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UMR CNRS 8520,Université de Lille 1, Villeneuve d’Ascq, France

2Laboratoire de Dynamique et d’Optique et des Matériaux, Université d’Oujda, Morocco
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We discuss the simultaneous existence of phoxonic, i.e., phononic and photonic, band gaps
in a periodic array of holes drilled in a Si membrane. We investigate in detail both the
square and the honeycomb lattices. We show that complete phoxonic band gaps can be
obtained with the honeycomb lattice. Otherwise, both structures present the possibility of
a complete phononic gap together with a photonic band gap of a given symmetry, odd or
even, depending on the geometrical parameters. We show the possibility of confinement of
both acoustic and optical waves in a waveguide created inside the honeycomb structure.

PACS numbers: 42.70, 42.25.Bs, 42.79.Jq

I. INTRODUCTION

Phononic crystals [1, 2], constituted by a periodical repetition of inclusions in a matrix
background have received a great deal of attention during the last two decades [3]. Associ-
ated with the possibility of absolute band gaps in their band structure, these materials have
found several potential applications, in particular, in the field of wave guiding and filtering
[4] (in relation to the properties of their linear and point defects). Recently, the study of
phononic crystals slab has become a topic of major interest. Indeed, with an appropriate
choice of the geometrical and physical parameters, these finite thickness structures can also
exhibit absolute band gaps [5–11]. This makes them suitable for similar applications as in
the case of 2D phononic crystals with the additional property of confinement in the vertical
direction.

In the photonic crystal counterpart, the medium is made up of periodic dielectric
materials and can prohibit the propagation of electromagnetic waves in specific wavelength
ranges [12]. Such infinite 2D periodic structures have opened up new features for controlling
light, leading to the proposition of many novel devices [13]. Photonic crystal slabs retain,
at least approximately, many of the desirable properties of 2D infinite photonic crystals
but at the same time are much more easily realized at submicron length scales. Depending
on the physical and geometrical parameters, the restriction to finite height of the structure
recreates the band gap in the guided modes of the slab below the light cone [14–16].
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FIG. 1: (a) Representation of the unit cell for the numerical calculations. Square (b) and honeycomb
(c) lattices together with the corresponding Brillouin zones. hSi and hair are the thicknesses of the
Si slab and air, respectively, in the super-cell considered in the PWE computation. r is the radius
of the holes and a the side of the unit cell.

Many studies have investigated separately the existence of photonic and phononic
band gaps, but relatively few works have been devoted to simultaneous control of phonons
and photons [17–20] and most of the studies are dealing with the case of 2D structures
[17–19]. Maldovan and Thomas [17, 18] have shown theoretically that phoxonic band gaps
can be obtained in 2D square or hexagonal lattice crystals made up of air holes in a silicon
matrix. Sadat-Saleh et al. [19] have demonstrated the possibility to open phoxonic band
gaps in more complex arrays like multiple cylinders per unit cell in lithium niobate 2D
structures. Experimental evidence of such a band gap phenomenon has been reported
recently in a 3D phoxonic crystal of amorphous silica spheres [21].

The aim of this paper is to investigate in detail the conditions of existence of si-
multaneous phononic and photonic band gaps in finite 2D crystals of various structures
constituted by a periodic array of holes in a silicon slab. Most of the calculations are per-
formed with the plane-wave expansion (PWE) method, and the convergence of the results is
also checked in some cases by using the layered multiple scattering (LMS), finite-difference
time domain (FDTD), and finite-element (FE) methods. Section II describes the geome-
tries considered in this paper as well as the method of calculation. Section III presents
the results for the most commonly used case of square lattice. Section IV is devoted to
the study of the honeycomb lattice. We show in this geometry the existence of a complete
photonic and phononic band gap. In the latter structure, we demonstrate in section V
the possibility of waveguiding for both optical and acoustic modes. The conclusions are
summarized in section VI.

II. GEOMETRY AND METHOD OF CALCULATION

Figure 1 gives the representation of the square and the honeycomb lattices together
with the corresponding irreducible Brillouin zone. By considering the lattice period a as the
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unit of length, there are several geometrical parameters involved in the problem, namely
the thickness hSi of the Si slab, the filling fraction f , and the radius r of the holes. The
filling fraction of the air holes in the membrane is given by

f =
πr2

a2

for the square arrangement and by

f =
2πr2

a2
√
3
2

for the honeycomb structure.
In all the curves presented in the study, the frequencies are given in the dimensionless

units Ω = ωa/2πc, where c is the transverse velocity of sound in silicon for elastic waves
and the velocity of light in vacuum for electromagnetic waves.

According to the symmetry of the structure with respect to the middle plane of the
slab, the modes can be classified into symmetric (even) and antisymmetric (odd) modes. In
a previous work [9], we have demonstrated the existence of absolute phononic band gaps in
square and honeycomb lattices of holes in a Si membrane, provided the thickness of the slab
is about half of the lattice period and the filling fraction is sufficiently high. In this work,
we first concentrate on the existence of a complete phononic band gaps that are calculated
for a large variety of the geometrical parameters in the useful ranges (hSi/a from 0.4 to
0.7, and f from 0.3 to 0.7). Then, we search for the photonic band gaps (either complete
or for one type of symmetry) in the same ranges of parameters. In general, the complete
photonic band gaps (i.e., for both odd and even modes) occur only in a few cases. Otherwise,
the phoxonic band gap can be obtained in many situations with a complete phononic gap
together with a photonic gap of a given (odd or even) symmetry. Let us mention that
in the slab geometry, the photonic gaps have to be searched only below the light cone in
vacuum. However, these gaps should preferably occur at dimensionless frequencies Ω below
0.5, otherwise they will be restricted only to a very small area of the Brillouin zone close
to the light cone and are therefore not very interesting.

The calculations are generally performed by using the PWE method with periodic
conditions applied on each boundary of the super-cell (see Fig. 1(a)). On the phononic
side, the air thickness can be reduced to a small slab since elastic waves cannot obviously
propagate in vacuum. The air is modeled as a low impedance medium with very low density
and very high velocity of sound. The convergence of the calculation is quite fast [9] and
it is achieved for a number of plane waves of 1215 for the square lattice and 1815 for the
honeycomb structure. Calculations have been checked using two other methods, namely,
the finite element (FE) and the finite difference time domain (FDTD). On the photonic
side, the thickness of the air slab has been chosen such that it enables the decoupling of the
silicon slabs belonging to neighboring super-cells. The air thickness has been chosen equal
to hair/a = 7.4 to ensure the stability of the whole branches under the light cone, and the
calculations have been performed with a number of plane waves equal to 7047. Calculations
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FIG. 2: Simple square lattice: evolution of phononic and photonic gaps of even (red) and odd (blue)
symmetries as a function of the filling factor f for different values of the thickness of the silicon slab
hSi/a. The grey areas correspond to absolute band gaps.

have been checked using FDTD and the layered multiple scattering (LMS) [22] methods
with a good agreement.

III. SQUARE LATTICE

We first present the case of the simple square lattice. Figure 2 reports the evolution
of both phononic and photonic gaps for each symmetry, even (red) and odd (blue), as a
function of the filling factor f and for a set of silicon plate thicknesses hSi/a in the range
[0.4, 0.7].

In this geometry, a complete phoxonic band gap is found only when hSi/a = 0.4
and for a high value of the filling factor f = 0.7 (black vertical arrow). Unfortunately,
from the photonic side, this gap appears in a very restricted region of the Brillouin zone
(Ω = [0.553, 0.658]), near the M point, just below the light cone. It means that this
solution is not really interesting. To cover the full directions of the Brillouin zone, the
reduced frequency value has to be lower than 0.5. Under this condition, there is no overlap
between the photonic gaps of both symmetries.

The choice of a phoxonic crystal can be made by searching a structure that exhibits
an absolute phononic band gap though a photonic gap of a given symmetry only. Figure
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FIG. 3: Honeycomb lattice: evolution in phononic and photonic of the even (red) and odd (blue)
gaps as a function of the filling factor f for different values of the thickness of the silicon slab hSi/a.
The grey areas correspond to absolute band gaps.

2 shows that in the phononic side, the limitation comes from the odd modes, which only
display narrow gaps occurring for a plate thickness of hSi/a = [0.5, 0.6] and for filling
factors (f ≥ 0.6). In this thickness range, there are photonic gaps (either even or odd) at
frequencies below 0.5.

For the square lattice structure, one example of phoxonic band gaps for either symmet-
ric (even) or antisymmetric (odd) optical modes can be obtained for the set of parameters
(hSi/a = 0.6, f = 0.65, r/a = 0.455) (black vertical dotted line shown in Fig. 2). In view of
telecom applications, photonic band gaps have to be chosen close to 1550 nm. Then, the
actual geometrical parameters become a = 701 nm, hSi = 421 nm and r = 315 nm for the
odd gap and a = 590 nm, hSi = 350 nm and r = 265 nm for the even one, which lead to
a mid-gap acoustic frequency of 4.2 GHz and 5.0 GHz respectively. With these parame-
ters, the separation between neighboring holes becomes 70 nm and 60 nm, respectively and
makes this phoxonic crystal geometry technologically realizable.

IV. HONEYCOMB LATTICE

Figure 3 represents, for the honeycomb lattice, the evolution of the phononic and
photonic band gaps for each symmetry as a function of the filling factor f and for different
values of the thickness of the silicon plate hSi/a.
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From the phononic side, the honeycomb array is more suitable than the square lattice.
Both odd and even gaps are larger and open at lower filling factor. Moreover, one can notice
that the absolute phononic band gap exists in the whole investigated range of hSi/a from
0.4 to 0.7. The odd gaps are generally included in the even gaps, except at low filling factor.
The limitation comes this time from the photonic side. For the latter, the odd gap exists in
the full range of the filling factor and for all values of hSi/a, whereas the even gap is present
for hSi/a ≤ 0.5 and progressively closes when the filling factor increases. Nevertheless, a
complete phoxonic band gap, represented by the grey area in Fig. 3, occurs provided the
thickness of the slab is in the range hSi/a = [0.4, 0.5]. Assuming that the dimensionless
photonic frequency gap should be lower than 0.5 to cover the full directions of the Brillouin
zone, one can define as an example a set of parameters (hSi/a = 0.5, f = 0.45, r/a = 0.249)
(black vertical dashed line), which leads to a complete phoxonic band gap. Then, by
assuming that the photonic midgap occurs at the telecommunication wavelength of 1550
nm, we find the following geometrical parameters: a = 687 nm, hSi = 330 nm and the hole
radius r = 171 nm. The separation between neighboring holes is then 55 nm, which is quite
acceptable for the technological fabrication of the sample. With this lattice parameter, the
phononic mid-gap frequency occurs at 4.9 GHz.

Although the above example displays simultaneously a complete phononic and pho-
tonic band gap, the latter remains relatively narrow. Now, we can discuss more general
situations exhibiting a full phononic gap, but a photonic gap of a given symmetry only.
One can notice that the photonic band gaps of even symmetry are obtained for the low
values of the slab thickness, typically hSi/a ≤ 0.5, and can be chosen for several filling
factors. As an example, the reduced parameters (hSi/a = 0.4, f = 0.45, r/a = 0.249) lead
to a phoxonic band gap of even photonic symmetry (red vertical dashed line). Phoxonic
structures can also be designed with an odd photonic gap, provided the thickness of the
slab is hSi/a ≥ 0.5 in order to ensure that the dimensionless frequency is lower than 0.5.
Many filling factors, higher than 0.35, are suitable and one example is given by the following
parameters (hSi/a = 0.7, f = 0.45, r/a = 0.249) (blue vertical dashed line).

Table I summarizes the main structures suitable to exhibit an absolute phononic band
gap together with photonic band gaps either for both or for only one type of symmetry. Of
course, the choice of the lengths for the practical realization of the structure depends on
the frequency range of interest for specific applications.

V. WAVEGUIDING

Bulk photonic [23] and phononic [24–26] crystals containing rectilinear defects have
been shown to guide and control optical and acoustic waves efficiently. Chutinan and Noda
[27] have studied linear and bent waveguides in two-dimensional photonic crystal slabs.
More recently, Sun and Wu have investigated the propagation of elastic waves through
waveguides in a 2D phononic crystal plate made of solid constituents [28]. Vasseur et
al. [9], using the PWE method, demonstrated the existence of guided modes in an air-
silicon phononic crystal plate containing linear defect created inside a square lattice. In
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TABLE I: Summary of the most suitable phoxonic crystals and the corresponding band gaps fre-
quencies.

Array f ri/a hSi/a PhoNonic PhoTonic PhoTonic

band gap band gap band gap Observations

odd modes even modes

Square 0.7 0.47 0.4 [0.439, 0.544] [0.553, 0.658] -Complete phoxonic

gap

-Photonic gap

at high reduced

frequency, in the

neighborhood of M

-High value of f

(holes very close

to each other)

Square 0.65 0.45 0.6 [0.472, 0.534] [0.410, 0.495] [0.361, 0.400] -Photonic gap

of a given

symmetry only

Honeycomb 0.45 0.249 0.48 [0.525, 0.626] [0.434, 0.454] -Complete phoxonic

gap

Honeycomb 0.45 0.249 0.7 [0.468, 0.611] [0.368, 0.410] -Photonic gap

of an odd

symmetry only

Honeycomb 0.45 0.249 0.4 [0.503, 0.588] [0.445, 0.492] -Photonic gap

Honeycomb 0.45 0.249 0.4 [0.503, 0.588] [0.445, 0.492] of an even

Honeycomb 0.45 0.249 0.4 [0.503, 0.588] [0.445, 0.492] symmetry only

the following, we discuss the conditions of existence of simultaneous phononic and photonic
guided modes in finite 2D crystals constituted by a honeycomb array of holes in a silicon
slab.

In Fig. 4(a), we consider the periodic crystal constituted of the honeycomb arrange-
ment of air holes in the silicon plate. As seen in section IV, this structure leads to a complete
phoxonic band gap when the geometrical parameters are hSi/a = 0.48 and f = 0.45. One
can define a guide by varying the distance between two neighboring rows of holes along the
x direction as depicted in Fig. 4(b). The distance d (d = a/

√
3) corresponds to the closest

distance between two cylinders in the perfect structure, and α represents the adjustable pa-
rameter used for varying the width of the guide, which can be defined by (αd). Numerically,
we consider a rectangular super-cell (Fig. 4(c)) of width a in the x direction. Because of the
periodic conditions applied on each boundary of the super-cell, the waveguide is periodi-
cally repeated in the y direction. The length L of the super-cell in the y direction has been
chosen in such a way to avoid interaction between two neighboring guides. The phononic
dispersions curves haves been calculated with the help of the finite element method. In
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FIG. 4: (a) Honeycomb lattice of air holes drilled in the silicon slab; d is the closest distance
between two cylinders. (b) Formation of the waveguide, splitting the structure in the direction x.
α represents the factor used for varying the width of the guide. (c) Illustration of the super-cell
(axL) in the (x, y) plane used for the FE (phononic) and PWE (photonic) calculations of the band
structure of the defected phoxonic crystal plate.

photonic, the band diagrams have been computed with the PWE method and satisfactory
convergence has been obtained with a number of reciprocal vectors equal to 3591. The
thickness of the super-cell in the z direction remains equal to (hSi + hair), as discussed
previously in Fig. 1(a).

The evolution of the phononic and photonic (odd and even) dispersion curves of the
crystal plate is displayed Fig. 5 for three values of the waveguide widths, namely α = 1.4, 1.5
and 1.6. The dispersion curves are represented in the ΓX direction, corresponding to the
direction of propagation of a wave along the linear waveguide. The white areas represent
the band gaps delimited by the propagating bands (grey area) of the crystal plate. With the
geometrical parameters chosen for the honeycomb lattice, the limits of the absolute band
gaps have the following reduced frequencies Ω : [0.525, 0.626] in phononic and [0.434, 0.454]
in photonic, as reported Table I.

As a general trend, either in phononic or photonic, the insertion of the waveguide in
the perfect structure introduces new modes inside the band gaps of the phoxonic crystal.
The number of modes increases with the width of the waveguide. Moreover, these modes
shift progressively to the lower frequencies when α increases.

More specifically, in the phononic side, two branches appear in the band gap when
α = 1.4. The propagation of acoustic waves is monomode in this case. For a wider
waveguide with α = 1.6 new branches, almost flat, appear at the top of the band gap, and
the waveguide becomes multimode at these frequencies. In the photonic side, with α = 1.4,
one obtains three branches in the odd gap ([0.434, 0.50]), whereas no guided modes appear
for the even symmetry. By increasing the width of the waveguide to α = 1.5 and then
to α = 1.6, the odd branches shift to lower frequencies, whereas guided modes of even
symmetry also appear in the absolute band gap. It is worth noticing that the low group
velocities of some of these branches can lead to an enhanced time of interaction between
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FIG. 5: Band structures along the ΓX direction of the crystal plate containing a waveguide of
different widths (αd). For each value of α, the band structures are represented in phononic and
photonic (separately for odd and even modes).

the acoustic and optic waves along the waveguide.
With the aim of enhancing phonon-photon interaction, the waveguide width corre-

sponding to α = 1.6 emerges as the most suitable case. Indeed, this structure leads to
a confinement of the acoustic and optical waves in the same waveguide with slow group
velocities that facilitate the interaction between both waves. If the photonic midgap is
chosen to be at the telecommunication wavelength, the width of the waveguide becomes
(αd) = 634 nm.
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VI. CONCLUSIONS

We have theoretically investigated the possibilities of opening phoxonics, i.e.,
phononic and photonic, band gaps in silicon slabs drilled with circular air holes in two
different lattices. We have found that the honeycomb lattice presents an absolute phoxonic
band gap. Nevertheless, for the square geometry, the simultaneous confinement of both
elastic and electromagnetic energy is possible, provided that the optical incident wave is
polarized. Finally, we have studied the air silicon phononic crystal plate containing a guide
of variable width. We have demonstrated the existence of both acoustic and optical waveg-
uide modes inside the absolute forbidden bands. We have shown that for one value of the
width of the guide, low group velocities in both phononic and photonic modes can be ob-
tained. The confinement of both waves in the guide together with their low group velocities
should allow the enhancement of photon-phonon interaction. Of course, these results are
independent of the scale of the structure. Nevertheless, the parameters have been specified
in order to choose the optical wavelengths in the range of telecommunications that leads to
acoustic frequencies in the gigahertz regime. Phoxonic crystal slabs hold promises for the
simultaneous confinement and tailoring of sound and light waves with potential applications
to acousto-optical devices and highly controllable photon-phonon interactions.
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