such a 2D structure to 
tightly confine light and sound in a nanoscale volume. 
Later, Sadat-Saleh et al. [27] performed a comprehensive 
search of phoxonic band gaps for a 2D infinite crystal of 
air holes in lithium niobate. This material has a refractive 
index smaller than silicon, which renders the existence of 
complete photonic band gaps more difficult; the phononic 
crystal properties, however, are not strongly affected by 
the change in the material, because the elastic contrast 
is given by the free boundaries of the holes, while optical 
fields extend in the air filling the holes as well as in the 
matrix.

1D and 2D infinite phoxonic crystals have remained 
idealized structures not directly accessible to experi-
ments. The reason is that calculations assume an infinite 
length in the non-periodic dimension as well as wave 
vectors completely confined in the periodic plane (to 
avoid closure of the bandgaps), which are conditions dif-
ficult to satisfy from a practical point of view. However, for 
the 2D case, a very close solution is provided by photonic 
crystal fibers (PCF), which are well known as guides for 
light with special properties [36]. Interestingly, they can 
also confine and guide phonons. Unlike in their 2D infinite 
phoxonic crystal counterparts, propagation of photons 
and phonons is considered to be along the infinite non-
periodic direction, whereas the wave confinement inside 
the fiber core (which is a linear defect inserted into the 2D 
periodic pattern) is achieved via the 2D bandgap. Trapped 
phonons within the solid core of a PCF were predicted and 
observed experimentally [37]. It was furthermore shown 
that PCFs can support phononic band gaps and defect-
guided acoustic modes can be used to suppress SBS in a 
silica optical PCF [38].

2.4  1D and 2D phoxonic crystal slabs

A proper way to translate 1D and 2D infinite phoxonic 
crystals into real structures is to build the periodicity on 
a slab so that wave confinement in one (for the 2D case) 
or two (in the 1D case) spatial dimensions is achieved via 
impedance contrast between the slab material and its sur-
roundings [6]. Such slab structures (see Figure 1C, D and 
E) were first introduced independently for both photons 
[39–42] and phonons [43]. For the case of phonons, if the 
structure is surrounded by vacuum, there is no chance for 
the phonons to escape from the solid slab. The case is very 
different for photons. In 1D or 2D photonic crystal slabs, 
the band gaps should be searched below the light cone, 
this is, in the frequency-momentum (ω-k) region in which 
light cannot propagate in free-space. This will ensure the 
confinement and propagation of the waves along the slab 
and avoid the radiation of light into vacuum [40]. In con-
trast, there is no reference to the light cone in infinite 1D 
or 2D photonic crystals. Notice that here the existence of 
phoxonic bandgaps is limited to photonic and phononic 
modes confined in the slab. Such modes can be divided 
into even and odd parities depending on their symmetry 
with respect to the plane parallel to the periodicity plane 
and which divides the slab into two halves. Ideally, 1D and 
2D phoxonic crystal slabs should be tailored to display full 
phoxonic bandgaps, this is, frequency intervals for which 
the propagation of guided photons and phonons is forbid-
den for all symmetries. However, this can be quite chal-
lenging, although feasible in the 2D case by using square 
or honeycomb lattice of circular holes perforating a silicon 
slab (see [12]).

The requirements can be enormously relaxed if we 
consider the possibility to have partial bandgaps, this is, 
bandgaps taking place for a given symmetry, as it is typi-
cally done in photonic crystals. In a photonic crystal slab, 
even and odd symmetry modes are completely decoupled 
so they can be separately excited from the outside by 
properly choosing the excitation conditions. Defect modes 
arising in the photonic bandgap when the periodicity is 
broken will also conserve a given symmetry. Therefore, we 
can deal separately with each symmetry and try to find 
partial bandgaps. In real experiments, modes of different 
symmetries can be accessed just by properly choosing the 
polarization of the input light (for instance, L3 cavities 
[41] or W1 waveguides [42] in triangular lattice 2D pho-
tonic crystal slabs support even-parity modes which are 
efficiently excited using TE-polarized light). In principle, 
the same idea could also be applied to phononic modes, 
although the practical way to excite separately different 
symmetries is less obvious. For instance, let us consider 
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the simplest case: a 1D chain of circular holes in a sus-
pended silicon strip. Such a structure is very well known 
to support an even parity photonic bandgap which can 
allocate defect modes in cavities [39]. Concerning its 
phononic behavior, it does not support a full bandgap 
for guided modes [43] but a partial bandgap can appear 
for certain modal symmetries [44]. Using this approach, 
the localization of photonic and phononic modes with 
certain symmetries in point defects created on 1D phox-
onic crystal slabs possessing partial bandgaps has been 
recently demonstrated [7, 44].

Unavoidably, fabrication processes will break the 
physical symmetry of the structure, leading to unde-
sired coupling between modes with opposite symmetries 
[44]. For the case of point defects, this will mainly result 
in mechanical losses and a reduction of the mechanical 
Q-factor of the cavity, which can be a serious drawback 
in some applications. In Refs. [7, 8, 44], a 1D phoxonic 
crystal containing a cavity is surrounded by a 2D structure 
having a full phononic bandgap (see discussions about 
2D phoxonic crystals below) to avoid phonon leakage (see 
Figure 1C). However, this solution does not prevent that 
some phonons escape from the cavity region by coupling 
to phonon modes of other symmetries and propagating 
along the longitudinal direction, which could be pre-
vented if the cavity was created into a 1D phoxonic crystal 
displaying a full phononic bandgap.

An interesting way to get a complete phononic 
bandgap in a 1D phoxonic crystal slab is the inclusion of a 
periodic chain of stubs in addition to the circular holes in 
a silicon waveguide surrounded by vacuum [45]. The inser-
tion of periodic circular holes in the waveguide is actually 
sufficient to create a wide photonic band gap for even sym-
metry modes but the stubbed waveguide adds the full pho-
nonic bandgap. The phononic and photonic behavior of 
this 1D silicon phoxonic crystal slab is described in Section 
4.1.3. A cavity inserted in this 1D phoxonic crystal slab 
would prevent the leakage of phonons out of the cavity in 
the longitudinal directions, since there are no phononic 
modes to which phonons scattered in undesired imperfec-
tion can couple. The simultaneous localization of light and 
sound in a cavity created in 1D stubbed phoxonic crystal 
slab (see Figure 1D) having a full 1D phononic bandgap has 
been recently demonstrated experimentally [32].

If the slab is perforated by a 2D array of holes, we can 
get a 2D phoxonic crystal slab. In comparison with the 1D 
case, the same conclusions regarding the existence of full 
and partial bandgaps pervade. Point defects can also give 
rise to cavities for localization of light and sound but in 2D 
structures we can also introduce linear defects to create 
phoxonic waveguides (in the sense that they can guide 

phonons and photons with ideally no losses) [14, 22].  
A comprehensive study of the simultaneous existence of 
absolute phononic/photonic band gaps in silicon slabs 
perforated by circular holes can be found in Refs. [12, 13]. 
In [12], the existence of simultaneous phononic and pho-
tonic band gaps in finite 2D crystals of various structures 
constituted by a periodic array of cylindrical holes in a 
silicon slab, i.e., square, honeycomb, and triangular lat-
tices and, more generally, in centered square and boron 
nitride lattices, was analyzed. It was found that simulta-
neous absolute phoxonic band gaps for guided modes can 
be obtained with the honeycomb lattice. For the square 
and honeycomb lattices, the simultaneous confinement of 
both elastic and electromagnetic energy is further possible 
for certain mode symmetries, this is, partial bandgaps can 
be found. One can note that the triangular lattice, which 
is the most widely used in photonic crystal devices, is not 
appropriate for sound since phononic gaps exist only at 
very high filling factors. However, the simultaneous local-
ization of light and sound waves in cavities created on a 
2D triangular-lattice photonic crystal slab is still possible, 
although the localization of phonons is caused by imped-
ance mismatching rather than by the existence of a peri-
odic lattice [10]. In the previous cases, the efforts towards 
obtaining a 2D phoxonic bandgap have been focused on 
changing the relative dimensions of the periodic cell for 
a certain lattice but always assuming that there is a single 
circular hole in it. Wide 2D phoxonic (even-symmetry for 
photons and full for phonons) bandgaps on dielectric 
slabs have also be obtained by perforating the dielectric 
slabs with more complex cross- or snowflake- shaped 
holes [46]. The co-localization of light and sound waves in 
a cavity created on a 2D planar snowflake-type phoxonic 
crystal (see Figure 1E) has been recently demonstrated 
experimentally [33]. In Section 4.1.2, we will show an 
example of light and sound localization in cavities created 
on 2D phoxonic crystal slabs.

For silicon slabs drilled with cylindrical air holes, a 
complete photonic gap occurs only for a restricted range of 
the geometrical parameters in the honeycomb and boron 
nitride lattices, while for a wide range of parameters the 
phononic gap is accompanied only by a photonic gap 
with a given symmetry (odd or even) [12]. Instead, in an 
alternative 2D structure consisting of pillars on top of the 
silicon plate the complete gaps can exist over a wide range 
of parameters. In addition, it is not required to choose a 
relatively high filling fraction, in contrast to the case of 
air holes in silicon. Using this approach, the existence of 
2D phoxonic band gaps has been predicted in a structure 
constituted by a periodic array of silica pillars deposited 
on a silicon layer of finite thickness [47].
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2.5  3D phoxonic crystals

Absolute phoxonic gaps (in the sense that light and sound 
propagation is forbidden along all spatial directions for 
some frequencies) have also been predicted for 3D peri-
odic structures. For example, metallic spheres embedded 
in an epoxy matrix exhibit phononic band gaps for a wide 
range of lattices and filling fractions [34]. However, the 
simulations show that only almost touching spheres in 
a simple cubic lattice could give absolute phoxonic band 
gaps. For gold spheres with radius close to half a micron 
(see Figure 1F), the gaps are predicted at around 1550 nm 
for light and close to 10 GHz for sound [48]. Similar simul-
taneous complete phononic and photonic band gaps 
where also predicted for simple cubic lattices of dielectric 
spheres connected with dielectric cylinders [49]. Here we 
should note that by proper engineering of the incoming 
optical and elastic waves it is also possible to achieve 
simultaneous localization of the two fields inside partial 
gaps occurring for certain lattice direction and/or polari-
zation [50].

3   Modeling interaction of light with 
elastic waves

3.1   AO interaction in nanoscale photonic 
structures

There are several ways to describe the interaction of 
photons with phonons inside materials, in either particle 
or wave terms, or a mixture of both. Let us first give some 
general physical remarks before proceeding to a descrip-
tion of the different effects we will consider. From a micro-
scopic point of view, photons interact at the atomic scale 
with the local electronic distribution. The correspond-
ing macroscopic picture is that of the induced dielectric 
polarization and magnetization of materials in the frame 
of material Maxwell equations. Similarly, elastic waves 
satisfy the dynamical equations of continuum mechanics, 
usually limited to purely elastic contributions for small 
strains. A microscopic view of the same system leads to 
the picture of phonons as solutions of lattice dynamics 
equations. Acoustic phonons, with frequencies well below 
any internal molecular resonance and with wavelengths 
much longer than the mean inter-atomic distance, can 
be understood as being equivalent to continuum elastic 
waves. It remains that elastic waves or acoustic phonons 
can both be viewed as collective vibrations of the atomic 

lattice, with displacements measuring the departure of the 
centers of mass from their equilibrium positions. The mass 
of atoms is mostly located in nuclei, but the electronic dis-
tribution in the lattice is obviously strongly involved in the 
exact form of the inter-atomic potentials that enter lattice 
dynamics equations – or in classical terms, the stiffness or 
elastic constants of the medium. It is important to remark 
that the role of electrons is thus essential though indirect 
in the coupling of optical and elastic waves inside matter.

In the context of structures such as cavities and wave-
guides, we can concentrate on coherent acoustic phonons 
in the long wavelength limit and thus treat them as elastic 
waves. The classical picture of acousto-optics is that a 
traveling elastic wave will cause a dynamic stress varia-
tion inside a material, which will result in a dynamic vari-
ation of its refractive index. This so-called photoelastic 
(PE) effect considered in Section 3.2 is usually described 
phenomenologically through the material PE tensor [1]. In 
addition, the travelling acoustic wave causes any material 
interface it meets to vibrate, for instance the boundaries of 
a silicon nanophotonic cavity in air. We term the resultant 
AO modulation effect the moving-interface (MI) effect and 
discuss it shortly in Section 3.3.

As we just discussed, a propagating elastic wave 
causes the electronic distribution to be modulated on an 
acoustic wavelength scale and at acoustic frequencies, 
and hence the polarization of the medium to oscillate 
as the elastic wave passes. Reciprocally, volume optical 
forces are produced along the propagation of optical 
waves, which act as a driving stress distribution for the 
generation of elastic waves, the so-called electrostriction 
(ES) effect described in Section 3.4. In addition, surface 
optical forces such as radiation pressure can be exerted at 
the boundaries of a cavity or a waveguide, as we discuss 
in Section 3.5.

Notice that these different mechanisms can be gener-
ally classified into volume and surface effects, depend-
ing on whether the AO interaction is manifested in a bulk 
media or at the interface between two different materi-
als. This idea has been used to schematize the different 
mechanisms in Figure 2. Moreover, the different effects 
can also be distinguished depending on the type of wave 
originating the interaction: PE and MI effects are caused 
by a propagating acoustic wave that modifies the elec-
tromagnetic properties of the host medium whilst ES 
and radiation pressure induce strain in the material as a 
consequence of the propagation of an optical wave. The 
energy exchange between light and elastic vibrations can 
be seen as a three wave interaction process (see Figure 2). 
According to this picture, a phonon scatters light inelasti-
cally, at another frequency, and creates another photon; 
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or the simultaneous propagation of two different light fre-
quencies (two photons) can create an elastic deformation 
(generate a phonon). However, in many cases, more than 
three waves can be involved in the interaction process 
(for instance, two phonons can take part in the scattering 
process) but always keeping the energy and momentum 
conservation rules. It should be also highlighted that the 
strong field overlapping taking place when confining light 
and sound at the nanoscale usually leads to the coexist-
ence of several of these effects. Overall, the different cou-
pling mechanisms of moving matter with electromagnetic 
waves can give rise to many interesting phenomena like 
Brillouin light scattering by acoustic phonons, SBS in 
waveguides [15], or cavity optomechanics [2, 3]. All these 
phenomena put acousto-optics at work in the nanoscale 
level.

3.2  Photo-elastic effect

The photo-elastic (PE) effect (see Figure 2A) as considered, 
e.g., in acousto-optics, is a phenomenological approach 
well adapted to experiments [51, 52]. By phenomenologi-
cal we mean that it is given in the form of a constitutive 
relation that couples the optical wave equation and the 
elastodynamic equation. Suppose an elastic wave that 

Volume effectsA B Surface effects

Figure 2 Simplified schemes of (A) volume and (B) surface AO 
effects. (A) An acoustic wave (frequency Ω) propagating though a 
bulk medium modifies the permittivity tensor by an amount Δεr, 
which affects propagating optical waves (PE effect); A propagating 
optical wave (frequency ω1) can also put the medium lattice into 
vibration, creating an acoustic phonon via ES. (B) An acoustic wave 
propagates through an interface between two different media and 
put it into mechanical motion (MI effect), which can affect photons 
impinging on the interface; Photons impinging on the interface can 
also put it into motion via radiation pressure. In all the cases, under 
proper conditions and considering a first-order approximation, a 
third wave (photon with frequency ω2 = ω1 ± Ω) can result from the 
coupling between the Ω phonon and the ω1 photon, such as in the 
cases of OM coupling in cavities and SBS in waveguides. The differ-
ent phenomena are described under the framework of three-wave 
interaction, although in many cases more than three waves can 
participate in the interaction process.

propagates in a medium, with the components of the 
vector displacement field ui written as

 
( , ) ( ) exp( ( - )) c.c.i iu t u i tΩ= ⋅ +r r K r

 (1)

where Ω and K are the angular frequency and the wave 
vector of the elastic wave, respectively. If the displace-
ments remain small as compared to the wavelength, then 
according to the Pockels effect it will induce a change in 
the inverse of the permittivity tensor at optical frequen-
cies that is linear with the strain (first-order or linear 
approximation):

 
1

,( )∆ε− =r ij ijkl k lp u
 

(2)

with pijkl being the rank-4 photo-elastic tensor, resulting in 
the nonlinear polarization

 0 ,i ijkl j k lP E uε χ=
 

(3)

with the electric susceptibility

 r im-( ) ( ) .ijkl r jn mnklpχ ε ε=
 (4)

In the previous expressions, E is the electric field 
vector, P is the polarization, ε0 is the electric permittiv-
ity of vacuum, and uk, l is the strain tensor (the subscript  
“l” means derivative with respect to coordinate xl). Here 
we will use Einstein’s convention of implied summation 
on repeated indices of tensors. The above formulation 
is especially useful in locally homogeneous media, i.e., 
if the elastic and optical properties do not change at the 
scale of the displacements, while at the same time they 
can depend on space and time. Indeed, the driven optical 
wave equation can be taken as

 

2 2

02 2 2

( )1( ) -r

c t t
ε

µ
∂ ∂∇× ∇× + =

∂ ∂
E PE

 
(5)

where the part of the permittivity that is directly influ-
enced by elastic waves, in the right-hand side of the 
equation, has been purposely separated from the part 
that does not depend on it, in the left-hand side. The non-
linear polarization P explicitly depends on the phonon 
frequency as Eqs. (1) and (3) show. In the frame of acou-
sto-optics, where it is generally assumed that the elastic 
wave is unperturbed by optical waves, the non-linear Eq. 
(5) can be transformed into a set of coupled linear equa-
tions, using an expansion in diffracted optical waves, and 
solved by matrix algebra [53]. In general, Eq. (5) can be 
solved using the electromagnetic Green dyadic G0(r, t; r′, 
t′) of the unperturbed system without the AO interaction. 
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The electric field is given by the Lippmann-Schwinger 
equation for the electric field component of the wave 
scattered due to the AO interaction can be written in a 
Born series [31]:

3 0 2 0
0 2

3 3 0
4

2 0 2 0

1( , ) ( , ) ( , ; , ) ( , ) ( , )

1 ( , ; , ) ( , )

( , ; , ) ( , ) ( , ) ...

r t
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t r t

t t d r dt t t t t
c

d r dt d r dt t t t
c

t r t t t

ε

ε

ε

′

′ ′′

= + ∆ ∂′ ′ ′ ′ ′ ′ ′ ′
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∫ ∫

∫ ∫ ∫ ∫

E r E r G r r r E r

G r r r

G r E rr

 

(6)

where E0(r, t) is the wave field if the AO interaction is 
ignored, while the time derivative of Δεr is neglected. It 
can be shown that the electric field can be expressed in 
the following series expansion

 
- -in t

0, 1, 2
( , ) ( ) .i t

nn
t e eω Ω

= ± ±
= ∑E r E r

 
(7)

This means that the total outgoing (transmitted plus 
reflected) wave consists of an infinite number of mono-
chromatic waves with frequencies ω, ω ± Ω, ω ± 2Ω, …, 
which result from elastic and inelastic photon scattering 
involving absorption and/or emission of zero, one, two, 
or more phonons. Moreover the intensities of the above 
series expansion determine the corresponding inelastic 
light scattering cross sections. In case of small AO effect, 
the corresponding Fourier spectrum is essentially domi-
nated by the first-order term (three-waves interaction 
framework) while all higher-order terms are at least one 
order of magnitude smaller. This is the behavior expected 
in a usual pump-probe or Brillouin/Raman scattering 
experiment where single-phonon processes are involved 
and expansion up to first order is sufficient. This is also 
the case in most of the theories employed to describe 
cavity optomechanics phenomena, where a first Born 
approximation for the AO interaction is used. However, if 
the optical and acoustic modes are both simultaneously 
localized with a strong spatial overlap, a very strong inter-
action is possible and, even for moderate initial elastic 
strains, more terms are required in the Born-series expan-
sion of the Lippmann-Schwinger equation for an accurate 
description of the interaction process.

3.3  Moving interface effect

As it travels, an elastic wave deforms the interface between 
two different materials. Indeed, within a thin layer in the 
vicinity of the interface with a thickness proportional to 
the displacement field normal to the interface, the volume 
originally occupied by material 1 is now occupied by 

material 2 and vice-versa. Thus, it results in a modification 
of the dielectric constant that in turn affects the propaga-
tion of the optical waves. The moving interface (MI) effect 
will then be proportional to the displacement field and 
to the difference between the dielectric constants of the 
materials on both sides of the interface, as schematized in 
Figure 2B. As mentioned previously, there are five orders 
of magnitude between elastic frequencies (up to the GHz 
range) as compared to optical frequencies (a few hundred 
THz) in typical phoxonic structures. As a result, at any par-
ticular instant in time τ the optical wave can be described 
as seeing a deformed but static medium, described by 
the spatial distribution of εr(r, τ) appearing in Eq. (5). By 
decomposing the period T of the elastic wave in a number 
of snapshots, the induced effect on optical propagation 
can then be straightforwardly computed [8]. In a cavity, 
the shape of the resonator will change over time, and the 
variation of the resonant frequency of a particular optical 
cavity mode can readily be obtained as a function of the 
acoustic strain. In a waveguide, it is similarly possible to 
consider the variation of the dispersion relation of a par-
ticular guided wave as a function of the acoustic strain. 
It is important to note that unlike the PE effect, which 
further depends on PE tensor [Eqs. (2–4)], the MI contribu-
tion to the AO effect depends only on the refractive indices 
of the materials on both sides of the interface. Needless to 
say, it vanishes for equal refractive indices.

3.4  Electrostriction of acoustic phonons

Having discussed the influence of an elastic wave on 
the modulation of light, we now consider the reciprocal 
effect of light on elastic waves. The PE tensor couples light 
with elastic waves, but light can also induce a strain field 
through electrostriction (ES), which is the complementary 
of the PE effect if we look at the kind of wave launching 
the interaction. This is described as an optical volume 
force that drives the elastic wave equation

 

2

2 -( ) , esi
ijkl k,l , j ij, j

u
c u T

t
ρ

∂
=

∂  
(8)

where cijkl are the elastic tensor components and the ES 
stress tensor given by

 
( 1) ( 2 )*

0- .ε χ=es
ij ijkl k lT E E

 
(9)

Both PE and ES effects are for instance involved in the SBS 
process (see Section 3.7), which is often understood as a 
single mono chromatic optical wave propagating through 
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a material, and a Stokes wave is backscattered while an 
acoustic wave is generated, again in a three-waves inter-
action picture [54]. We will illustrate the ES effect in the 
case of phoxonic waveguides in Section 4.2.

3.5  Radiation pressure

Radiation pressure is the pressure exerted by incident 
photons impinging on a surface. Part of the momentum 
of the incident light is transferred to the surface which is 
put in motion (see Figure 2B). This way, light can manipu-
late nano-objects, through the force exerted by radiation 
pressure [17]. Although the involved forces are extremely 
small, there are some ways to increase the interaction 
up to noticeable levels. For instance, this can be done 
by using photonic cavities: a photon bounces back and 
forth on the cavity walls many times, so the radiation 
pressure effects can be enhanced by orders of magnitude 
[2]. Radiation pressure plays a key role in cavity optom-
echanics, as it is use to put in motion the mirrors sur-
rounding an optical cavity [3]. The basics of OM coupling 
taking place in cavities is described in the next section.

3.6  Optomechanical coupling in cavities

Light confinement in micron-sized photonic cavi-
ties opened the way towards a platform for controlla-
ble transduction between electromagnetic and elastic 
waves. This coupling of light with the mechanical 
motion of micro- and nano-resonators has attracted a 
lot of attention recently, in direct relation with the field 
of cavity optomechanics [2, 3]. There are many pub-
lications describing the OM interaction mainly using 
a coupled mode theory assuming that the interaction 
between optical and elastic modes is weak and can be 
treated with a first order perturbation approach [55, 56]. 
In brief, tuning a laser at the resonance frequency of 
an optical cavity will trap light at the cavity region and 
allow for momentum transfer from light to the material 
via radiation pressure. Such a deformation will detune 
the cavity resonance and produce a mechanical vibra-
tion through a feedback mechanism which is controlled 
by the AO interaction. In submicron structures, where 
the interface to volume ratio is large, the MI effect has 
also a significant contribution and this allowed the 
demonstration of OM effects in materials independent 
of their PE coefficients. In the case of coupled wave-
guides, Povinelli et al. [57, 58] proposed that the optical 
gradient force is given by

 
OM

1-F g U
ω

=
 

(10)

where U is the total system energy, ω is the eigenmode fre-
quency of the resonant system, and

 
OM

k

g
x
ω∂=

∂
 

(11)

is the so-called OM coupling coefficient. This last param-
eter stands for the variation of the optical resonant fre-
quency when the “relevant” distance in the system varies; 
for coupled waveguides, this distance is the length of the 
air gap separating them, while spatial phase matching is 
achieved. The gOM coefficient is essentially determined by 
the strength of the AO interaction. The derivation of Eq. 
(10) involves the idea that a change in internal energy of 
the coupled system should equal the work done by the 
mechanical force. This ad hoc approach has been prac-
tically successful, but gives no clue as to the relation 
between the optical field generating the force and the 
detailed vibrations induced inside the resonator (i.e., in 
contrast with expressions such as Eqs. (8, 9) that dictate 
the precise elastic wave dynamics). To eliminate possible 
ambiguities that arise when applying gOM to some systems, 
a related parameter is typically used [59]: the vacuum OM 
coupling rate, ,�g  is the frequency shift of the photonic 
resonance when the motion of the resonator has an ampli-
tude equal to the zero-point fluctuation amplitude [7]:

 OM / 2 effg g h m Ω=�
 

(12)

where meff is the effective mass of the cavity under study. 
In the context of the optical excitation of the mechanical 
motion of nanomechanical resonators, the OM coupling 
defined by Eq. (12) is used to quantify the coupling rate 
between the optical and the mechanical modes of the 
resonator [7]. In this picture, its value is an intrinsic char-
acteristic of the resonator, independently of the external 
optical waveguide that couples photons in and out of the 
resonator. Since it depends on the field distributions of 
the optical and mechanical modes, it must be obtained via 
integration over a volume fully containing the resonator.

Phoxonic cavities with enhanced AO interactions like 
the ones that we present in this work are perfect candi-
dates for the demonstration of OM coupling, as already 
demonstrated [6, 7, 32]. However, here we should note 
that the phenomenological description of OM coupling 
strength in terms of gOM could become questionable in 
the strong coupling regime, and a generalization of the 
coupled mode theory to allow for multiphonon interac-
tion paths is required in this case.
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3.7   Stimulated Brillouin scattering in 
nanoscale waveguides

Another important manifestation of the AO interaction 
is when two optical modes, with small difference in their 
frequency, interfere in a background of thermal noise. 
Then, the two optical waves can be coupled through a 
phonon provided the three waves conserve momentum 
and energy. The interference of the two optical waves 
increases the occupation number of the particular phonon 
mode through the ES mechanism, which in turn enables 
stimulated energy transfer between the two optical waves. 
This picture can be equivalently described as the inter-
action of two photons and a phonon, as in the Brillouin 
effect, making the introduction of phase-matching easier 
[60, 61]. Specifically, we represent the optical wave as the 
superposition

 

(1)
1 1

( 2 )
2 2

( , ) ( )exp( ( - ))
( )exp( ( - )) . .

t i t
i t c c
ω

ω

= ⋅
+ ⋅ +

E r E r k r
E r k r

 (13)

Phase-matching in the three-wave interaction is strictly 
achieved if Ω = ω1-ω2 and K = k1-k2. Equation (13) then leads 
to
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and
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Remarkably, the ES process induces an optical volume 
force that drives the elastic wave equation according to [7]:
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with the ES stress tensor given by

 
( 1) ( 2 )*

0- .ε χ=es
ij ijkl k lT E E

 
(17)

Equations (16) and (17) are the same as (8) and (9) and are 
repeated here for convenience. It is important to remark 
that the same PE tensor enters the non-linear polariza-
tion of Eq. (3) and the ES stress tensor of Eq. (16). Actu-
ally, it is possible to consider an interaction Hamiltonian 
for the three-wave interaction so that the dynamical 
equations (14–16) can be derived from a single energy 
balance identity [62]. The possibility of energy transfer 
between a pump wave and signal optical wave mediated 

by an acoustic wave is especially interesting in the case 
of guided wave propagation, such as SBS in optical fibers 
[63]. The same formalism applies equally to other guided 
wave situations, such as photonic wires [15] or phoxonic 
crystal waveguides, which would present the additional 
advantages of stronger field confinement and, ultimately, 
slow-wave behavior. It is also important to remark that 
the optical force is the divergence of the electrostriction 
stress tensor, i.e., ,( ) .= es

ES i ij jF T  Because of the involved 
spatial derivative, it is expected that the optical force will 
be stronger for tightly confined optical fields, but also 
in case that |k1-k2| is large; this is exactly the situation 
found with SBS. Moreover, it is clear that the modulation 
induced by the MI effect scales with the displacement of 
the boundaries, whereas the modulation induced by the 
PE effect scales with the strain inside the medium. This 
suggests a cross-over between the two effects depending 
on the dimensions of the cross-section of the waveguide, 
as it was found by Rakich et al. for nanoscale rectangular 
waveguides [15].

4   Light-sound interaction at the 
nanoscale

4.1  Light-sound interaction in cavities

In this section, we show how the AO interaction between 
light and sound can be modeled in cavities created on 
finite or infinite 1D and 2D periodic structures. Although 
we have chosen silicon as the host material, our analysis 
here is quite general and could be applied to other materi-
als as well as to other kinds of phoxonic structures. The 
cavities consist of point defects properly chosen so that 
photonic and phononic modes with frequencies within 
the bandgap region appear to be confined in the defect 
region. Since the volume occupied by both kinds of modes 
is of the order of a cubic wavelength, the interaction 
between photons and phonons can be very strong, mostly 
if the cavities are designed to have very high Q factors 
(very large lifetimes of photons and phonons in the defect 
region).

4.1.1  Cavity in a 2D infinite phoxonic crystal

It is expected that the high level of energy confinement in 
phoxonic crystal cavities enhances both PE and MI cou-
plings. As reported in Section 3, an acoustic wave induces 
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a variation of the refractive index due to the elastic 
strain and the confinement of elastic energy leads to a 
strengthened index variation. In addition, when the elec-
tromagnetic energy is trapped in a high Q factor cavity, 
the mechanical displacement of the cavity boundaries 
induces a modulation of the resonant frequency of the 
optical cavity [56]. To illustrate this idea, we consider a 
cavity created by a point defect in an infinite 2D phoxonic 
crystal consisting in a square lattice (period a) of holes of 
radius r/a = 0.48 on silicon [11]. Our goal is to investigate 
the modulation of optical modes of the cavity through 
the PE (volume) and MI (surface) effects. The results 
presented below are computed using the finite element 
method (FEM). However, we remark that other methods 
could be used to calculate the optical and acoustical fields 
prior to the calculation of the interaction parameters.

The cavity is defined by filling one hole in the perfect 
structure. The phononic band structure is calculated con-
sidering a super-cell constituted of the cavity surrounded 

by seven unit cells on each side. The separation between 
two neighboring cavities is chosen to be sufficiently large 
to avoid interaction between them. Figure 3 shows the 
modal profiles of the phononic modes and of the TM polar-
ized photonic modes inside the phoxonic bandgap. In our 
calculations, TM (TE) polarization signifies that the mag-
netic (electric) field is along the z-axis. TE modes are not 
considered here as they display a lower confinement than 
TM modes. Cavity modes are labeled in ascending order 
using letters for phononic modes and lowercase Greek 
letters for TM optical modes. In Figure 3 as well as in the 
rest of this section, reduced acoustic frequencies are given 
in dimensionless units (Ωa/2πct), where ct is the trans-
verse velocity of sound in silicon for the crystallographic 
direction [100] (ct = 5844 m/s), whilst normalized photonic 
frequencies are given in dimensionless units a/λ, where λ 
is the wavelength of light in vacuum. For this particular 
case, if the lattice constant is a = 760 nm, the TM photonic 
bandgap occurs at wavelengths around 1550 nm (telecom 

Figure 3 Photonic and phononic localization in a cavity in a 2D infinite phoxonic crystal consisting of a square-lattice of circular holes in a 
silicon matrix.  
(A) Eigenfrequencies of the six phononic cavity modes and corresponding displacement fields. The phononic bandgap is highlighted in gray color. 
For each cavity mode, the blue arrows indicate the displacement field vector =( , )x yu uu  for some spatial positions. (B) Eigenfrequencies of the TM 
optical cavity modes (left) and corresponding magnetic field distributions (right). The photonic bandgap for TM polarization is highlighted in blue.

Brought to you by | Universite de Franche-Comte
Authenticated

Download Date | 3/26/15 1:49 PM



Y. Pennec et al.: Modeling light-sound interaction in nanoscale cavities and waveguides      425

window), while the phononic bandgap will then occur at 
acoustic frequencies between 2.34 and 4.04 GHz.

In Figure 3A, one can see that six modes are located 
in the phononic bandgap. As seen from the displacement 
field distributions, the main deformations are essentially 
localized inside or in the close vicinity of the cavity. For 
instance, mode ‘a’ is essentially a shear mode causing the 
cavity to twist back and forth during an acoustic period. 
The time evolution of mode ‘b’ results in a deformation of 
the cavity in such a way that one diagonal stretches while 
the other contracts during half an acoustic period. During 
each half acoustic period, the mode labeled ‘c’ alterna-
tively expands along one of its sides and contracts along 
the other sides. Modes ‘d’ and ‘e’ are degenerate and their 
distribution profiles are mutually orthogonal. Finally, the 
mode labeled ‘f’ is essentially a breathing mode causing 
only slight distortions of the cavity shape. Figure 3B shows 
that five optical cavity modes with TM polarization appear 
inside the photonic band gap. The first mode α is followed 
by two pairs of degenerate modes: β and γ; and δ and ε.

As described in Section 3, two coexisting mechanisms 
involving local variations of the dielectric permittivity 
are responsible of the AO interaction: the PE and the MI 
effects. In a cavity, the former effect is due to the acous-
tic strain distribution via the Pockels effect whereas the 
latter effect takes into account the dynamic motion of the 
silicon-vacuum boundaries at the holes. Numerically, we 
have considered two methods for the calculation of the AO 
interaction. The first one is based on a quasi-static approx-
imation which is justified by the fact that the optical fre-
quency ω is by five orders of magnitude higher than the 
acoustic frequency Ω. In other words, the calculation of 
optical cavity modes can be performed at several selected 
times within an acoustic period, with the phononic mode 
profile considered frozen. The second method consists in 
calculating the so-called OM coupling coefficient as intro-
duced in Section 3 and summarized by Chan et  al. [44]. 
The general expression for the coupling coefficient given 
by Eq. (11) is developed here for the case of cavities. First, 
the contribution of the MI effect is given by
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where Q is the normalized displacement field (with 
max|Q| = 1), n is the outward facing surface normal, E is 
the electric field, D is the displacement field, subscripts // 
and ⊥ indicate field components parallel or perpendicular 
to the surface, respectively, ε is the material permittivity, 
Δε = ε-εair, and -1 -1 -1

air- .ε ε ε∆ =  Second, the PE contribution is 
derived from first-order perturbation theory as
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So, in Eqs. (18) and (19), gOM,MI and gOM,PE correspond to the 
MI and PE contributions of the OM coupling coefficient 
defined by Eq. (11). An analysis of the symmetry can be done 
to discriminate the phonon-photon mode pairs that provide 
a vanishing AO coupling. We consider the first order of the 
acoustic deformation (one phonon exchange) and search 
for the phononic/photonic pairs for which the OM interac-
tion can take place. If the photonic mode is non-degener-
ate, Eqs. (18) and (19) show that, whatever the symmetry of 
the photonic mode, the coupling coefficients vanish if the 
acoustic mode displays an even-even (ee) symmetry with 
respect to both vertical and horizontal symmetry planes of 
the cavity. Among the six phononic modes shown in Figure 
3A, only (c) and (f) have this property. If two photonic modes 
are degenerate, they can display a finite coupling even for a 
phononic mode with ee symmetry. This is because the cou-
pling coefficients should be written as a matrix where the 
non-diagonal elements can be different from zero. The key 
roles played in AO coupling by mode symmetry and degen-
eracy are discussed more in depth in Ref. [64].

As an illustration, the AO interaction is further ana-
lyzed for phononic modes ‘b’ and ‘f’ with the nondegenerate 
photonic mode α and the doubly degenerate modes β and 
γ. Indeed, these cases provide the strongest AO couplings 
and furthermore cover the main variety of situations that 
can be met. We calculated the modulation of the TM optical 
modes during one acoustic period (0 < Ωt < 2π). The results 
are depicted in Figure 4. This approach allows to compare 
the relative magnitude and sign of the PE and MI effects for 
each phonon-photon pair. For the sake of computational 
facilities, these results are presented when the amplitude 
of the acoustic vibrations is such that the maximum dis-
placement in the cavity is 1% (10-2). Actually, this deforma-
tion is much greater than more realistic values of 10-4 to 10-6 
even if the acoustic excitation was generated by an acoustic 
source. However, for the phononic mode f where the modu-
lations of the optical modes versus time display a sinusoi-
dal behavior (see Figure 4 and discussion below), we have 
checked that the optical modulations remain proportional 
to the vibration amplitude, so they are scalable. For the 
phononic mode b, the bigger acoustic amplitude allows 
to see the effect of non-linearities, namely the exchange of 
more than one phonon during the interaction process when 
the acoustic strain is sufficiently strong. 

We notice that phononic modes ‘b’ and ‘f’ have 
qualitatively different effects on the photonic modes. 
The breathing phononic mode ‘f’ produces an almost 
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sinusoidal modulation of each of the photonic modes and 
does not lift degeneracy. In contrast, the frequency modu-
lation of photonic mode α by phononic mode ‘b’ resem-
bles the square of a sinusoidal function. This modulation 
contains a Fourier component at 2Ω, which means an AO 
interaction with two-phonon exchanges, so more than 
three-waves take part in the interaction process. The evo-
lution of modes β and γ displays the shape of a slightly dis-
torted sinusoidal function and their degeneracy is lifted.

Comparing the strength of both AO mechanisms PE 
and MI contributions, one can notice that the MI contri-
bution is dominant in all cases considered here, although 
both contributions are of the same order of magnitude. 
Obviously, when the amplitudes of both contributions are 
added, their relative phase must be taken into account. 
When the cavity is perturbed by phononic mode ‘f’, the 
two contributions are in phase. In contrast, the two con-
tributions are out of phase for the pairs (b, β–γ). Finally, 
in the case of the pair (b, α), the PE contribution is almost 
negligible. We conclude that in order to maximize the AO 

interaction, it is of paramount importance to design the 
phoxonic cavity so that both contributions, PE and MI, not 
only have high amplitude but exhibit also the same phase 
so they add coherently. Moreover, the PE contribution to 
the AO interaction can be increased especially owing to 
the significant variation of the PE coefficients that occurs 
near a semiconductor band gap. This point was discussed 
recently for silicon and gallium arsenide crystals [64].

4.1.2  Cavity in a 2D phoxonic crystal slab

Similarly to the 2D infinite case, the interaction between 
phonons and photons inside a cavity can be investi-
gated in a silicon slab drilled with air holes organized in 
a square lattice [65]. For definiteness, the phoxonic crystal 
was chosen with the geometrical parameters a = 540 nm, 
h = 325 nm and r = 215 nm. According to Ref. [12], this set of 
parameters results in an absolute phononic band gap in 
the frequency range [5.86, 6.02 GHz] and a photonic gap 

Figure 4 AO interaction in the cavity described in Figure 3. Modulations of the TM photonic modes α (upper panels), β and γ (lower panels) 
induced by the phononic modes ‘b’ and ‘f’. The graphs present the photonic frequency variation as a function of Ωt during one period of the 
phononic mode. Green-solid curves represent the full results when both interaction mechanisms are taken into consideration while red and 
blue lines are drawn respectively for MI and PE effects acting alone.
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of even symmetry in the wavelength range [1455, 1610 nm]. 
The cavity is now defined by removing three holes inside 
the perfect structure, as shown in Figure 5. This cavity, 
which can be named as L3 since it is built by removing 
three holes as in the typical L3 cavity in triangular-lattice 
photonic crystal slabs [41], leads to four phononic cavity 
modes inside the absolute phononic band gap and to three 
photonic modes inside the photonic gap of even symme-
try. In Figure 5, the elastic and the electromagnetic field 
distributions are presented for the phononic mode at 5.95 
GHz and the three photonic modes at 1571 nm, 1515 nm,  
and 1476 nm. It can be seen that all modes are well confined 
inside the cavity, and that the spatial extension of the fields 
is of the order of the wavelength. The AO coupling between 
the phononic mode and the three photonic modes was cal-
culated considering the two coexisting mechanisms, the 
PE and the MI effects, as before. As above, the maximum 
displacement in the cavity is 1% and the modulation of the 
three photonic modes during half an acoustic period is cal-
culated and represented for each effect separately. One can 
notice a significant sinusoidal modulation of each photonic 
mode by the acoustic mode. Nevertheless, the origin of the 
modulation is different for each photonic mode. For the 
first mode, the coupling is mainly due to PE effect, for the 
second it is due to both PE and MI effects, and for the third 
mode it is due to the MI effect. The calculated OM coupling 
rates are also shown in Figure 5 for each mode. Their values 
show coherent relative motion with the coupling strengths 
derived directly from the temporal modulation of cavity 

photonic modes. In comparison, however, the numerical 
evaluation of coupling rates is significantly faster. While 
the coupling rate found for the L3 cavity remains relatively 
low (1 MHz at maximum), we have found coupling rates up 
to 2.47 MHz for another type of defect, detailed in Ref. [64] 
and named cross cavity (consisting mainly in two intersect-
ing L3 cavities), which are slightly larger than the values 
found in the literature for similar slab structures.

4.1.3  Cavity in a 1D phoxonic crystal slab

The same approach can also be applied to 1D phoxonic 
crystal slab cavities. Specifically, we consider a point 
defect created on the 1D stubbed silicon waveguide perfo-
rated by holes as described in Figure 6. The structure pos-
sesses two symmetry planes, Πy (normal to the y-axis) and 
Πx (normal to the x-axis). It can be shown that, keeping 
geometrical parameters of the stubs that are suitable for 
the opening of the phononic band gap, an increase in the 
diameter of the holes leads to a variation of the photonic 
dispersion branches [45]. Although there is no absolute 
photonic band, one can find many partial band gaps for 
specific symmetries with respect to symmetry planes. 
Now, if the period a is chosen to be 500 nm, and all the 
other geometrical parameters as reported in the caption of 
Figure 6, the structure presents a full phononic band gap 
in the frequency range [3.54, 4.11 GHz] and a partial pho-
tonic band gap in the telecom range [1350, 1612 nm]. The 

Figure 5 Light-sound interaction inside an L3 cavity in a 2D square-lattice silicon phoxonic crystal slab.  
(A) 3D schematic view of an L3 cavity inside the square-lattice periodic silicon slab. Field maps: Representation of (B) one phononic (5.95 
GHz) and (C) three photonic (1571 nm, 1515 nm and 1476 nm) eigenmodes of the L3 cavity (C). (D) Modulations of the three photonic modes 
frequencies induced by the phononic mode during half period and the corresponding coupling rates. The blue (red) curves represent the PE 
(MI) contribution.

Brought to you by | Universite de Franche-Comte
Authenticated

Download Date | 3/26/15 1:49 PM



428      Y. Pennec et al.: Modeling light-sound interaction in nanoscale cavities and waveguides

Figure 6 Schematic view of the elementary unit cell that is used in the calculations and the cavity defined by the length Δ created inside 
a 1D silicon phoxonic crystal. Components of elastic (GHz) and magnetic (nm) fields of phononic and photonic eigenmodes for a cavity 
of length Δ = 200 nm. Numerical values of the PE and MI coupling rates are given in the table. The geometrical parameters are: we/a = 3.0, 
wi/a = 0.5, h/a = 0.44, and r/a = 0.3 (h is the silicon slab thickness, we and wi are the length and the width of the symmetric stubs, and d = 2r is 
the diameter of the air holes), with a = 500 nm.

cavity is created by simply changing the distance between 
two neighboring unit cells, as depicted in Figure 6. The 
width of the cavity is characterized by the elongation 
parameter Δ, i.e., Δ = 0 when the crystal is defect-less. The 
insertion of a cavity of length Δ = 200 nm introduces three 
phononic modes and one photonic mode (at 1602.5 nm),  
as shown in Figure 6. Unfortunately, the symmetry of all 
phononic modes in the complete band gap is such that 
they cannot couple to the photonic mode, and so the AO 
coupling rates are close to zero, as shown in the first row 
of the table in Figure 6 for the phononic mode at 3.67 
GHz. This leads to conclude that the existence of a phox-
onic bandgap is not the only condition to ensure strong 
AO interaction inside a phoxonic cavity: a significant 
overlap between photonic and phononic modes must 
be ensured. However, a high AO coupling is obtained for 
other phononic modes that fall inside partial band gaps. 
One example is given in Figure 6 for a phononic mode 
of even-even symmetry with respect to the planes Πx 
and Πy, which appears at 5.93 GHz. This mode provides 
high values for both PEg�  and MIg ,�  which, moreover, add 
in phase. The coupling strength is of the order of other 
values reported in the literature (for instance, the cavity 
in Ref. [7]). A phoxonic cavity can also be introduced by 
periodically changing the structural parameters of the 
unit cell depicted in Figure 6, which would allow for a 
higher optical Q factor of the confined modes. Using such 
approach, the simultaneous confinement of photonic and 
acoustic modes in a phoxonic bandgap has been demon-
strated experimentally [32].

4.1.4  Cavity in a 1D infinite phoxonic crystal

Light-sound interaction can be also studied in the 1D phox-
onic cavity shown in Figure 1A, which can be considered 
the simplest phoxonic structure. Such a study is especially 
useful since it provides a direct insight on the AO interaction 
when both optical and elastic resonances are in the same 
volume. Interestingly, in such a system, the AO interaction 
can be easily treated correctly beyond the first order Born 
approximation, as usually done in cavity optomechanics, if 
we consider the time evolution of the optical wave during 
one period of the elastic wave. To illustrate this, we con-
sider a phoxonic cavity consisting of a single silica layer 
sandwiched between two Bragg mirrors, composed of five 
periods of [SiO2(2a/3)-Si(a/3)] bilayers on the left and right 
(see Figure 1A), which supports optical and elastic modes 
localized inside the 1D phoxonic bandgap (see further 
details in Ref. [31]). Here we present typical results for the 
photonic transmission spectrum (initially neglecting the AO 
interaction) for a cavity with thickness a and normally inci-
dent light (Figure 7B) together with the transmission spec-
trum for longitudinal elastic waves propagating normal to 
the material interfaces (Figure 7A) [31]. The multilayer sup-
ports a dual gap for both light and elastic waves, as well as 
resonances inside the corresponding gaps (Figure 7C and 
D). To account for the continuous variation of the refrac-
tive index in the calculation, we subdivide each layer in a 
large number of (homogeneous) elementary sub-layers. 
When the acoustic excitation is switched on, the optical 
transmission spectrum varies periodically in time with the 
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Figure 7 Optical and acoustic wave confinement in a cavity created in the 1D multilayer structure depicted in Figure 1A: two SiO2/Si Bragg 
mirrors with lattice constant a separated with a SiO2 layer of width a.  
(A) Elastic transmittance spectrum for a longitudinal wave normally incident on the multilayer structure together with the displacement 
field shown in (B) for two frequencies, on and off resonance indicated with the arrows in the transmittance spectrum. (C) Optical transmit-
tance spectrum of the same structure for light incident normal to the interfaces. (D) Electromagnetic field profile at the resonance frequency 
shown in (C). (E) Variation of the optical resonance wavelength (λ0) with time during a period of the elastic wave. Red line: cavity structure 
with a SiO2 layer of thickness a between two Bragg mirrors, and elastic wave on resonance, a zoom of this curve is shown in the inset. Green 
line: cavity structure with a SiO2 layer of thickness 2a between two Bragg mirrors, and elastic wave on resonance [31]. Dashed blue line: off 
resonance elastic wave in the case of a 2a-thick SiO2 layer.

period of the acoustic wave. In Figure 7E we compare the 
temporal variation of the optical resonance frequency for 
two multilayer cavity structures that differ only on the thick-
ness of the central SiO2 layer placed between the identical 
Bragg mirrors. The cavity with a 2a thick SiO2 layer shows 
enhanced AO interaction as reported previously [31], but 
reducing the SiO2 thickness to a, results in a strain field S(z) 
which changes its sign as we cross the middle of the struc-
ture (antisymmetric), giving a zero overlap integral with 
the optical field. In this case, the AO interaction is even 

smaller than the one expected for an off-resonance elastic 
frequency (assuming the same input strain level of 10–3 in 
all the cases). To gain more insight it is useful to consider 
the Fourier transform of the temporal variation of the elec-
tric field during one period of the elastic wave. The analy-
sis of the Fourier coefficients in the series expansion of the 
electric field [Eq. (6)] shows that an enhanced, resonant, AO 
interaction will scatter light at frequencies ω, ω ± Ω, ω ± 2Ω, 
ω ± 3Ω etc. The first term of the Born series expansion of 
Eq. (6), gives the intensity of light scattered at ω ± Ω due to 
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single phonon absorption-emission processes. This is deter-
mined by the overlap integral between the optical mode and 
the strain field of the elastic mode:
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where ε is the dielectric permittivity at each position along 
the stacking direction z, S is the strain and p12 is the appro-
priate AO coefficient. The second term gives the MI con-
tribution. From Eq. (20) we can easily understand that 
elastic modes with antisymmetric strain field with respect 
to the center of the cavity will give a zero overlap integral 
[first term in Eq. (20)] so such elastic modes prohibit single 
phonon absorption or emission processes. This leads to an 
overall suppression of the AO interaction, despite the fact 
that higher order processes involving more phonons could 
occur. Moreover, in such a case, as shown in the inset of 
Figure 7E, the cavity frequency shifts only to lower wave-
lengths. This analysis is appropriate also for the results pre-
sented in Figure 4 for the optical mode α and elastic mode 
b. For layers with submicron thicknesses the frequency of 
the optical resonance is a few hundred THz, while elastic 
waves of few GHz are required, just as in the cavities con-
sidered before. Such high frequency vibrations experience 
significant damping that should be carefully considered. 
Recent studies indicate that multiphonon AO interaction 
could survive and be observable in multilayer structures 
[66] even in the presence of realistic material losses.

Multilayer phoxonic cavities have been also consid-
ered for modulation of light emission via AO interaction 
[67]. The enhanced light extraction achieved by placing 
emitters inside optical cavities can be combined with effi-
cient modulation through a resonating elastic wave. Addi-
tionally, single dielectric particles can be also considered 
as ideal phoxonic cavities, but as the size of the particles 
is reduced to few microns, excitation of the proper elastic 
wave is more challenging [68].

4.2  Light-sound interaction in waveguides

In addition to cavities, nanoscale waveguides have also 
attracted attention recently in view of obtaining simul-
taneous confinement of propagating elastic and optical 
waves, and hence potentially strong AO interactions. The 
main difference with cavities is that in guides waves are 
allowed to travel along one direction, while transverse 
confinement results from structuration along the other 
two directions. The two basic contributions to AO cou-
pling discussed previously, PE and MI, are still at stake, 

but in addition optical forces are induced in nanoscale 
waveguides, as exemplified by Brillouin scattering effects 
[15, 69, 70]. It has been predicted that photon and phonon 
confinement in a transversal dimension of the order of 
half the wavelength in nanoscale waveguides of mm-
length has the potential to induce a giant Brillouin gain 
that could be equivalent to km-long silica fibers [71–74]. 
Both ES (volume) and optical surface forces such as radia-
tion pressure (see Figure 2) were predicted to scale to 
very large values in nanoscale waveguides [15]. However, 
the technological challenge of obtaining a free-standing 
nanoscale waveguide with a length of a few mm or more is 
very demanding. In practice, it should be connected to a 
supporting substrate and the anchors will most probably 
introduce acoustic losses, especially at GHz frequencies. 
Phoxonic crystal slab waveguides, created by inserting 
linear defects into 2D phoxonic crystals, should provide 
an alternative design where simultaneous guidance of 
photons and phonons inside a nanoscale solid core can 
be obtained, while the solid core is supported by the holey 
structure surrounding it. We note here that photonic (and 
hence phoxonic) crystal waveguides bear similarities with 
PCFs. In PCFs, however, the periodic structuration runs 
along the core axis and absolute band gaps are thus not 
generally obtained.

Phoxonic crystal slab waveguides have the poten-
tial to combine the confinement of PCF and nanoscale 
waveguides with slow-wave propagation. Slow light is at 
present a very active research field with important appli-
cations to enhanced optical nonlinear effects [75]. For the 
same reason, joint slow sound and slow light propagation 
holds promises for enhanced AO interactions, as in any 
other kind of nonlinear interaction [76]. As a first step in 
this direction, some theoretical studies recently shown 
that photons and acoustic phonons can be simultane-
ously guided and slowed down in specially tailored nano-
structures (such as 2D phoxonic crystal slab waveguides), 
by relying on the phoxonic band gap effect [14, 22, 77]. 
However, an experimental demonstration of such slow-
wave-induced enhancement has not been reported so far. 
In the following, we discuss in some detail the approach 
followed in [14] and connect it with the ES of acoustic 
phonons from photons.

The phoxonic waveguide depicted in Figure 8A and B 
was designed by introducing a linear defect in a 2D phox-
onic crystal slab perforated by a square lattice of holes. 
The parameters of the structure were chosen in order to 
provide an even-parity 2D photonic bandgap and a full 
phononic bandgap. The goal of the waveguide design 
was to obtain a simultaneous spatial confinement of 
both phonons and photons, provided by the phoxonic 
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Figure 8 A 2D square lattice phoxonic crystal waveguide, as adapted from [14]. The geometrical parameters are pitch a = 651 nm, thickness 
h = 390 nm, and hole diameter d = 560 nm. The waveguide width is chosen as w = 0.9a. Phononic and photonic propagation characteristics 
are obtained with the finite element method, using super-cells and two-dimensional periodic boundary conditions on the lateral sides. 
(A) For elastic waves, only the solid part (silicon) needs to be meshed. Traction-free boundary conditions are applied at the top and the 
bottom surfaces. (B) For photonic modes, the vacuum or air inside the holes and surrounding the slab needs to be taken into account. 
(C) The photonic band structure allows one to identify the guided optical waves in the solid core. The light cone is shown as the dark gray 
region. Two photonic band gaps for guided waves appear in white. The bands supporting waves guided thanks the photonic band gap effect 
are shown with solid lines. (D) Modal distribution for the optical eigenmode at 165 THz. The modulus of the magnetic field vector H is pre-
sented for the reduced wavenumber value ka/2π = 0.45. (E) A complete phononic band gap exists for frequencies around 5 GHz, as shown in 
white in the phononic band structure. A slow acoustic wave guided in the solid core within the phononic band gap is depicted with a solid 
line. (F) The modal distribution of this guided wave is shown for Ka/2π = 0.3. The color bar is for the modulus of the total displacement while 
the deformation of the mesh is proportional to the algebraic displacements.
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band gap, but also to obtain simultaneous slow light (at 
telecom wavelengths) and slow sound propagation, so 
as to maximize energy transfer during photon-phonon 
interactions. Figure 8C shows the photonic band structure 
(even parity modes) of the waveguide. Especially interest-
ing is the low band gap appearing around the reduced 
frequency 0.35. In this frequency range, only one guided 
branch appears, and it shows flat dispersion (low group 
velocity). The modal distribution of the corresponding 
Bloch wave is shown in Figure 8D, for the particular value 
of the reduced wave number ka/2π = 0.35. Figure 8E shows 
the phononic band structure of the defect-based phoxonic 
crystal waveguide around 5 GHz. A total of up to four addi-
tional branches appear in the band gap region (indicated 
in white). Each of them supports a mode that is confined 
within the solid core by the phononic band gap effect. The 
most interesting mode is the one with the flattest disper-
sion (lowest group velocity), appearing around 5 GHz for 
all axial wave vectors. The modal distribution of a particu-
lar guided mode is shown in Figure 8F, for ka/2π = 0.3. Con-
finement inside the core by the phononic band gap effect 
is seen to be very effective.

The overlap-integral approach straightforwardly 
allows one to estimate the PE and MI contributions to the 
AO coupling, as described in detail for phoxonic crystal 
cavities in Section 4.1. Since the generation of phonons 
from the incident optical waves is of great interest here, 
we instead briefly outline the ES process as described in 
Refs. [70, 78]. Assuming two counter propagative optical 
waves with the same modal distribution but small fre-
quency detuning Ω are launched inside the phoxonic 
crystal waveguide, see Eq. (13) with ω2 = ω1+Ω and k2≈-k1, 
the elastodynamic equation (16) can be solved for the dis-
placement of the elastic wave by fixing the acoustic wave 
vector K = 2k1 and scanning the frequency detuning Ω. The 
right-hand side of the elastodynamic equation is the diver-
gence of the electrostrictive force of purely optical origin, 
as given by Eq. (17). The spatial phonon distribution is 
thus obtained directly as a result of the applied optical 
force, and never has to be assumed to arise from a par-
ticular normal elastic mode of the waveguide. In practice, 
the guided optical waves are first obtained, e.g., using a 
3D FEM model. In order to simulate a realistic AO inter-
action, elastic losses are incorporated in the ES model by 
considering a complex elastic tensor cijkl+iρijkl where ρijkl is 
a viscosity tensor [79]. This loss model is compatible with 
the usual assumption that the Qf product (with f = Ω/2π) is 
constant for a given material. For silicon wafers, a value 
Qf = 5·1013  Hz is considered at room temperature, as esti-
mated from experiments. At a phonon frequency of 5 GHz, 
the intrinsic Q-factor is thus around 10,000. In this case, 

loss is considered to arise only from coupling with thermal 
phonons, and thus depends directly on the temperature. 
Imperfections of the phoxonic crystal fabrication, such as 
roughness of interfaces, are thus not taken into account. 
The computed ES gain spectrum as a function of frequency, 
i.e., the theoretical Brillouin spectrum, is shown in Figure 
9A. This ES gain is obtained as the total elastic energy per 
unit length in the phonon distribution, by integration of 
the elastic energy density over the waveguide section. 
Since the reduced photon wavenumber is ka/2π = 0.35, 
the reduced phonon wavenumber is Ka/2π = 0.7 from the 
phase-matching condition. Folding at the boundary of the 
first Brillouin zone implies that we can simply consider 
Ka/2π = 0.3. The elastic energy density of the confined 
phonon excited at resonance is depicted in Figure 9C. 
There is a clear correspondence with the phonon mode 
shown in Figure 8F, which was obtained independently 
from the phononic band structure. The other phonons in 
the band structure, however, do not give rise to any appre-
ciable Brillouin gain. This is a direct illustration of the fact 
that band structure calculations alone are not sufficient 
and that invaluable information can be obtained from the 
detailed spectral distribution of the Brillouin gain.

5  Foreseen applications

5.1   Applications of light-sound interaction in 
nanoscale cavities

A key phenomenon arising from the light-sound coupling 
in a small volume is the possibility to cool a phoxonic 
cavity down to its quantum mechanical ground state. The 
interesting point is that cooling the cavity so that it is vir-
tually empty of phonons would enable to observation of 
quantum phenomena that otherwise would be obscured 
by thermal noise. To explain the fundamentals of laser 
cooling, let us consider a phoxonic cavity that supports an 
optical resonance (frequency ω0 and decay rate κ) and a 
mechanical resonance (frequency Ω0 and damping Γm). We 
assume that the cavity is excited with a laser source whose 
frequency ωL is slightly red-shifted from the cavity reso-
nance. If the laser is tuned at a frequency a distance equal 
to the mechanical mode, ωL = ω0-Ω0, resonant phonons will 
provide the additional amount of energy so that photons 
can enter in resonance at ω0 via a dynamic back-action 
process originated in the radiation pressure force exerted 
by the photons on the cavity walls [1, 3, 4, 80]. Note that 
other types of AO interaction such as ES [81], which was 
discussed in Section 3, or even photothermal pressure 
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(not discussed in this work) [82], may also be the mecha-
nism activating the back-action process. In a light-sound 
interaction framework, we can consider that an incoming 
photon interacts with a phonon created by some AO force 
to produce a higher-frequency (anti-Stokes) photon reso-
nant with the cavity (see Figure 10A). Using this approach, 
usually known as sideband cooling, laser-induced cooling 
via radiation pressure of mechanical resonators embed-
ded into high-Q factor optical cavities was demonstrated 
some years ago [80, 83, 84]. Subsequent approaches made 
use of cavities that were able to confine simultaneously the 
involved photons and phonons [85, 86]. In order to reach 
the mechanical ground state, working in the resolved 
sideband (or “good-cavity”) regime, in which the optical 
bandwidth of the cavity should be smaller than the reso-
nance frequency of the phonon mode (κ < Ω0), becomes a 
key issue (see Figure 10B) [85]. It deserves to be mentioned 
that cooling down to the ground state is also possible in 
the “bad cavity” limit by means of cold-damping quan-
tum-feedback cooling [87]. Resolved-sideband cooling 
was first demonstrated in a microtoroidal cavity [85] and 
further developments enabled reaching the ground state 
by demonstrating a phonon occupancy number lower 
than unity in a microwave resonator [86] and also in a 
silicon 1D phoxonic crystal cavity [7]. Phoxonic crystal 
cavities are a very interesting platform to implement side-
band cooling, as demonstrated in [7], since they allow for 
high optical Q-factors ( > 104) and mechanical resonances 

in the GHz regime, which means that the resolved side-
band regime can be easily reached. Interestingly, using 
the same approach but with the input laser blue-detuned 
with respect of the cavity resonance (see Figure 10C), 
amplification of phonons inside the cavity becomes fea-
sible, which results in the amplification of the mechani-
cal oscillations (heating) and ultimately to self-oscillation 
of the resonator when the total mechanical damping rate 
vanishes [6, 83]. More details about sideband cooling of 
mechanical cavities can be found in a recent review [3].

The optical wavelength shift as a consequence of the 
interaction of the incoming light with cavity phonons can 
also be used for coherent optical wavelength conversion 
[88], a key functionality in future all-optical communica-
tion networks. In this process, a phoxonic cavity support-
ing two high-Q factor photonic modes is necessary. The 
wavelength shift resulting from the conversion process 
is of the order of the spacing between the photonic reso-
nances, which in principle can be tailored at will. In fact, 
AO interactions in phoxonic nanostructures constitute a 
very interesting mechanism for all-optical processing of 
information, not only in cavities, but also in waveguides 
as shown in Section 5.2.

Photonic and phononic cavities can also be separately 
used as ultrasensitive sensors that can ultimately achieve 
detection of even single molecules. In both cases, typically 
a change of the resonance frequency under the presence 
of a target substance is detected, so a key requirement is 

Figure 9 Photon-phonon interaction in a 2D phoxonic crystal slab waveguide.  
(A) ES gain as a function of detuning frequency for the square-lattice phoxonic crystal waveguide of Figure 8.The excitation of a single 
resonant phonon at 4.95 GHz is predicted. (B) Magnetic field distribution of the fundamental optical mode launched in the phoxonic crystal 
waveguide, with ka/2π = 0.35. (C) Absolute displacement distribution of the resonant phonon, with Ka/2π = 0.3 (i.e., for K = 2k and after band 
folding at the edge of the first Brillouin zone).
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a very high-Q factor (the minimum frequency shift that 
can be detected is of the order of the full-wave half-maxi-
mum of the resonance). However, the measured physical 
property is different in each case. In photonics, it is the 
refractive index of the targeted substance what shifts the 
sensor response. A typical figure of merit is the resonance 
wavelength shift per refractive index unit (measured in 
nm/RIU). A very small modal volume is also an important 
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0

00

00

0 0

Figure 10 Frequency spectrum picture of the sideband cavity 
cooling phenomenon in phoxonic cavities.  
(A) A cavity supporting an optical resonance (ω0) and a mechanical 
resonance (Ω0) is fed by a laser (ωL) red-shifted from the optical 
resonance a frequency equal to Ω0. In the “bad cavity” limit, the 
mechanical resonance is smaller than the optical decay rate, Ω0 < κ. 
Incident photons are inelastically scattered by cavity phonons at 
frequencies ωL-Ω0 (lower sideband) and ωL+Ω0 = ω0 (upper side-
band). The asymmetric sideband spectrum is a result of the asym-
metry of the feeding signal with respect to the photonic density of 
states of the cavity (colored region). The increase of frequency of 
an incoming photon removes a cavity phonon, which results in the 
cooling of the cavity. (B) In the “good cavity” limit, the mechanical 
resonance is larger than the optical decay rate, Ω0 > κ, which means 
that the cavity enters the resolved-sideband regime which allows 
for cooling down the fundamental ground state of the cavity. (C) 
In the case of blue detuning, the process is similar but phonons 
are created instead of removed, leading to amplification of the 
mechanical mode.

requirement, so that tiny amounts of matter (eventu-
ally a single molecule) can strongly modify the photonic 
response, which will be affected by small changes in the 
refractive index of the cavity surroundings. Using this 
approach, nanoscale sensors based on 2D photonic crystal 
cavities in gas [89] and liquid environments [90] with sen-
sitivities beyond 1000 nm/RIU have been demonstrated.

In acoustics/mechanics, the physical properties that 
can be tested are the density and the elastic modulus of 
the applied substance. This way, micro- and nanomechan-
ical resonators can be employed as mass sensors. Such 
devices can work both in gas and liquid environments in 
which typically the small nanoparticles to be detected are 
immersed so that some of them can be attached to the res-
onator. Nanomechanical mass sensors need to have a very 
small mass since, when working in the dynamic mode, 
the shift in the resonance is proportional to the ratio 
between the mass of the amount of matter to be tested and 
the mass of the resonator. Achieving ultralight resona-
tors would also result in a very high resonance frequency 
(some GHz). For instance, it has been recently shown that 
a nanomechanical resonator consisting of a 150-nm-long 
carbon nanotube vibrating at a frequency of 1.8 GHz can 
detect single-molecule adsorption events when placed in 
high vacuum [91]. Such high resonance frequencies would 
pave the way towards sensitive mass sensors working 
under ambient conditions, since air damping degradation 
of the mechanical Q factor diminishes as the frequency 
increases [92]. Therefore, the acoustic modes at GHz fre-
quencies that can exist in phoxonic crystal cavities could 
also perform in a similar way and be used as ultrasensi-
tive mass sensors [6]. Moreover, such a mass sensor could 
be all-optically actuated (for instance, by using a blue-
detuned laser so that the mechanical motion gets ampli-
fied, see Figure 10C) because vibration can be induced and 
detected optically, so the sensor speed would outperform 
those relying on electrical readout schemes. High-ampli-
tude operation of such devices is another key requirement 
in order to operate at room-temperature [93]. However, 
phoxonic crystal cavities suffer from small dynamic range 
even though its motion gets amplified as a result of their 
ultrasmall dimension. Although recent approaches have 
shown routes to drive nanomechanical structures at large 
amplitude via optical fields [93], this still remains a chal-
lenge in phoxonic crystal cavities. Nevertheless, it can be 
envisaged that properly-actuated phoxonic crystal cavi-
ties would combine the best of the two worlds, giving rise 
to the implementation of dual photonic-phononic sensors 
able to detect ultrasmall changes in the refractive index 
(photonic sensing) and mass (phononic sensor) of its 
surroundings.
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Besides their use as mass sensors, acoustic/mechani-
cal resonators can also be used to detect tiny changes in 
the density of the gas/liquid environment surrounding 
them. In such a case, they would perform in the same 
way as their photonic counterparts: a small change of the 
impedance of the surroundings is detected. Using such an 
approach, a highly sensitive acoustic sensor in a liquid 
environment in phononic crystal structures working in 
the MHz regime has been reported [94]. Adding up the 
photonic functionality, we could easily get a phoxonic 
crystal structure for dual liquid sensing in the photonic 
and phononic domains simultaneously. Here, we use 
numerical simulations to illustrate the potential of phox-
onic crystal cavities for dual liquid sensing applications. 
To make a dual phoxonic sensor, one needs to design a 
structure in which the transmission coefficient displays 
well-defined spectral features that are very sensitive to 
the acoustic/optic velocity of the infiltrating liquid. These 
features should be relatively isolated in frequency in order 
to allow the sensing of the probed parameter on a suffi-
ciently broad range. We consider an infinite 2D phoxonic 
crystal made of periodic holes on silicon in which one row 
of holes presents a bigger radius (r/a = 0.4) compared to the 
regular ones (r/a = 0.25). For light/sound incidence normal 
to the defect, it can be considering as acting as a phoxonic 
cavity. In Figure 11A, we show the acoustic transmission 
through the 2D phononic crystal when the infinite row of 

cavities is filled with water. Due to the water filled cavity, 
a succession of peaks and dips appear in the transmis-
sion spectrum labeled with A, B, C.... The shaded blue 
area corresponds to the phononic band gap. In Figure 11B, 
we plot the evolution of the dip (A) when changing the 
acoustic velocity cl of the liquid with respect to water as 
reported in the table of Figure 11. The frequencies of the 
resonant modes increase by increasing the sound velocity 
of the liquid and the relative shift in frequency has almost 
the same order of magnitude as the relative shift in the 
 velocity cl.

As mentioned before, the main interest of this dual 
sensor is related to the possibility of sensing the refrac-
tive index (or the velocity of light) simultaneously with 
the sound velocity in the liquid. Indeed, the change in 
the size of the holes allows the appearance of a localized 
mode inside the band gap of the photonic crystal whose 
frequency is sensitive to the index of refraction of the 
liquid. Figure 11C shows the photonic transmission for 
TE-polarized light, where one can see the existence of a 
localized mode inside the photonic band gap. When the 
holes in the cavity region are filled with different liquids, 
the transmission peak shifts proportionally to the liquid 
refractive index (see Figure 11D), which demonstrates the 
use of the structure as a photonic sensor. Let us notice 
that to work at the telecom wavelength of 1550 nm, the 
period of the photonic crystal should be in the range of 
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Figure 11 Schematic representation of a dual phoxonic crystal sensor consisting of a 2D square lattice of periodic holes with radius 
r/a = 0.25 on a silicon substrate where one row of holes with radius r/a = 0.4 is infiltrated with a liquid.  
(A) Phononic transmission curve (ct = 5844 m/s is the sound speed in silicon in the crystallographic direction [100]). (B) Evolution of the dips 
A as a function of the sound velocity of the liquid reported in the handed table. (C) Photonic transmission curve in normalized frequency 
units. (D) Evolution of the transmitted peaks (mode α) as a function of the refractive index of the liquid reported in the table.
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650 nm and, consequently, the gap of the corresponding 
phononic crystal falls around 5.5 GHz, in close agree-
ment with other phoxonic structures shown above. With 

these parameters, we have obtained a phononic sensi-

tivity -12.0 MHz /( ),∆
∆

= =
l

fS ms
c

 and a photonic one of 

60 / ,∆λ
∆

= =S nm RIU
n

 comparable to those reported in 

the literature. It has to be mentioned that this kind of 
dual phoxonic sensor does not actually rely on the AO 
interaction inside the defect but provides a simultaneous 
response for both photons and phonons, meaning that we 
can get information about the electromagnetic and acous-
tic properties of a given substance in a single measure-
ment. However, it can be thought that if a given substance 
changes both the photonic and phononic response of the 
device, it will also affect the interaction of both kinds of 
waves when introduced in the cavity, so we would get 
additional information on the substance to be analyzed. 
In other words, the sensor would provide quantitative 
information about how the substance modifies the elec-
tromagnetic and acoustic properties of the system as well 
as the resulting photon-phonon interaction inside the 
cavity.

5.2   Applications of light-sound interaction 
in nanoscale waveguides

Efficient coupling between phonons and photons inside 
integrated waveguides via Brillouin effects would open up 
a host of wide-band all-optical signal processing capabili-
ties with CMOS compatible silicon photonics, including 
pulse storage [95], opto-acoustic sensing [96], coherent 
frequency comb generation [97], coherent beam combin-
ing [98], on-chip Brillouin laser implementation [72, 99], 
and ultra-compact slow-light device fabrication [75, 97]. 
The very strong spatial confinement that can be obtained 
within a nanoscale waveguide may further be combined 
with low group velocities for both sound and light waves 
arising in phoxonic crystal structures in order to further 
enhance AO effects, as we have seen in Section 4.2. The 
phoxonic crystal waveguide in Figure 8 supports slow 
light propagation with group index ng≈25 (i.e., 25 times 
slower than in a vacuum) [14]. Around the 5 GHz resonant 
phonon frequency shown in Figure 8, the phonon group 
velocity varies around a mean value of 180 m/s, more than 
30 times smaller than the speed of any bulk wave in silicon 
and actually less than the speed of sound in air. Since this 
optimization was the first of its type, it is likely that even 
better configurations for phoxonic crystal waveguides 

supporting joint slow light and sound propagation can be 
found in the future [22]. The simultaneous control of phon-
onic and photonic group velocity in a silicon chip thus has 
the potential to vastly enhance opto-acoustic and acousto-
optic interactions within silicon integrated chips, though 
an experimental demonstration still remains to be made. 
A detailed theoretical study of the group velocity scaling 
of AO interactions inside phoxonic crystal waveguides has 
not yet been reported, to the best of our knowledge. We 
can, however, make a conjecture based on facts known 
from related areas. First, the material figure of merit of 
guided-wave acousto-optics, 3 6 22 / ,ρ= gM n p v v

 
where n 

is the optical index, v is the acoustic phase velocity, vg 
is the acoustic group velocity, and ρ is the mass density, 
is known to scale with the inverse of the acoustic group 
velocity. Second, coupled-wave equations for the ampli-
tudes of the optical waves in equations (14, 15) are known 
to scale with the inverse of the optical group velocity. As a 
result, we conjecture that the strength of AO interactions 
in phoxonic crystal waveguides should scale with the 
inverse of both photon and phonon group velocities.

Optical delay systems or more generally optical mem-
ories are considered as the main obstacle to the develop-
ment of all-optical information processing. Light pulses 
can be stored in the form of acoustic phonons driven by 
the Brillouin scattering process with a damping time of 
about 10 ns in silica optical fibers. In Figure 12, we depict 
the Brillouin storage process within a phoxonic crystal 
waveguide, as adapted from the optical fiber scheme 
introduced in Ref. [25]. In Figure 12A, an intense write 
light wave is used to store a data sequence as an acoustic 
wave through the Brillouin scattering process during the 
phonon lifetime (Figure 12B). In the case of silica fibers, 
it is thus possible to store a pulse with duration of 100 ps 
for about 10 ns. This delay does not only depend on the 
lifetime of the acoustic wave. However, it is possible to 
regenerate the acoustic wave by sending regularly optical 
energy through the Brillouin scattering process [91]. As 
we represent in Figure 12D, an intense read light pulse 
is injected to read the stored information [25]. Unfortu-
nately, this technique requires a very efficient AO inter-
action over very short propagation lengths, which is 
difficult to achieve with silica. The implementation of 
this method in standard optical fibers therefore requires 
very high optical powers that are hardly compatible with 
industrial implementations [100]. The stronger Brillouin 
gain that can be expected with silicon [15] combined 
with joint slow light and sound propagation in phoxonic 
crystal waveguides could be favorable for the realization 
of integrated optical delay lines with small footprints and 
reasonable power levels.
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6  Conclusions and prospects
In this paper we have described a full set of analytical tools 
that allow for modeling the AO interaction between light 
(photons) and sound (acoustic phonons) in nanoscale 
structures. Different kinds of interactions between 
photons and phonons are explained and properly consid-
ered to obtain appropriate analytical expressions to model 
them. Specifically, we differentiate between being volume 
(PE, ES) and surface (MI, radiation pressure) AO effects 
as well as between effects being launched by an acous-
tic (PE, MI) or an optical (ES, radiation pressure) wave. 
Together with the wide variety of numerical methods com-
monly employed to obtain the fields and the dispersion 
relations in both photonic and phononic nanostructures, 
these tools set the basis to design novel phoxonic struc-
tures for enhanced AO interaction in nanoscale cavities 
and waveguides. Moreover, the methods described here 
are general and can be applied to any kind of host mate-
rial or structure, so its use is not restricted to silicon phox-
onic/OM crystals. We have also provided a set of phoxonic 
structures providing photonic as well as phononic band-
gaps that can be used to implement cavities and wave-
guides which enable strong photon-phonon interaction. 
Finally, we have described some applications in which 
phoxonic crystal structures can play a key role and, as so, 
the methods explained in this paper can be of interest, 
such as sideband cavity cooling, all-optical processing 
or dual phoxonic sensors. In general, enhancing the AO 

interaction at the nanoscale will lead to a new generation 
of miniaturized AO devices like integrated optical storage 
and delay line elements based on enhanced SBS. Moreo-
ver it could boost the importance of the new field of opto-
mechanics enabling hybrid photonic-phononic circuits 
controlled through OM elements.

In order to continue the evolution of the field and take 
maximum profit of the light-sound interaction in nanoscale 
structures, some next steps can be easily been foreseen. 
For instance, phoxonic structures displaying full phon-
onic bandgaps have been only recently demonstrated [32, 
33]. However, the full potential of such structures, which 
should extremely reduce acoustic radiation losses in real 
devices, is still to be unveiled. For the particular case of 
AO cavities, most experiments showing light-sound inter-
action in phoxonic cavities have employed a tapered fiber 
put in close proximity of the cavity to excite the confined 
light modes. This approach exhibits some important limi-
tations, mainly the inability to drive multiple cavities at 
the same time, therefore constraining a key feature of OM 
crystals. Therefore, it would be highly desirable to access 
them via integrated optical waveguides. However, there 
have been only a few experiments reporting AO coupling 
in phoxonic cavities using this approach [26]. Regarding 
waveguides, the demonstration of AO interaction in phox-
onic waveguides as well as its predicted enhancement via 
slow photons and phonons has not been demonstrated so 
far. Finally, it would be highly interesting to combine the 
worlds of phoxonic/OM crystals and plasmonics. Metallic 

Figure 12 Schematic of a delay line for light pulses designed to store information in the form of acoustic phonons within a silicon phoxonic 
crystal waveguide, as adapted from the optical fiber scheme introduced in [25].  
(A) An intense write light wave whose frequency is shifted by the acoustic resonance of the material relative to the data pulse frequency is 
used to store a data sequence as an acoustic wave through the Brillouin scattering process. (B) The information stored by the acoustic wave 
has a lifetime of approximately 100 ns in silicon, as limited by phonon decay. (C) In order to read the stored information, an intense read 
light pulse with the same frequency as the write pulse is injected at a later time. (D) The interaction of the reading pulse with the acoustic 
phonon creates a light pulse train reproducing the original data.
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nanostructures provide strong confinement of the electric 
[101] and even magnetic field [102] in deep subwavelength 
regions via excitation of localized surface plasmon reso-
nances. Interestingly, they also exhibit vibrational reso-
nances in the GHz regime [103]. Therefore, the insertion of 
plasmonic nanostructures into phoxonic structures such 
as cavities would extremely enhance the AO interaction 
via the high-field confinement inherent to plasmonics 
whilst the optical and acoustic responses of the metallic 
nanostructure would be fully modified by the existence of 
a phoxonic bandgap. Additionally, this approach would 
enable the observation of AO interaction in subwave-
length regions beyond the diffraction limit. We foresee 
new and exciting physical phenonema arising from such 
a combination.
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