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Abstract
The diffraction of light by soundwaves is known as Brillouin scattering. In optical waveguides,
Brillouin scattering can arise fromboth bulk contributions,modelled by photoelasticity, and surface
contributions, which are due to thewaveguide boundaries being shaken by propagating sound. The
reciprocal effect, electrostriction, governs the coherent generation of sound by light. The bulk
photoelastic contribution to Brillouin scattering is generally nonlinear but can be limited to a first-
order expansion for small strain.We investigate themoving-interface contribution to Brillouin
scattering in optical waveguides and show that it is also inherently nonlinear, leading tomulti-phonon
processes for large deformations. Limiting the perturbation tofirst order, we form a Lagrangian
describing the interaction of sound and light. The Lagrangian contains both surface and bulk
contributions to Brillouin scattering and electrostriction, and allows the derivation of optical and
acoustic equations in a single variational formula. A full electrostriction equation is then derived for
the phonon distribution, with both bulk and surface effects included. Numerical simulations in the
case of a silicon nanowire illustrate the different effects and their respective contributions.

1. Introduction

Brillouin scattering in a transparentmediumoccurs when light interacts coherently with spatio-temporal
periodic variations of the refractive index caused by the propagation of soundwaves [1]. The result of the
interaction is that a fraction of the transmitted light wave changes its frequency andwavenumber, as if it were
diffracted by an oscillating andmoving grating. In bulk dielectricmedia, this interaction is described by the
photoelastic effect. Reciprocally, the coherentmixing of two optical waveswith different frequency and
wavenumber producesmechanical force-like action on the propagationmedium, or electrostriction, that
generates soundwithin it. The pair of reciprocal physicalmechanisms, photoelasticity and electrostriction,
classically forms the basis for the description of stimulated Brillouin scattering (SBS), a nonlinear process by
which light interacts coherently with acoustic vibrations in an optically transparentmedium and energy can be
transferred back and forth between them [2].

Light and sound interaction inmicrostructured opticalfibres [3], microwires [4], and nanoscale waveguides
[5–8] has attracted a lot of attention in recent years, due to the realization that surface effects can contribute
significantly to the interaction. Rakich et al have shown that radiation pressure can indeed contribute
significantly to the SBS gain in nanoscale optical waveguides [9, 10], allowing one in principle to design slot
optical waveguides where this gain can bemaximized [11]. These developments parallel the field of opto-
mechanical interactions in cavities [12], including sound and light interaction in simultaneous photonic and
phononic, or phoxonic, crystal structures [13]. In particular, the important role played bymoving interfaces or
surfaces in the coupling between light and sound has nowbeen recognized and its complementarity with the
bulk photoelastic effect is well understood [14, 15].

In this paper, wewish to precise inmore detail the surface and bulk contributions to electrostriction, but also
the reciprocity between themoving-interface (MI) effect and radiation pressure.Wefirst summarize themethod
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of overlap integrals as applied to estimating coupling coefficients between optical and acousticmodes, before
discussing the contribution of theMI effect to Brillouin scattering in optical waveguides.We had previously
accounted for bulk electrostriction in optical fibres [16] andwaveguides [17], excluding surface effects. Here, we
show that theMI effect provides a natural way to describing radiation pressure as its reciprocal process in an
interaction Lagrangian. Finally, we show that the total Lagrangian containing both surface and bulk
contributions to Brillouin scattering and electrostriction leads to an elastodynamic equation for the generation
of sound by light.

2. Theory

The usual approach to estimating quantitatively the interaction of light and sound in an opticalfibre or
waveguide is to express coupling coefficients involving overlap integrals of guided optical waves with acoustic
waves; we summarize briefly known results in section 2.1. Sections 2.2 and 2.3 contain ourmain original
developments.

2.1.Overlap integrals
Let us consider a dielectric optical waveguide, as depicted by figure 1. Guided optical waves satisfy a dispersion
relation relating their frequencyω andwavenumber, or propagation constant, k. This dispersion relation is
determined by the spatial distribution of the dielectric constant, ormore generally the dielectric tensor ò for
anisotropicmedia. Such a structure also supports the propagation of acoustic waves, in the formof elastic waves
in solids [18].

Coupling coefficients can be obtained if the originally unperturbed optical and acoustic waves can be
assumed to be known. It seems indeed grounded towrite the total electricfield as a superposition
E E E1 2= +( ) ( ) of 2 guidedmodes involved in the acousto-optical interaction.More precisely, each guided
mode (α=1, 2) is written

E x et a t x x x ı t k x, , , exp c.c. 13 1 2 3w= - +a a a a a( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )

The aα aremodal amplitudes and themodal shapes e a( ) can be obtained from the eigenvalue problemdefining
the dispersion relation.

We alsowrite the displacements of the acoustic wave as

u x ut x x ı t Kx, , exp c.c. 21 2 3= W - +( )( ) ( )( ) ( )

Figure 1.Propagation of an acoustic wave in an optical waveguide and its effect on optical properties. (a)An acoustic wave propagates
along thewaveguide, causing both amodulation of the dielectric tensor around its static value ò1 and a deformation of the boundaries
of thewaveguide. (b) Indeed, at each position along thewaveguide, the cross-section of thewaveguide appears to bemodulated
geometrically: each point of the boundary is shifted by the normal displacement u xt , .( ) (c)Concurrently, at each point x inside the
waveguide, the dielectric tensor is perturbed by an amount proportional to the strain field accompanying the acoustic wave, the so-
called photoelastic effect. Both basicmechanisms (b) and (c) contribute to coupling of light and sound in thewaveguide. (d)As a
result, the dispersion relation of guided optical wavesω(k) ismodulated in time at the acoustic frequencyΩ.
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This equation implies that the acoustic wave has a definite frequencyΩ and awavenumberK. Actually, the
phase-matching conditionsΩ=ω(2)−ω(1) andK=k(2)−k(1) are assumed to hold exactly. In other words,
among all possible phonons in thewaveguide, we consider only those that satisfy the conditions for Stokes
Brillouin scattering. It should not be concluded, however, that the acoustic wave is a particular elasticmode of
thewaveguide structure. Indeed, thewaveform u x x,1 2( ) in (2) remains in principle arbitrary, as long as it
satisfies the elastodynamic equations.

As depicted infigure 1, acoustic wavesmodulate both the dielectric tensor of themedium and the
boundaries of thewaveguide. Thismodulation in time is small and it can be considered as a perturbation.
Considering the optical dispersion relation, the perturbation induces a change in themodal frequency atfixed
wavenumber, but also a change in themodal wavenumber at fixed frequency. These can be characterized by the
relativemodulations δ ω /ω or δk / k. They are related by k vg

1d dw= - -( ) where vg is the group velocity [19, 20],
asfigure 1(d) illustrates.

Assuming that the acoustic wave is known, coupling coefficients can then be computed fromoverlap
integrals (see also Appendix B). Note that we specifically assume vanishing optical loss in this paper. The bulk
contribution to the acousto-optical effect comes from the photoelastic effect and leads to [13]

S p d d u
1

2
d , 3

S
ijkl i j k l

PE

1 2
,⎜ ⎟⎛

⎝
⎞
⎠ *ò

dw
w

= ( )( ) ( )

wherewe have assumed the opticalmodes are normalized such that e dSd 1,
S

*ò =a a·( ) ( ) with S the cross-

section of thewaveguide. In these expressions, d a( ) is the dielectric displacement vector ofmodeα and pijkl is the
photoelastic tensor.We use tensor notations: repeated index summation is implied and an index placed after a
coma indicates a spatial partial derivative, i.e. u .k l

u

x,
k

l
= ¶

¶
It should be noted that the strain tensorfield uk, l

includes both partial derivatives with respect to x1 and x2 and a termproportional toK. The later contribution is
absent from the similar formula for phoxonic and optomechanical cavities [21]. As a note, expression (3) is
limited to thefirst-order term in a nonlinear expansion of the relative dielectric tensor with strain. Higher-order
nonlinear terms are not considered in this paper.

The surface contribution to the acousto-optical effect comes from theMI effect and can be given the formof
a contour integral [13, 19]

e el u d d
1

2
d , 4n t t n n

MI

1 2 1 1 2⎜ ⎟⎛
⎝

⎞
⎠ * * ò

dw
w

= - D - D
S

-( )· ( )( ) ( ) ( ) ( )

withΔò=ò1−ò2 and .1
1

1
2

1  D = -- - - In this expression, un is the normal displacement at the interfaceΣ
between thewaveguide and the surroundingmedium, so that (dl un) represents the change in the cross-sectional
area of thewaveguide as the acoustic wave is propagating. Significantly, the electromagnetic (EM)field has been
decomposed into normal and tangential components, so that only components that are continuous across the
interfaceΣ are involved. As argued by Johnson et al, such a formula applies onlywithin the frame offirst-order
perturbation theory applied to the variation of the dielectric tensor [19]. It remains that theremaywell be
perturbation terms other than the linear one to be taken into account, as investigated next. As afinal note,mode
labels were not explicited in the left-hand sides of expressions (3) and (4) because only backward intra-mode
Brillouin scatteringwill be considered in the following examples, but they should in general be indicated if the
two opticalmodes differ.

2.2.Moving interfaces
As shown in the case ofmultilayers [14], and 2D [22] and 3D [21] cavities, theMI effect can be investigated
adequately under an quasi-static approximation.We here extend this approach towaveguides. Let us consider
the guided opticalmode equationwritten for the electric field vector

E
E

t

1
0. 5

2

2

⎛
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⎞
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m

 ´  ´ +
¶
¶

=
( ) ( )

If thewaveguide is perfectly still, the dielectric tensor ò is a definite function of the transverse coordinates x1 and
x2, and the equation can be solved to obtain propagationmodes respecting appropriate boundary conditions.
Now if an acoustic wave is present, it willmodulate the dielectric tensor in time by adding to it a perturbation δ
òij=χijkluk,l proportional to the strain field

1. Thismodulation is, however, on the time scale of the acoustic wave
and is thus very slow compared to the characteristic optical time (by a factor of 105 slower, approximately).We
can thus imagine that thewaveguide is quasi-staticallymodulated in time and that equation (5) can be solved for
at every particularmoment along the acoustic evolution to give the instantaneous opticalmodes and frequencies.
Furthermore, because of the presence of the acoustic wave, the boundaries of the optical waveguide are also
modulated in time. Each point x of the boundariesmoves around its static position by an amount u, according

1
Note that the nonlinear tensorχijkl is related to the photoelastic tensor by the relationχijkl=−òimòjnpmnkl[23].
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to the displacement expressed by (2).We can safely ignore the longitudinalmotion of the boundaries, as long as
the displacements of the acoustic wave are very small compared to the acoustic wavelength, so that every cross-
section of thewaveguide can be thought of as ‘breathing’ slowly in time, at the acoustic frequency. In a practical
numerical implementation, themotion of the interfaces can be incorporated in themesh used to define the
waveguide, as will be performed in section 3.1. Let us remark that such a computationwill result in a function of
time (δ ω /ω)MI(t) that naturally includes the full perturbation caused by the acoustic wave, as opposed to only
the perturbation at frequencyΩ in (4).

2.3. Lagrangian approach
Aswe argued in the introduction, ourmain goal is to formulate a variational principle fromwhich both Brillouin
light scattering by phonons and electrostriction of acoustic phonons by light can be derived simultaneously. As
both elastodynamic andMaxwell’s equations can be formulated using Lagrangians, we investigate how a total
Lagrangian can be derived. In the context of our study, a Lagrangian is a functional depending on a vector fieldji

and its derivativesji, jwith respect to time and spatial coordinates. Integrated over time, the Lagrangian defines
the action of the system, whichwe seek tomake stationary.We define the Lagrangian density as ,i i j, j j( ) so
that the Lagrangian is the volume integral of this density, L V, d , .i i j i i j, ,òj j j j=( ) ( ) The Euler–Lagrange
equations are

x
, 6

i j i j,

 
j j

¶
¶

=
¶
¶

¶
¶

( )

where summation over j is implicit (the index j runs over time t and coordinates xj in this equation). The Euler–
Lagrange equations yield the dynamical equations for the system.

For elastic waves, the Lagrangian density is well known to be [24]

u u c u u
1

2
, 7i i ijkl i j k le , , r= -( )˙ ˙ ( )

with cijkl the tensor of elastic constants and ρ themass density. This is the kinetic energy densityminus the
potential energy density. The elastic Lagrangian density depends only on the partial derivatives of the
displacements with respect to time and space coordinates—velocities u̇i and strains uk,l. From a Legendre
transform, theHamiltonian density is simply u u c u u ,i i ijkl i j k le

1

2 , , r= +( ˙ ˙ ) which is also the total energy density
for elastic waves. Note that expression (7) is formally valid for lossless elastic wave propagation; the generalized
Euler–Lagrange equations for the case of loss are given in AppendixC.

For EMwaves and themicroscopic formulation ofMaxwell’s equations, the Lagrangian is known to be given
by [25]

j A E B
1

2
, 8o e 0

2 2
0 r f m= - + + -( )· ( )

where the potentials A,f( ) are used to express the electric field and themagnetic field vectors as

B A, 9=  ´ ( )

E A. 10f= - - ˙ ( )
The source terms ρe and j account for charge and current density distributions. It is important to notice that the
independent variables are the potentials, not the electric andmagnetic fields, which are derived. For the
macroscopic formulation ofMaxwell’s equations in dielectricmedia, the previous Lagrangian density can be
rewritten as

E D B H
1

2
, 11o = -( · · ) ( )

where the usual definitions D E= and H B 0m= are used. The dielectric displacement D in particular
accounts for bound charges and currents. Under this form, the EMLagrangian density still depends only on the
partial derivatives of the potentials with respect to time and space coordinates. From a Legendre transform, the
Hamiltonian density is simply E D B H ,o

1

2
 = +( · · ) which is also the total energy density for EMwaves.

For convenience, these relations are briefly derived in Appendix A.Note again that we specifically assume
vanishing optical loss.

In order to describe Brillouin scattering in the optical waveguide, we propose to sum the EMand the elastic
Lagrangians to form a total Lagrangian for thewaves in interaction. This procedure is justified by the possibility
to use a double Legendre transform to transform this total Lagrangian to a totalHamiltonian, so that the total
energy of the system is taken into account in the interaction. As implied by the discussion in sections 2.1 and 2.2,
andwithin the quasi-static approximation, the low-frequency variations of the EMenergy originate solely from
the variations of the dielectric tensor caused by the acoustic wave.We consequently separate the dielectric tensor
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into its unperturbed and itsfirst-order parts towrite

EL L L
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with l3 some axial length introduced towrite the integration volume asV l S L V, d ,3 o oò= = and

L Vd .e eò= Wehave further intentionally separated the bulk and the surface contributions in thefirst-order
part. The surface integral accounts for the bulk photoelastic effect, while the contour integral accounts for the
moving interface effect. It can be seen that the coupling coefficients (3) and (4) can be directly derived from them
by inserting the opticalmodal superposition (1) and the acoustic waveform (2), and then keeping only terms at
the acoustic frequencyΩ. The validity of themoving interface Lagrangian is as before limited to the conditions of
application offirst-order perturbation theory.

Taking the variation of the total Lagrangian (12)with respect to the EMpotentials, we are led back to the
dynamical equation (6), including the photoelastic effect. The variation of the contour integral specifically leads
to an expression of theMI effect as a boundary condition to the optical waveguide equation, combining the
incident optical wave and the acoustic wave displacements at the interfaceΣ. The procedure we outlined in
section 2.2 is actually a variant where thewaveguide geometry is deformed at each time stepwithin the acoustic
period instead ofmodifying the boundary conditions.

The previous observations are intended to emphasize the consistency of the Lagrangian approach, but its real
usefulness reveals in the description of electrostriction.We can indeed reinterpret the contour integral in (12) as
thework done by the boundary of thewaveguide when subjected to a surface optical force, or optical pressure,
defined by

EF D
1

2
. 13s

2 1 2 = D - D -
^( ) ( )

Following [16]we further define an electrostriction stress tensor asT E E .ij klij k l
es 1

2
c= With these definitions, the

dynamical equations for the elastic wave are derived using the Euler–Lagrange equations as
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c u
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complementedwith the boundary condition that the optical pressure Fs applies on every boundary where the
dielectric tensor is discontinuous. The physicalmeaning of this equation is that the elastodynamics of the
waveguide are forced by the combination of a bulk electrostriction stress distribution and of an electrostriction
pressure, both of purely optical origin. Aswe illustrate in section 3.2, this formulation allows one to obtain the
acoustic phonon distribution generated by light including both bulk and surface contributions to
electrostriction.

3.Numerical results

Let us consider the simple rectangular silicon nanowire depicted infigure 2. The refractive index of silicon at a
wavelength in a vacuumof 1550 nm is taken as n=3.48 and refractive index dispersion is neglected.With a
cross-sectional area S≈ 0.1μm2, this waveguide supports a fundamental TEmodewith effective index
neff=kc /ω ≈ 2.24 and group index ng=c / vg ≈ 4.5. As can be noticed from figure 2, the opticalmode
extends significantly in air around the central core. This situation is specifically chosen so as tomaximize surface
over bulk effects in Brillouin scattering, following Rakich’s analysis [9, 10]. The chosen dimensions are also close
to those used inVan Laer’s experiments [8].

3.1.Quasi-staticMI effect
Let us consider first the direct numerical simulation of themoving interface effect that we outlined in section 2.2.
We consider specifically backward intra-mode Brillouin scattering, so thatK≈ 2k(1), with the implication that
the acoustic wavelength is half the effective optical wavelength. The silicon nanowire supports a total of 29 elastic
modeswith frequencies ranging between 12 and 30 GHz, and of coursemanymore above. For each of these
modes, normalized so that Le=0.1 J (with l3=1 m), 24 snapshots were createdwithin an acoustic period and
the variation of the fundamental TE opticalmodewas recorded. As an illustration,figure 3 displays the optical
mode at 4 different times (t=0,T/4,T/2, 3T/4)withT the acoustic period, for the second and the third elastic
modes. These elasticmodes have very close frequencies, about 13.7 and 13.8 GHz respectively, but the former is
of a rotational typewhile the latter is of the symmetric flexural type. Themaximum total displacement and the
symmetries of elasticmodes are listed in table 1.

Different elasticmodes actually have a quite different impact on the variations of the optical frequency.
These variations are plotted infigure 4 for the previous two elasticmodes, plus thosewith numbers 4 and 6. For
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each of them, the plot shows the value of (δ ω /ω) as caused by theMI effect and the photoelastic effect. TheMI
value is obtained from the previously describedmethod, while the PE value is obtained directly from coefficient
(3). Elasticmodes 3 and 6 show rather strongMI and PEmodulations, with similar amplitude and the same
phase. TheMImodulation ismostly sinusoidal at the frequencyΩ of the elasticmode. In contrast, elasticmodes
2 and 4 show a very small PEmodulation and a smallMImodulation.Moreover, the PImodulation ismostly at
the double frequency 2Ω. Following the analysis by Psarobas et al, the acousto-optical response of thewaveguide
is nonlinear and is the siege ofmulti-phonon processes [14]. Itmust be stressed that this nonlinearity originates
here solely from theMI effect and is of geometrical origin, since the PE effect was explicitly considered to be
linear in expression (3). It is dependent on the acousticmode energy: it was checked that diminishing the elastic
mode energy by a factor of 2, theMI response was linearly decreased for elasticmodes 3 and 6, while it was
decreased by roughly a factor 4 for elasticmodes 2 and 4. This is consistent with the fact that two-phonon
processes are dominant in the latter case. Note that the vanishing of the linear PE andMI effects can be traced
back to the symmetry properties of the considered elasticmode [26].

Finally, figure 5 shows the absolute values of the PE andMImodulation coefficients estimated using
formulas (3) and (4) for all 29 elasticmodes. Itmust be stressed that theMI coefficient is obtained for thefirst
variationwith respect to the dielectric tensor and is thus an estimate of theMI effect at frequencyΩ only. A clear
correspondence is foundwith the numerical results infigures 3 and 4, i.e. formula (4) for theMI effect correctly
gives the linear contribution at frequencyΩ. Onfigure 5, four elasticmodeswith the largestmodulation
coefficients can be identified, thosewith numbers 3, 6, 12, and 20.

Figure 2.A rectangular silicon nanowirewaveguide. (a)The silicon core haswidthw=450 nm and height h=220 nm. It is
surrounded by air. (b)The finite elementmesh comprises an additional 1000 nmof air around the core for opticalmode calculations.
Note that elastodynamic calculations are limited to the core only, with free boundary conditions. (c)TheHx andHy components of the
fundamental transverse-electric (TE)mode are depicted for awavelength in a vacuumλ=1550 nm.
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Figure 3.Variation of the fundamental TE opticalmode inside an acoustic period for elasticmodes number (a) 2 and (b) 3. The
rectangular silicon nanowirewaveguide is depicted infigure 2 and thewavelength in a vacuumλ=1550 nm. The normalized Hy∣ ∣
component is depictedwith a grey scale ranging from0 (black) to 1 (white). Please note that the depictedmodal displacements (see
table 1) aremuch larger than the typical displacements in backward Brillouin scattering experiments.

Table 1.Maximum total displacement and symmetry properties of some elasticmodes
of the rectangular silicon nanowire waveguide offigure 2. Themaximum total dis-
placement is given formodes normalized so that Le=0.1 J.With respect to the hor-
izontal axis (Ox) and the vertical axis (Oy), modes are either symmetric (S) or
antisymmetric (AS).

Mode

number

Max.

u∣ ∣ (nm) Sym./Ox Sym./Oy

u1 u2 u3 u1 u2 u3

2 57 AS S AS S AS AS

3 49 S AS S AS S S

4 48 S AS S S AS AS

6 23 S AS S AS S S

12 14 S AS S AS S S

20 15 S AS S AS S S

Figure 4.Variation of the relative acousto-optical frequencymodulation (δ ω /ω) caused by themoving-interface (MI) effect and the
photoelastic (PE) effect, for elasticmodes (a)number 3 and 6, and (b)number 2 and 4. The rectangular silicon nanowirewaveguide is
depicted in figure 2 and thewavelength in a vacuumλ=1550 nm. Themaximum total displacement and the symmetry properties of
the considered elasticmodes are listed in table 1.
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3.2. Surface andbulk electrostriction
From the previous numerical results, we are comfortedwith the idea that the contour integral term in the
Lagrangian (12) is indeed representative of theMI effect at frequencyΩ.We can nowproceed to solve the
boundary value problem (14), the solution of which ultimately gives the elastodynamic response of the
waveguide subjected to the combined bulk optical stress and surface optical pressure. For that purpose, we again
use thefinite elementmethod. Introducing test functions vi, theweak formof (14) is obtained after application
of the divergence theorem to transfer a partial derivative on the test functions as

S v u Sv c u Sv T v l Fd d d d , 15
S

i i
S

i j ijkl k l
S

i j ij n s
2

, , ,
esò ò ò òr-W + = +

S
( )

an equation that is valid for all considered test functions. The bulk electrostriction stress termhad already been
obtained before [16, 17] but is here derived on a firmer ground from the Lagrangian. The electrostriction
pressure termwas absent fromour previous works. Theweak formulation (15) of the electrostriction process
lends itself easily to implementation in afinite element code. It is here presented in the frame ofwaveguide
problems, but it applies to cavity problems as well, themain difference being the presence or not of the acoustic
wavenumberK.

The results presented infigure 6 assume that two guided optical waveswith unit power and opposite
wavevectors are propagating in thewaveguide. The acoustic wavenumber is thenK≈ 2k(1) as before. Because of
phasematching, the detuning frequencyΩ is also the phonon frequency. The total phonon energy is plotted as a
function ofΩ by considering either only bulk electrostriction (the photoelastic contribution), or only radiation
pressure (theMI contribution), or both. As a note, viscoelastic damping in silicon is included in the computation
by adding a frequency-dependent imaginary complex term to the elastic tensor [17, 27]. Sharp resonant peaks

Figure 5.Absolute values of the photoelastic (PE) andmoving-interface (MI)modulation coefficients dw w∣ ∣ estimated using
formulas (3) and (4) for all 29 elasticmodes. Numbers on themain peaks refer to elasticmode numbers. The rectangular silicon
nanowire waveguide is depicted infigure 2 and thewavelength in a vacuumλ=1550 nm. Themaximum total displacement and the
symmetry properties of the elasticmodes are listed in table 1.

Figure 6. Lineic total elastic (or phonon) energy originating from electrostriction in thewaveguide of figure 2. Two counter-
propagating guided optical waves with unit power are assumed to be incident. The phonon frequency is determined by the detuning
frequencyΩ between the two optical waves. The individual and added contributions of the photoelastic (PE) andmoving-interface
(MI) effects are presented. Numbers on themain peaks refer to elasticmode numbers. A logarithmic scale version of this graph can be
found in the supplementarymaterial.
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are observed, each associatedwith a previously identified elasticmode. For thefirst two peaks, around the
natural frequencies ofmodes number 3 and 6, the PE andMI contributions are of the same order ofmagnitude.
For the two peaks at higher frequencies, around the natural frequencies ofmodes number 12 and 20, the PE
contribution dominates over theMI contribution. Both contributions are found to interfere constructively to
form the total electrostriction response.

4.Discussion

Wehave shown in the previous sections that both Brillouin scattering and electrostriction of phonons by light
can be described by a single Lagrangian, fromwhich the dynamical equations for optical and acoustic waves can
be directly derived. Kroll had already undertook such a programback in 1965 [28], soon after SBS had been
discovered [29]. His Lagrangianwas also the sumof an optical and of an acoustic Lagrangian, complemented
with an interaction Lagrangian.Only planewaves were considered and acousto-optical interactionwas limited
to the photoelastic effect, i.e. surface effects were not considered. Recently,Wolff et al also derived a Lagrangian
to describe SBS in integrated photonic waveguides [15]. The independent optical variables in their Lagrangian
are, however, different fromours, as they consider the electric andmagnetic fields directly instead of the
potentials in our formulation. They also do notmake use of the total Lagrangian to derive dynamical equations,
but to give a firm ground to the evaluation of coupling coefficients as overlap integrals of the form (3) and (4) and
to argue that the energy that appears asmechanical work per acoustic cycle is precisely the change in the average
optical energy density. The latter result also follows from the formof our Lagrangian (12), by construction, since
we have added interaction terms to the Lagrangian as perturbations to the EMenergy as caused by acoustic
motion. In this sense, our results are complementary.

We have also obtained that theMI overlap integral approach applies only in the limit of neglecting processes
other than one-phonon processes. It remains that under strong acoustic excitation such nonlinear effects could
be observable in nanoscale waveguides. Using an external source or transducer for acoustic waves, it would
probably be necessary to reach very high phonon energy densities for the phenomenon to be noticeable. In all-
optical experiments such as SBS, however, theremay be a possibility that the acoustic wave grows sufficiently
intense, but this has not been observed so far to the best of our knowledge.

We had previously considered electrostriction in optical fibres [16] andwaveguides [17], but without taking
into account surface effects. In the particular examplewe have considered, the transverse dimensions of the
waveguidewere intently chosen sufficiently small that theMI effect would become comparable to the bulk
photoelastic effect. In usual optical fibres and also inmostmicrostructured optical fibres, it can be expected that
bulk effects are dominant over surface effects, because of the involved dimensions. In the case ofmicro-fibres
with small cores, however, surface contributions have been shown to be present [4] andmust thus be taken into
account for the smallest cores.

Overall, when the aim is to obtain coupling coefficients between coupledwaves, it is an underlying
assumption that the acoustic wave is amode [30]. In our approach to electrostriction, the acoustic wave is
generally not amode but the solution to the forced elastodynamic equation [10, 16]: it depends on the driving
bulk optical stress and optical pressure. The phonon distribution that we obtain is as a consequence different
from amere singlemode, though it could still be expressed as a superposition of all availablemodes [16]. In the
response shown infigure 6, for instance, only at frequencies corresponding to a strong peak does the phonon
distribution approach that of a particular dominant elasticmode.

Furthermore, previous works had envisioned the possibility of an optical radiation pressure causing the
boundaries of thewaveguide to deform andhence to participate in the generation of the acoustic wave [10, 11].
This optical radiation pressure is clearly perfectly coherent with the bulk optical stress, having the same
frequency andwavenumber. If one accepts that bulk electrostriction is the dual effect to the photoelastic effect,
then one should also admit that radiation pressure is the dual of themoving interface effect, as was shown by
Wolff et al based on thermodynamic arguments [15]. This duality is explicitly contained in the formof the
Lagrangian (12).

5. Conclusion

In this paper, we have contributed to themodelling of the interaction of light and sound in optical waveguides.
We have specifically investigated theMI contribution to Brillouin scattering and have shown that it is inherently
nonlinear, leading tomulti-phonon processes for large deformations.We have then proposed a total Lagrangian
describing the interaction of sound and light, formed by summing the unperturbed optical and elastic wave
Lagrangianswith an interaction Lagrangian containing the first-order perturbation of the dielectric tensor. The
total Lagrangian contains both surface and bulk contributions to Brillouin scattering and electrostriction, and
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allows the derivation of optical and acoustic equations in a single variational formula. It also evidences clearly the
duality of photoelasticity and bulk electrostriction, on the one hand, and of theMI effect and radiation pressure,
on the other hand. A full electrostriction equationwas then derived for the phonon distribution in the
waveguide, with both bulk and surface effects included. Numerical simulations in the case of a silicon nanowire
were used to illustrate the different effects and their respective contributions. For the dimensions chosen, theMI
and the photoelastic contributions to both Brillouin scattering and electrostrictionwere found to be of
comparable order ofmagnitude, in accordance with previous theoretical [10] and experimental [7, 8]
observations. One salient aspect of the proposedmodel of electrostriction is that it avoids specifying the acoustic
wave as amode of thewaveguide, but instead derives precisely the phonon distribution generated by the bulk
optical stress and the optical pressure. For a complete description of SBS, and as a perspective, this phonon
distribution could be inserted back in the optical coupled-wave equations to derive the exact Brillouin gain [10].
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AppendixA. EM lagrangian

The derivation of the EMLagrangian for themicroscopicMaxwell’s equations is well known but will be useful
for the derivation of themacroscopic version. Let us rewrite (8) in tensor form

j A E E B B
1

2
A.1i i i i i io e 0 0 r f m= - + + -( ) ( )

and express the components of the electric andmagnetic field vectors

B e A A.2i ijk j k,= ( )

E A , A.3i i i,f= - - ˙ ( )

where eijk is the permutation tensor. The Euler–Lagrange equation obtained by variationwith respect tof gives
Gauss’ law at once

E , A.4i ie 0 ,r = ( )

while variationwith respect toAi leads to Ampère’s law

Bj E
x

e B E
1 1

, A.5i i
j

kij k i i0
0

0
0

⎛
⎝⎜

⎞
⎠⎟ 

m m
= - -

¶
¶

= - +  ´˙ ˙ ( ) ( )

where the antisymmetric property of the permutation tensor has been used in the last transformation. As a
whole, it is seen that the usualmicroscopicMaxwell’s equations are derived from the Lagrangian as Euler–
Lagrange equations.

We next consider themacroscopic formofMaxwell’s equations and rewrite the Lagrangian (11) in tensor
form

E E B B
1

2

1
. A.6i ij j i io

0

⎛
⎝⎜

⎞
⎠⎟

m
= - ( )

By following the same rationale as in themicroscopic case, the Euler–Lagrange equations are

DE0 , A.7ij j
i,

= = ( ) · ( )

B H
E

t
D0

1
, A.8

ij j

i i i
0



m
= -

¶

¶
+  ´ = - +  ´

( )
( ) ˙ ( ) ( )

or themacroscopic versions ofGauss’ law andAmpères law. Again, it can be concluded that the usual
macroscopicMaxwell’s equations are derived from the Lagrangian as Euler–Lagrange equations.

The EMHamiltonian can nowbe derived from the Lagrangian by a Legendre transform. The generalized
momenta are defined as

0, A.9o
f

¶
¶

=˙ ( )
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A
E D . A.10

i
ij j i

o ¶
¶

= - = -˙ ( )

TheHamiltonian density is then

E D

E D B H

A D

A D
D

D

, 0, ,

,
,

1

2
.

i i

i i

i i

i i

o o

o o

o , o

o ,

 

 
 



f

f

f

= - -

=- -
= + -

= + +

( ) ( )˙ ˙ ·
˙

·

( · · )

Except for thefirst term, this is the result we announced in section 2.3.Now since

V D V Dd d 0, A.11
V

i i
V

i i, ,ò òf f= - = ( )

theHamiltonian isfinally

E D B HH Vd
1

2
. A.12o

V
ò= +( · · ) ( )

Appendix B. Variation for an eigenvalue problem

Modal problems forwave equations can generally be cast under the formof a generalized eigenvalue problem

A x B x , B.12wñ = ñ∣ ∣ ( )

whereA andB are squarematrices. If thematrices are varied by amounts δA and δB, then there are corresponding
variations in the eigenvalue δ ω and eigenvector x .d ñ∣ Limiting the expansion tofirst order terms only (i.e., the
first variation), we have

A x A x B x B x B x2 . B.22 2d d wdw w d w dñ + ñ » ñ + ñ + ñ∣ ∣ ∣ ∣ ∣ ( )

For losslessmaterials,matrixB is real symmetric, whilematrixA is generallyHermitian. Their left- and right-
eigenvectors are then complex conjugates andwe obtain

x A x x B x

x B x

x A x x B x

x A x

1

2 2
. B.3

2 2

dw
w

d w d w d w d
»

á ñ - á ñ
á ñ

=
á ñ - á ñ

á ñ
∣ ∣ ∣ ∣

∣ ∣
∣ ∣ ∣ ∣

∣ ∣
( )

Formulas (3) and (4) for the coupling coefficients are obtained from the opticalmode equation (5). In this
particular case,A is a constantmatrix, so that δA=0, andB=ò so that δB=δ ò.

AppendixC. Euler–Lagrange equations in the case ofmechanical loss

The case ofmechanical loss can be encompassed by considering a dissipation function in addition to the elastic
Lagrangian density. Following Landau and Lifshitz [24], the general formof a dissipation function describing
internal friction in a deformed body is the quadratic form

u u C.1ijkl i j k l, , m= ˙ ˙ ( )

withμijkl the phonon viscosity tensor. This quadratic form cannot be incorporated in the elastic Lagrangian
density since friction forces are not conservative. The dynamical equations are instead obtained from the
following generalized Euler–Lagrange equations

t u x u x u
0. C.2

i j i j j i j

e e

, ,

  ¶
¶

¶
¶

+
¶
¶

¶
¶

-
¶
¶

¶
¶

=
˙ ˙

( )

Given the expressions (7) and (C.1), the dynamical equations for purely elasticmotion are

u
x

c u
x

u¨ 0. C.3i
j

ijkl k l
j

ijkl k l, ,r m-
¶
¶

-
¶
¶

=( ) ( )˙ ( )

In case the displacements are caused by a time-harmonic elastic wavewith angular frequencyΩ, the previous
equation simplifies to

u
x

c ı u¨ 0. C.4i
j

ijkl ijkl k l,
⎡⎣ ⎤⎦r m-

¶
¶

+ W =( ) ( )

As a consequence, the elastic tensor becomes complex-valuedwith a frequency-dependent imaginary part
proportional to the phonon viscosity tensor. This complex elastic tensor can be used in the elastodynamic
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equation (14) to account formechanical losses. Alternatively, the dynamical equations for the elastic wave
generated by electrostriction and radiation pressure are

u
x

c u
x

u
x

T¨ 0, C.5i
j

ijkl k l
j

ijkl k l
j

ij, ,
esr m-

¶
¶

-
¶
¶

+
¶
¶

=( ) ( )˙ ( )

again complementedwith the boundary condition that the optical pressure Fs applies on every boundary where
the dielectric tensor is discontinuous.

AppendixD. Figure 6 plotted in logarithmic scale

FigureD1 shows the same information as figure 6, butwith the phonon energy plottedwith a logarithmic scale
instead of a linear scale.
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