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Liquid-crystal Hartmann wave-front scanner

Ségolène Olivier, Vincent Laude, and Jean-Pierre Huignard

The liquid-crystal wave-front scanner ~LCWS! is a highly sensitive wave-front sensor suited to the
measurement of aberrations in optical systems and, more generally, of static wave fronts, and it is based
on the Hartmann test. In the LCWS an incoming wave front is scanned sequentially by a programmable
moving aperture that is implemented by use of a liquid-crystal display. The position of the diffraction
spot is recorded behind an observation lens with a CCD detector and provides an estimation of the local
slopes in two orthogonal directions at the aperture position. The wave front is then reconstructed from
slope data by use of a least-squares method. Experiments are reported for nearly planar wave fronts as
well as for strongly aberrated wave fronts, demonstrating both the large dynamic range and the great
sensitivity of the LCWS. The LCWS is compared with the Shack–Hartmann wave-front sensor in terms
of dynamic range and sensitivity. © 2000 Optical Society of America

OCIS codes: 010.7350, 120.5050, 230.6120.
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1. Introduction

Wave-front sensors of different types are widely used
in adaptive optics for astronomy,1 the analysis of la-
ser beams, and noncontact testing of optical compo-
nents. These different applications have their
particular characteristics and requirements, and no
single wave-front sensor has clear advantages for all
of them at once. In optical testing, only static aber-
rations have to be measured, but the required preci-
sion is generally more stringent than that for
adaptive optics or laser-beam sensing. The different
wave-front sensors can be divided into three groups,
depending on whether they measure the phase di-
rectly or they estimate the wave front from the mea-
surement of the first or the second derivative, i.e., the
slope or the curvature, respectively, of the wave front.
Phase-difference sensors, e.g., Michelson, Twymann–
Green, and Fizeau interferometers,1 provide a direct
measurement of the wave-front phase at some wave-
length compared with some reference wave-front
phase. They are widely used for optical testing.
The Shack–Hartmann sensor2 and the three-wave
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lateral-shearing interferometer are two examples of
wave-front sensors that reconstruct the wave front
from the measurement of the local slopes.
Curvature-sensing devices4 were recently introduced
and are based on the ombroscopy technique.

The wave-front sensor5 discussed in this paper be-
longs to the second group and is based on the Hart-
mann test, which provides a measurement of the local
derivatives of the wave front in two orthogonal direc-
tions. In the original Hartmann test the light going
through a small hole in an opaque mask that is su-
perimposed on the incident wave front forms a
diffraction-limited spot in the focal plane of an obser-
vation lens. The spot is shifted laterally, according
to the local slope of the wave front at the aperture
position. The Shack–Hartmann wave-front sensor
~SHWS! provides a major improvement over the

artmann test. It uses an array of lenslets to re-
lace the single or the multiple holes in a mask.
ach lenslet produces a diffraction-limited spot on a
etector placed in the focal plane of the array. The
ocal wave-front slopes are directly proportional to
he displacement of the spots from the focal points of
ach lens. The number of lenslets determines the
umber of sampling points for the wave front and
herefore its transverse resolution. The main ad-
antage of this sensor is its real-time operation be-
ause all sampling points are obtained at once;
owever, it is not suited to the control of optical com-
onents that exhibit either very significant or very
mall wave-front variations. On the one hand, the
aximal deviation of the spot behind each lenslet

hould not exceed the aperture of the microlens if a
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reliable measurement is to be obtained without am-
biguity. On the other hand, the focal length of the
lenslet is generally short, say, a few centimeters, so
the sensor is not sensitive to small variations of the
slopes.

In the liquid-crystal Hartmann wave-front scanner
introduced in Ref. 5 the mask of the Hartmann test
was made programmable by use of a liquid-crystal
television ~LCTV!: The wave front is scanned with a
programmable aperture that moves sequentially
across the analysis pupil of the wave front. The po-
sition of the diffraction spot in the focal plane of the
observation lens is recorded for each sample. The
wave front is then reconstructed from the slope data
in a zonal or a modal way, just like in the Shack–
Hartmann case. Compared with the SHWS, the
Hartmann wave-front scanner is much more flexible
because its dynamic range can be adapted to the
object under measurement either by variation of the
focal length of the observation lens or of the size and
the shape of the sampling apertures in a nonuniform
way. Moreover, as the whole surface of the detector
is used for each sampling point, the liquid-crystal
wave-front scanner ~LCWS! benefits from a greater
accuracy-to-dynamics ratio than does the SHWS.
However, this increase is obtained by the sacrifice of
real-time operation because the measurement of the
wave front is sequential. Consequently, the field of
use of the LCWS is the measurement of static wave
fronts, which are required to be known with high
accuracy.

The paper is organized as follows: In Section 2, we
describe the principle of our wave-front sensor. An
optical setup that uses a liquid-crystal ~LC! display
~LCD! as the programmable scanning aperture is pre-
sented in Section 3. In Section 4, we briefly outline
the modal reconstruction algorithm used to estimate
the wave front from the measurement of its local
slopes. In Section 5, we report experimental results
of reconstructed wave fronts obtained by transmission
through various optical components and discuss the
characteristics of the LCWS in terms of dynamics, sen-
sitivity, and accuracy. Compared with a SHWS, the
LCWS trades speed of operation for resolution, as is
explained in Section 6. There are a number of other
devices for sequential Hartmann wave-front sensors
that were proposed prior to ours; differences between
these solutions and ours are also discussed in Section
6. Section 7 concludes the paper.

2. Principle

The principle of operation of the LCWS is depicted in
Fig. 1~a!. Sampling of the wave front is accom-
plished by the sequential movement of a small aper-
ture by use of a programmable pupil plane, which is
implemented with a LCTV and the measurement for
each sample of the displacement of the diffraction
spot from its position when the incoming wave front
is a plane wave. Calibration prior to the measure-
ment of the optical component aims at eliminating
the distortions of the wave front that are introduced
by the optical setup itself or that are due to imper-
fections of the illuminating laser beam. It is well
known that the displacement of the diffraction spot in
the focal plane of the lens is proportional to the av-
erage value of the wave-front slope inside the aper-
ture at the pupil plane. For the reasons given below
the diffraction spots are not necessarily observed in
the focal plane but are observed somewhere close to
the focal plane at a distance d from the lens. The
average slope in the x direction of the wave front W~x,
y! is estimated from the displacement x9 of the dif-
fraction spot, as given by

]W~x, y!

]x
5 s~x, y! 5

x9

d
2 S1

d
2

1
fDx, (1)

where f is the focal length. A similar expression
olds for the y direction. Equation ~1! is for just one

measurement. If a calibration xc9 is made at an ob-
servation distance dc before the measurement xm9 is
taken at distance dm the estimated average slope
reads as

s~x, y! 5
xm9

dm
2

xc9

dc
2 S 1

dm
2

1
dc
Dx. (2)

Fig. 1. Principle of the operation of the Hartmann wave-front
scanner: ~a! observation of the diffraction spots near the focal

lane of the lens and ~b! calibration and measurement of the op-
ical system in two different planes.
1 August 2000 y Vol. 39, No. 22 y APPLIED OPTICS 3839
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Generally, calibration and measurement would be
performed at the same distance d, in which case Eq.
~2! simplifies to ]W~x, y!y]x 5 ~xm9 2 xc9!yd and is
independent of the aperture position x. However, in
certain cases the very different nature of the calibra-
tion and the measurement wave fronts can require
different observation distances, as is depicted in Fig.
1~b!; this might occur, for instance, if a strongly con-
vergent or a strongly divergent sample were to be
measured. In this configuration the measurement
of the tilt aberration should be taken with caution
because the spot positions are measured modulo a
possible transverse translation that is caused by the
camera motion.

It is apparent from Eq. ~1! or Eq. ~2! that the an-
gular sensitivity of the LCWS is directly proportional
to the observation distance d. Hence this observa-
tion distance should be maximized for the best accu-
racy. At the same time all diffraction spots must fall
within the sensitive area of the CCD camera, which
sets an upper limit on the observation distance that is
dependent on the repartition of the wave-front slopes.
The focal length f can thus be chosen on the basis of
on the wave-front characteristics to accommodate the
required dynamic range. This is a major difference
from the SHWS in which the focal length is fixed by
the lenslet array and remains short, say, a few cen-
timeters.

The programmable pupil of the wave-front scanner
consists of a LCTV that is electrically addressed
and operates in transmission. Such a LCTV pro-
vides many precise and individually controllable
apertures—the LCTV pixels—and can be driven elec-
tronically, for instance, by use of video signals. The
LCTV pixels are smaller than the apertures required
for wave-front sampling and can thus be grouped to
yield rather arbitrary aperture shapes; this is again a
major difference from the SHWS in which the sam-
pling geometry is imposed by the lenslet array. The
LCTV that we used is described in more detail in
Section 3.

Let us note that a LC device placed between polar-
izers will in general produce amplitude and phase
modulation. For the LCWS, binary amplitude mod-
ulation is preferable: One or several pixels of the
LCTV are monitored to be transparent, whereas the
rest of the pixels block the light; a constant phase
over the aperture will not perturb the measurement.
Another general characteristics of LCTV’s explains
why the detection plane should not be the focal plane.
The binary amplitude modulation is not ideal, i.e., the
contrast between the pixels that define the aperture
and the other pixels is not infinite and has a typical
value of 100. The diffraction pattern coming from
the OFF part of the LCTV, which is much larger than
the sampling aperture, can, however, be more pow-
erful than the measurement spot. Moreover, for a
plane wave front this pattern will come to a sharp
focus near the focal plane. Because of the small size
of the sampling aperture compared with the pupil
size, the depth of focus of the measurement spot is
much larger than that of the OFF diffraction pattern.
840 APPLIED OPTICS y Vol. 39, No. 22 y 1 August 2000
Displacement of the observation plane by some dis-
tance away from the focal plane thus offers a simple
remedy to the contrast problem.

3. Optical Setup

We set up a laboratory demonstration of the LCWS
on a breadboard ~900 mm 3 300 mm!. The experi-
mental setup is devoted to the testing of optical com-
ponents in transmission, as is shown in Fig. 2. The
incident light used to analyze the optical component
in transmission is an expanded He–Ne laser beam
~l 5 632.8 nm!. The sample to be analyzed is placed
just in front of the LCTV to analyze the wave front
before it is affected by propagation or undergoes dif-
fraction by the LCTV pixels. The LCTV used6 is a
ommercial VGA twisted-nematic LCD that operates
n amplitude modulation between the crossed polar-
zer and analyzer. The LCTV has 640 3 480 square
ixels that are separated by a space of 40 mm 3 40

mm, with each pixel electrically addressed indepen-
dently. The total surface that can be scanned is
therefore 2.56 cm 3 1.92 cm. The sampling aper-
ture is defined as a group of several pixels and is
programmable in both size and shape, as was dis-
cussed in Section 2. The sampling aperture used in
the experiments is a 20 3 20 pixels square, i.e., its
size is 800 mm 3 800 mm and is chosen as a trade-off
etween the transverse resolution and the size of the
pot on the CCD. Hence the maximum number of
ampling points is 32 3 24 points. The number of
ampling points has a direct influence on the acqui-
ition time, and, consequently, a first fast scan can be
erformed with low resolution to check the setup be-
ore the final high-precision scan is performed.

The diffraction spots are imaged by an observation
ens on a CCD detector with 640 3 480 pixels of size
1 mm 3 11 mm. The lenses are doublets corrected
or spherical aberration, and their focal lengths range
rom 200 to 800 mm, depending on the dynamic range
f the component to be analyzed. Shorter or longer
ocal lengths could obviously be used as well. A
rame grabber with separate acquisition and display

Fig. 2. Optical setup of the LCWS.



u
a
p
t
t
s
p
h
s
a
T
f
p
t
t

s

Table 1. Duration of Each Elementary Operation for One Sampling
memories is used to control both the LCD and the
CCD camera ~Coreco, Model TCX with an ISA Bus!.

The position of the diffraction spot is estimated by
se of a classical centroid method. The spot occupies
great number of pixels, say, as many as 80 3 80

ixels, depending on the ratio of the aperture size to
he observation distance. The centroid computation
ime is kept short by use of two steps: A first fast
can of the CCD image at every 20 pixels provides the
osition of the pixel at which the intensity is the
ighest. The centroid calculation is performed in-
ide a window of 100 3 100 pixels that is defined
round the approximate position found in step 1.
he repeatability of the centroid calculation was

ound to be 0.1 pixel rms for 100 measurements of the
osition of the same spot when the observation dis-
ance d is 1 m. The angular detection threshold of
he sensor can be defined as

du 5
1
q

p
D

, (3)

where p is the CCD pixel size, d is the observation
distance, and q is the fractional degree of the
ubpixel-position estimation. The value of q 5 10,

as found experimentally, corresponds to a sensitivity
of du 5 1.4 mrad at 1 m.

The total scanning time is approximately 3 min for
24 3 24 sampling points. This time is limited by the
four steps involved for each sampling point, i.e., gen-
eration of the aperture on the spatial light modulator
~SLM!, acquisition of a video frame, transfer from the
frame grabber memory to the host memory, and cen-
troid calculation. The duration of each of these ele-
mentary steps is given in Table 1 for our setup. It
can be seen from Table 1 that most of the time is
consumed by unoptimized hardware transfers be-
tween the host computer and the frame grabber and
between the frame grabber and the LCTV or the
CCD. A further improvement in the time of acqui-
sition of the wave front consists of generating several
subapertures simultaneously on the SLM to reduce
the global display time. However, scanning-time re-
duction is not inversely proportional to the number of
subapertures generated simultaneously. Moreover,
this scan technique can be applied successfully in
only the case of slowly varying wave fronts to prevent
any ambiguity between diffraction spots from arising.
The scanning time is reduced by 35% with four sub-

Point

Operation
Duration

~msysample!

Subaperture display on the LCTV 90
Diffraction-spot acquisition 40
Memory transfer ~frame grabber to host computer! 328
Centroid estimation 31

Total 489
apertures and by only 40% with nine subapertures.
More significantly, the duration of each step could be
reduced by use of optimized hardware and, espe-
cially, by use of a faster frame grabber. A ferroelec-
tric LC SLM to replace the twisted-nematic LC would
provide binary amplitude modulation with a charac-
teristic response time better than 1 ms instead of the
current 100 ms. A fast CCD or complementary
metal-oxide semiconductor camera would reduce the
acquisition-step duration. The centroid estimation
could be performed by use of a specialized integrated
circuit that is connected directly to the image sensor.

4. Wave-Front Reconstruction

A variety of wave-front reconstruction algorithms,
either zonal or modal, that use the wave-front slopes
are available.1 Any wave-front reconstruction algo-
rithm for the SHWS applies as well to the LCWS
because both sensors measure the same quantities,
i.e., the slopes. Zonal algorithms, either direct or
iterative, estimate the wave front at the sampling
points only. With modal algorithms the wave front
is expressed as a linear combination of universal
functions or modes. Orthogonal polynomials, for in-
stance, form a set of universal functions. In adap-
tive optics Zernike polynomials are commonly used
because they are suited to circular pupils and are
related directly to classical optical aberrations, such
as defocus, astigmatism, spherical aberrations, and
coma. However, if the rectangular shape of the
LCTV is considered the best basis in this case is the
basis of Legendre polynomials. Theoretically, this
basis includes an infinite number of polynomials, but,
in practice, it has to be truncated to a given order
with the consequence that high spatial frequencies of
the wave front are not taken into account. We used
a modal reconstruction algorithm that is based on the
minimization of a least-squares criterion, as origi-
nated by Southwell.7 We give below the basic steps
of the procedure that we use; the mathematical der-
ivations are well known and can be found in the
literature.

The polynomials used are the first 48 Legendre
polynomials, and the wave front is expressed as the
expansion

W~x, y! 5 (
n51

48

an Pn~x, y!, (4)

where Pn~x, y! 5 Pi~x!Pj~y! with n 5 7j 1 i. The
piston term, n 5 0, is excluded from the expansion
because it cannot be sensed by a wave-front sensor
that is based on the Hartmann test. The Legendre
polynomials to polynomial degree 6 are given in Table
2.

After the coefficients of the decomposition on the
Legendre basis are estimated it is easy to obtain the
decomposition on the Zernike basis. With the piston
1 August 2000 y Vol. 39, No. 22 y APPLIED OPTICS 3841
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Table 2. First Seven Legendre Polynomials

3

term excluded again, we use the first 28 Zernike poly-
nomials, as given by

W~r, u! 5 (
p52

28

bp Zp~r, u!. (5)

The unknown Zernike coefficients bp, expressed as a
function of the Legendre coefficients, are

bp 5 (
n51

48 F** Pn~r, u!Zp~r, u!rdrduGan, (6)

here integration is performed over the disk con-
ained in the rectangular LCTV pupil.

The unknown Legendre coefficients are obtained
y use of the classical least-squares method that con-
ists of minimizing the quadratic difference between
he calculated and the measured slopes. The crite-
ion is expressed as

E~a1, a2, . . . , aL! 5
1
N (

k51

N

$@sex~xk, yk! 2 smx~xk, yk!#
2

1 @sey~xk, yk! 2 smy~xk, yk!#
2% ,

(7)

here L is the number of Legendre polynomials used
n the reconstruction, N is the total number of sam-
ling points, xk and yk are the coordinates of the

center of the kth subaperture, and the subscripts e
and m refer to the experimental and the estimated
slopes, respectively. The choice of the number of
polynomials used for reconstruction results from con-
sideration of the range of spatial frequencies that are
to be measured. High spatial frequencies filtering
by the modal reconstruction algorithm leads to
smoothing of the measurement noise. From knowl-

Polynomial
Degree Legendre Polynomial

0 P0~x! 5
1

Î2

1 P1~x! 5 Î 3
2

x

2 P2~x! 5
1
2Î 5

2
~3x2 2 1!

3 P3~x! 5
1
2Î7

2
~5x3 2 3x!

4 P4~x! 5
3

8Î2
~35x4 2 30x2 1 3!

5 P5~x! 5
1
8Î11

2
~63x5 2 70x3 1 15x!

6 P6~x! 5
1

16Î13
2

~231x6 2 315x4 1 105x2 2 5!
842 APPLIED OPTICS y Vol. 39, No. 22 y 1 August 2000
edge of the variance s of the experimental measure-
ment noise that is assumed to be Gaussian and white
and the value of the least-squares criterion found
after minimization it is possible to determine the
amount of reconstruction error that is due to the
truncation of the polynomial expansion. The math-
ematical mean of the least-squares criterion is, in-
deed,

^E~â1, â2, . . . , âL!& 5 2s2 2
L
N

s2

1 ~reconstruction error!. (8)

The reconstruction error thus accounts for all infor-
mation in the slope measurements that is due to
modal truncation rather than to measurement noise.
A large value of the criterion compared with twice the
variance of the measurement noise indicates that the
wave front contains high frequencies that cannot be
reduced to measurement noise. A modal reconstruc-
tion algorithm with a higher number of polynomials
should then be used to improve the estimation accu-
racy.

5. Measurement Examples

Various optical components with different character-
istics were analyzed to provide evidence of the per-
formance and characteristics of the sensor. Three
examples are given in this section. We first choose a
spherical divergent lens with a nominal focal length
of 21 m to test the validity of the optical setup and of
he reconstruction algorithm. The second example
ses a thin glass plate that exhibits small phase vari-
tions to point out the high sensitivity of the sensor.
he third example uses a progressive ophthalmic

ens that is chosen for its high dynamic range and its
bsence of revolution symmetry to show that rather
omplicated wave fronts can be sensed with high ac-
uracy. Note that example 3 was already given in
ef. 5. All examples are presented with the tilt co-
fficients removed ~Zernike polynomials 2 and 3 or
egendre polynomials 1 and 7! because tilt can result

from the positioning of the sample and is not part of
the optical aberrations.

Figure 3~a! displays the reconstructed wave front
from behind a divergent lens. The focal length used
was 300 mm, and the CCD camera was positioned 20
mm behind the focal plane. The number of sam-
pling points was set to 24 3 24, and the programmed
subaperture on the analysis pupil was a rectangle of
800 mm 3 800 mm. The reconstructed wave front is
mostly a revolution paraboloid, as is expected for a
lens, which means that the second-degree coefficients
of the decomposition are dominant. Figures 4~a!
and 4~b! show the Legendre and the Zernike expan-
sion coefficients, respectively. The focal length of
the divergent lens is easily deduced from the fourth
Zernike coefficient and is found to be 20.95 m. Fig-
ure 3~b! shows the experimental slopes measured in
the y direction. The surface of the slopes is mostly
planar, in agreement with the shape of the wave
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front. The standard deviations of the reconstruction
error, i.e., the square roots of the least-squares crite-
rion defined in Eq. ~8!, are 30 and 25 mrad along the
x and the y axes, respectively. The relative estima-
tion error of the slopes is only 0.5%. We believe that
the residual reconstruction error arises from the non-
uniformity of the lens, which induces small, rapidly
varying distortions on the wave front.

Figure 5~a! displays the experimental slopes in the
y direction as obtained for a thin glass plate. The
focal length used was 600 mm, and the camera was
placed 165 mm behind the focal plane. The number
of sampling points was set to 25 3 25 with a scanning
perture of 400 mm 3 400 mm. Because the slope
alues are very small in this case, the measurement
oise can be observed from the experimental data, in
ontrast with the divergent-lens measurements of
ig. 3~b!. Figure 5~b! displays the slopes obtained
ith the reconstruction model. The reconstructed
ave front is shown in Fig. 5~c!. The standard de-
iations of the reconstruction error are 5 and 9 mrad

Fig. 3. Measurement of the wave front from behind a divergent
lens: ~a! reconstructed wave front and ~b! experimental wave-
front slopes along the y direction.
n the x and the y directions, respectively. The rel-
tive estimation error of the slopes is 0.5%, as for the
revious example, although the dynamic of the wave
ront is much smaller.

Figures 6~a! and 6~b! display the experimental
lopes for an ophthalmic progressive lens along the x
nd the y directions, respectively. The focal length
sed was 200 mm, and the observation distance was
et to 170 mm. The number of sampling points is
9 3 21 with a scanning aperture of 800 mm 3 800
m. The reconstructed wave front is shown in Fig.
~c!. The curvature appears to vary along the x axis,
hich was the vertical axis in the experiment.
hese results are characteristic of a progressive lens
ith a vertically varying focal length—the upper part
f the lens having a longer focal length than the lower
art. The parameters of the ophthalmic progressive
ens were not available, so an objective comparison of
he measured wave front with the expected one was
ot possible. The standard deviations of the recon-
truction error are 42 and 35 mrad in the x and the y
irections, respectively, and the relative error of the
lopes is again 0.5%. This relative estimation error
herefore seems characteristic of the sensor.

The accuracy of the measurement of a wave front is
imited, on the one hand, by the measurement noise
rom the experimental values of the slopes and, on
he other hand, by the accuracy of the determination
f the position of the diffraction spot. The detection

Fig. 4. Legendre and Zernike coefficients in the expansion of the
wave front shown in Fig. 3~a!.
1 August 2000 y Vol. 39, No. 22 y APPLIED OPTICS 3843
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threshold of the sensor is related directly to the mea-
surement noise. Moreover, knowledge of the mea-
surement noise permits the estimation of the model
error, as was explained in Section 4. One hundred
successive measurements of the position of the same
diffraction spot showed a repeatability at 0.05 pixel

Fig. 5. Measurement of the wave front from behind a thin glass
plate: ~a! experimental wave-front slopes along the y direction,
~b! reconstructed wave-front slopes along the y direction, ~c! the
reconstructed wave front.
844 APPLIED OPTICS y Vol. 39, No. 22 y 1 August 2000
Fig. 6. Measurement of the wave front from behind a progressive
ophthalmic lens: ~a! experimental wave-front slopes along the x

irection, ~b! experimental wave-front slopes along the y direction,
c! the reconstructed wave front.
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Table 3. Experimental Evaluation of the Measurement Noise as a
on the CCD detector when the observation distance is
25 cm, at 0.08 pixel for 70 cm, and at 0.1 pixel for 95
cm, as listed in Table 3. The measurement noise
caused by mechanical vibrations, atmospheric fluctu-
ations, and instabilities of the laser becomes greater
when the observation distance increases because the
displacements of the spots are amplified for the same
wave-front slope. The measurement noise is less
than 5 mrad for each sampling point, and the error
range for the reconstructed wave front is approxi-
mately 4 nm. The expected accuracy of the wave-
front reconstruction is therefore less than ly100 over
the visible-light spectrum.

Analysis of the three examples examples given
above reveals that the absolute accuracy of the wave-
front estimation is better for less-modulated wave
fronts. However, the relative accuracy-to-dynamics
ratio remains constant. For all the examples pre-
sented above the relative estimation error is 0.5%.
Most of the reconstruction error arises from measure-
ment noise, and no bias seems to be introduced by
truncation of the polynomials.

6. Comparison with Other Hartmann Sensors

The resolution of a wave-front measurement is re-
lated directly to the accuracy of the local-slope mea-
surement. Therefore an accurate measurement of
the spot position on the detector is required. The
exact centroid estimation would require the compu-
tation of the quantity

ck 5
* x9Ik~x9!dx9

* Ik~x9!dx9

, (9)

where Ik~x9! is the intensity in the observation plane
that corresponds to the kth subaperture. Instead,
only a finite number of pixels are available in the ob-
servation plane, and the centroid is approximated by

ck <
(

q
xq9Ik~xq9!

(
q

Ik~xq9!
, (10)

where xq9 is the position of the center of each acqui-
ition pixel.
In the Shack–Hartmann sensor, the analysis pupil

is an array of lenslets of short focal lengths, i.e., less

Function of the Observation Distance

Focal
Length f

~cm!
Observation

Distance d ~cm!

Standard Deviation

mrad CCD pixels

20 25 2.2 0.05
60 70 1.5 0.08
80 95 1.4 0.1
than 1 cm, so the diffraction spots usually occupy a
small number of pixels, say, approximately four pix-
els. In contrast, the diffraction spots obtained with
the LCWS occupy as many as 80 3 80 pixels on the

etector. Indeed, using a few pixels for the centroid
alculation can result in a biased estimation if the
pot is not perfectly centered on the group of pixels or
oes not present perfect revolution symmetry. Fur-
hermore, calibration of the pixel sensitivity of the
etector is a prerequisite for subpixel accuracy in the
hack–Hartmann sensor, and low-noise detection is
equired, as the global measurement noise for the
etermination of the position of one spot is propor-
ional to s2yK, where s2 is the variance of the noise

inherent to each pixel of the CCD detector and K is
he number of pixels used for centroid calculation.
t appears that estimating the centroid with a large
umber of detection pixels in the LCWS greatly re-
uces the sensitivity to these three error sources, i.e.,
iased estimation, nonuniform pixel sensitivity, and
easurement noise. Hence the quality require-
ents on the camera can be relieved or the sensing

recision can be improved. Roughly speaking, it can
e said that the LCWS trades off speed of operation
or resolution, as opposed to the SHWS.

A number of ray-tracing methods based on the
artmann principle have been proposed.8–10 In these

echniques a scanning laser beam is used to sample
equentially the deviations caused by an optical sys-
em. As opposed to the SHWS and the LCWS, they
re active wave-front sensors in the sense that they
ust include their illumination system; thus they

an be used for optical testing but not for the mea-
urement of laser beams or atmospheric turbulence.
s sequential sensors, they should, in principle,
hare the characteristics of the LCWS, i.e., non-real-
ime operation and improved sensitivity. However,
he mechanical scanning of the laser beam is a lim-
ting factor for unbiased estimation and accuracy.
his limitation is avoided in the LCWS because there
re no moving parts.

7. Conclusions

We have discussed a new wave-front sensor that is
based on the Hartmann test in which sequential
scanning of the wave front is performed by the pro-
gramming of small subapertures by use of a LCTV.
The local slopes in two orthogonal directions are es-
timated by the centroid of the diffraction spot on an
image sensor. The accuracy can be adjusted, de-
pending on the dynamic range of the wave front, by
changes in the focal length of the observation lens
and the sampling geometry. The wave front is re-
constructed from slope data on the Legendre or the
Zernike polynomials basis by use of a least-squares
method. Experiments with various components
such as lenses, thin glass plates, and progressive
lenses have proven the versatility of the device for
optical testing. Compared with the SHWS the
LCWS is characterized by greater sensitivity, a
larger dynamic range, and higher accuracy. More-
over, the device does not specifically require a high-
1 August 2000 y Vol. 39, No. 22 y APPLIED OPTICS 3845
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quality detector. The counterpart of all these
advantages is that no real-time wave-front sensing is
possible because the acquisition of the wave front is
sequential, which would seem to eliminate applica-
tions in adaptive optics for astronomy. However, it
is a promising alternative to other wave-front sensors
in the field of optical testing in which a high resolu-
tion is required and real-time operation is not essen-
tial. By slight modification of its design the LCWS
can operate in the reflection instead of the transmis-
sion mode, e.g., for testing the quality of one surface
of a lens only. Future improvements will probably
make it possible to reduce the acquisition time.
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