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Material loss influence on the complex band structure and group velocity in phononic crystals
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The influence of material loss on the complex band structure of two-dimensional phononic crystals is
investigated. A viscoelasticity model is added to the extended plane-wave expansion (EPWE) method, with
viscosity proportional to the frequency. It is found that losses have a stronger influence on the real than on the
imaginary part of Bloch waves, in contrast with propagation in homogeneous media. Flat bands, i.e., bands
initially showing low group velocity without losses, acquire an enhanced damping as compared to bands with
larger group velocities. Losses are also found to limit the appearance of large group slownesses, or conversely
small group velocities.

DOI: 10.1103/PhysRevB.83.064301 PACS number(s): 43.20.+g, 43.35.+d, 77.65.Dq

I. INTRODUCTION

Phononic crystals (PC) are two- or three-dimensional
periodic structures that are made of at least two materi-
als with different mechanical properties. They can exhibit
complete band gaps, i.e., finite continuous frequency regions
where energy propagation is forbidden for all possible wave
directions,1 or conversely where only evanescent waves are
allowed.2 For band gaps to appear as a result of Bragg
interference, such factors as the lattice type, the shape, and
the size of inclusions, the material velocities contrast, or
the density contrast are important. A composite material
comparison was held by Ao et al.3 for metamaterials, and
photonic or phononic crystals. The key distinction among
these systems is that metamaterials can be homogenized
in the sense that effective constitutive parameters can be
meaningfully extracted and used whereas the latter cannot.
In any case, the full complex dispersion relation for all waves
is needed for a complete description of both types of composite
materials.

The most common way to obtain the dispersion relation of
phononic crystals is to solve an eigenvalue problem where the
Bloch wave vector k is considered a fixed quantity within
the first Brillouin zone and the appropriate frequency of
allowed modes are sought for as ω(k).1 Such an approach treats
the wave vector and the frequency as implicitly real-valued.
However, when considering evanescent Bloch waves, the wave
vector becomes complex-valued.4,5 Several methods have been
proposed to obtain the complex band structure of phononic
crystals. The layer-multiple scattering (LMS) method is an
on-shell method that operates at a fixed frequency and can
yield all complex k vectors.3,6 A plane-wave expansion (PWE)
method was proposed by Suzuki and Yu7 for solving three-
dimensional problems based on complex eigenfrequencies.
They focused their attention on tunneling modes appearing
when the eigensystem becomes complex nonsymmetric, thus
resulting in eigenvalues that are not necessarily real-valued.
Recently, an extended plane-wave expansion (EPWE) method
was introduced to obtain the full complex band structure of
solid phononic crystals.2 In all these works, however, loss
is not considered, and complex wave vectors are found as a
result of either the opening of a band gap or the frustrated
character of higher-order diffracted Bloch waves below their
cut-off frequency.2

In actual experiments, one or more of the constituent
materials can be lossy in the frequency range of interest.
Viscoelastic materials such as epoxy are for instance often
used to form the matrix phase of phononic crystal composites.
For crystalline solids such as silicon, quartz, or lithium
niobate, losses are non-negligible starting from the GHz
frequency range and can be adequately described by a viscosity
tensor.8,9 Taking losses into account may obviously lead to
changes in the appearance of band structures. Material loss
has not been extensively considered in the various theories
of phononic crystals, though several viscosity models exist
that have been considered to describe propagation losses.
Psarobas has investigated the Kelvin-Voigt model and its
influence on the transmission on a phononic crystal.10 Based
on the LMS method, he observed enhanced absorption at the
frequencies of flat bands of a three-dimensional phononic
crystal of close-pack rubber spheres in air. Another popular
model closely related to the Kelvin-Voigt model is to consider
the elasticity tensor (or more generally the material constants)
as complex-valued. In the case of viscoelastic materials, the
elastic moduli are complex numbers that are dependent on the
frequency. Based on the finite-difference time-domain (FDTD)
method, it has been argued that viscoelasticity impacts the
transmission properties of phononic crystals not only by atten-
uating the transmitted acoustic waves but also by shifting the
passing bands frequencies toward lower values.11,12 Damped
Bloch waves were investigated by Hussein13 assuming the
Rayleigh model. He introduces, in a finite element method,
a damping operator proportional to both the mass and the
stiffness operators in the governing equation of motion, of
form C = αM + βK . This formulation results in a general-
ized eigenvalue problem for the complex eigenfrequencies,
the imaginary part of which can be used to estimate the
damping of each mode. However, the problem of finding
proportionality coefficients α and β for a given material is not
obvious.

Artificial crystals offer design control over the dispersion
of waves. Much attention has indeed been paid during the
last decade to the group velocity of light passing through
dispersive material.14,15 Low group velocity, also known as
slow light or slow sound, finds a fundamental application to the
enhancement of nonlinear wave interactions.16–18 Generally,
zero group velocities can be found in a lossless periodic
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structure when the Bloch wave vector sits on the boundary of
the Brillouin zone. It is however well known in slow light optics
that loss can play nasty tricks. Based on a simple model where
the dielectric constant has a small imaginary part, Pedersen
et al. have shown that the group velocity is limited to finite
values larger than zero.19 The interplay of slow group velocities
with losses arising for scattering or imperfections in photonic
crystal slabs has also been widely discussed.20,21

In this paper, we consider obtaining the full complex band
structure of phononic crystals containing viscoelastic media.
Through the EPWE method, we can thus monitor the effect
of losses on both the real and the imaginary part of the
frequency-dependent wave vector. We give a simple formula
for the precise evaluation of the group velocity at any point of
the band structure. We show that the minimal group velocity
that can be achieved is limited by loss, but also that enhanced
losses are observed for flat bands.

II. LOSSY PHONONIC CRYSTALS

We consider monochromatic wave propagation in a per-
fectly periodic phononic crystal composed of homogeneous
viscous materials. Figure 1 shows the definition of the geomet-
rical parameters in the case of a square-lattice two-dimensional
phononic crystal. The relevant EPWE method is summarized
in this section. From the Bloch-Floquet theorem, all fields
are expressed as the product of a periodic function times an
exponential term. The three displacements ui (i = 1,2,3) are,
for instance,

ui(r) =
∑

n

uin exp(−ıGnr) exp[ı(ωt − k · r)], (1)

where the Gn are the reciprocal lattice vectors and k is
the Bloch wave vector. A similar expression holds for
the stresses.

In order to include material damping, the rank-4 viscosity
tensor ηijkl is introduced. This tensor has the same symmetry
as the elastic tensor cijkl .8 Attenuation is assumed to increase
linearly with frequency as it proper to polymers8 but also to
crystalline solids such as silicon, quartz or lithium niobate.9

For monochromatic waves, a complex-valued elastic tensor
can then be written as

c′
ijkl = cijkl + ıωηijkl . (2)

FIG. 1. (Color online) (a) Unit-cell of a square-lattice two-
dimensional phononic crystal. The rod diameter and the pitch of
the array are d and a, respectively. (b) Sketch of the corresponding
first Brillouin zone.

More generally, any frequency dependent complex elastic
tensor could be considered to model loss, without any further
modification of the method.

We focus our attention on the evaluation of complex wave
vectors as a function of frequency. We can formulate the same
generalized eigenvalue problem as in lossless elastic media,2

but for the generalization of the elastic tensor to the form in
Eq. (2),( −C2 Id

ω2R − B 0

) (
U

ıT ′

)
= k

(
D 0
C1 Id

) (
U

ıT ′

)
. (3)

In this equation, the propagation direction is given by a unit
vector α and the modulus of the wave vector is the eigenvalue
k. The eigenvector contains both the displacements and the
stresses measured along the propagation direction, T ′ = αiTi .
The expressions for the submatrices are equally valid for 1D,
2D, and 3D phononic crystals and are given by

B = GiAijGj , (4)

C1 = GiAijαj , (5)

C2 = αiAijGj , (6)

D = αiAijαj , (7)

with the definition (Gi)mn = (k0i + Gm
i )δmn, with k0 some

fixed wave vector. k0 is introduced so that band structures
can be generated along directions in the Brillouin zone that do
not cross the � point. In all the previous equations, summation
is implicit over any repeated index. Material constants (elastic
constants, and piezoelectric and dielectric constants in the case
of piezoelectric solids) enter the Aij matrices; the mass density
enters the R matrix. Note that the generalized eigenvalue
problem for the case of plate and surface waves in 2D phononic
crystals,22 but also out-of-plane propagation in 2D phononic
crystals,23,24 appear as special cases of the above formulation.

As compared to the lossless case, the difference is that the
matrices C1,C2,B,D are now complex-valued and frequency
dependent. As a consequence, the propagative or evanescent
character of eigenvalues cannot be predicted anymore: there
are no purely real solutions nor complex-conjugate pairs of
solutions, only complex solutions. A complex wave vector
describes a wave attenuated or amplified along its propagation,
depending on the sign of the imaginary part. Furthermore, band
gaps are not truly apparent anymore, except by comparing
to the related lossless problem obtained by setting viscosity
values to zero.

As the wave vector is complex-valued, care should be taken
in the definition of the group velocity. We introduce the group
slowness as

sg(ω) = Re

(
∂k(ω)

∂ω

)
(8)

and consider the group velocity as the inverse of this quantity.
There are several possibilities in practice to calculate group
quantities. The crudest approach consists in approximating
the derivative by finite differences between two consecutive
points of the band structure; this approach is both inefficient
and imprecise. Another possibility could be to use the equality
of the group velocity with the energy velocity. We rather
make use of the properties of right and left eigenvectors,
following an idea by Thurston.25 Using the shorthand notations
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h = (U,T ′)T and A1h = kA2h for the generalized eigenvalue
problem in Eq. (3), the Appendix shows that

sg(ω) = Re

(
hT

l

(
∂A1
∂ω

− k ∂A2
∂ω

)
hr

hT
l A2hr

)
, (9)

where hl(ω) and hr (ω) are, respectively, a left and a right
eigenvector of the same eigenvalue k(ω). This formula offers a
practical and accurate means of evaluating the group slowness
and group velocity at any point of the band structure. Note that
we do not attempt in this paper to attribute a physical meaning
to the imaginary part of the group slowness.

III. RESULTS

We consider for definiteness a two-dimensional square
lattice phononic crystal made of steel rods in epoxy. The
rod diameter and the pitch of the array are denoted d and
a, respectively. Because the viscosity model is frequency
dependent, we cannot simply reduce frequencies as is usual
when displaying the band structure of lossless phononic
crystals. We specify d = 2.5 mm and a = 3 mm in all the
computations of this paper. With the rod axis aligned along
the x3 axis, there is a complete decoupling of waves polarized
in-plane (with displacements u1 and u2 only) from pure shear
waves (with displacement u3 only). For simplicity, we consider
only pure shear wave propagation, but the conclusions of this
paper apply to in-plane wave propagation as well. Material
constants used for representing isotropic steel and epoxy are
given in Table I . With the dimensions chosen for the phononic
crystal, the shear band gap would appear around 300 kHz,
approximately. Losses in steel are neglected compared to those
in epoxy, and three different levels for the shear viscosity of
epoxy are considered in Table I. It should be pointed out that
precise values of the viscosity are not available and that many
different epoxy compositions can be obtained experimentally.
The values for the shear viscosity in this paper are arbitrary
and are intended for qualitative comparison only.

The complex band structures presented in Figs. 2, 4, 5,
and 6 were computed along the �X direction of the first
Brillouin zone with 11 Fourier harmonics in each direction
of space. Complex band structures were obtained by solving
the eigenvalue problem for a discrete number of frequencies
followed by sorting using the continuity of k(ω), of the
polarization and of the group slowness. One third of the
eigenvalues in Eq. (3) correspond to pure shear (out-of-plane)
waves and the rest to in-plane waves; only pure shear waves
are shown in the band structures. In order to ease the reading

TABLE I. Material constants for steel and epoxy, restricted to pure
shear wave propagation. Four different arbitrary viscosity values are
considered for epoxy.

Material c44 (GPa) ρ (kg/m3) η44 (Pa.s)

Steel 82 7630 0
Epoxy 0 1.331 1100 0
Epoxy 1 1.331 1100 8
Epoxy 2 1.331 1100 80
Epoxy 3 1.331 1100 160

of complex band structures, they are presented using three
panels, showing the frequency as a function of the real and
the imaginary part of the wave vector, and the group slowness
as a function of frequency. Real parts of the wave vector are
displayed within a range slightly exceeding the first Brillouin
zone in order to highlight periodicity. In contrast, imaginary
parts of the wave vector are not subjected to periodicity.2

They are displayed within a limited range, but there are other
complex bands outside this range. Each band was assigned a
color and a line type, so that modifications caused by viscosity
can be monitored from one band structure to another.

Figure 2 displays the complex band structure in the lossless
case. There are two shear band gaps indicated by the gray
regions. Two Bloch waves are propagative at low frequencies
and are labeled B0+ and B0−. The plus (+) and minus (−)
signs are used to indicate propagation to the right and to the
left, respectively. According to the analysis in Ref. 2 making
an analogy between phononic crystals and diffraction gratings,
they have a (0,0) order of diffraction. Starting from the reduced
frequency ωa/(2π ) ≈ 1.7 they interact with bands B1b+ and
B1b−, respectively. The latter bands, like B1a+ and B1a−,
have a (1,0) order of diffraction. Also apparent are bands
B2a+, B2a−, B2b+, and B2b−, all having a (2,0) order of
diffraction. Note that all bands with an order of diffraction
larger than zero start with a rather large value of the imaginary
part of the wave vector at low frequencies. Such phonons are
then strongly damped even in the lossless phononic crystal.

FIG. 2. (Color online) Complex dispersion relation computed
with the EPWE method for a lossless square-lattice phononic crystal
of steel rods in epoxy, with parameters a = 3 mm and d = 2.5 mm.
In the complex band structure, the reduced frequency is presented as
a function of (a) the real part and (b) the imaginary part of the wave
vector. (c) The group slowness is shown as a function of the reduced
frequency. Frequency band gaps are underlined in gray.
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FIG. 3. (Color online) Imaginary part of the wave vector for
propagation of shear waves in epoxy with various values of the shear
viscosity.

The group slowness of bands B0+ and B0− is infinite at
the entrance and at the exit of the band gaps, or equivalently the
group velocity vanishes at these points. In contrast, the group
slowness for these two bands vanishes throughout the first
band gap, since the real part of the wave vector is a constant
in this frequency range. However, this apparent infinite group
velocity is found in conjunction with exponential decay on
propagation. The physical picture is that of classical wave
tunneling in periodic structures and no violation of causality
can be found in this case.26–28 Within the second band gap, the

FIG. 4. (Color online) Complex dispersion relation computed
with the EPWE method for a lossy square-lattice phononic crystal
of steel rods in epoxy, with parameters a = 3 mm, d = 2.5 mm, and
η44 = 8 Pa·s. In the complex band structure, the reduced frequency is
presented as a function of (a) the real part and (b) the imaginary part
of the wave vector. (c) The group slowness is shown as a function of
the reduced frequency.

group slowness of bands B0+ and B0− then goes to infinity
at ωa/(2π ) ≈ 1.75. Again, these phonons are simultaneously
attenuated within this frequency range.

Before turning to the effect of viscosity on phononic
crystals, we recall its influence on homogeneous materials.
It is well known that viscosity has a larger influence on
the imaginary part than on the real part of the wave vector
of initially propagative modes in homogeneous media.29,30

Indeed, in the limit of small viscosity the real part is almost
unaffected while the damping of a pure shear plane wave is
given by9

Im(k) = η44ω
2

2ρV 3
T

, (10)

with the shear velocity VT = √
c44/ρ. This equation stresses

the dependence of damping with the square of the frequency
in the frame of the viscoelastic model of Eq. (2). This
homogeneous damping is plotted in Fig. 3 in the same units
as the band structures and for the values of shear viscosity
considered in Table I.

The shear viscosity is given the value η44 = 8 Pa·s in Fig. 4
. For this small value, propagation of waves in homogeneous
epoxy is only made slightly lossy at higher frequencies, as
Fig. 3 illustrates. However, the complex band structure of the
phononic crystal is in contrast much more affected, though the
steel inclusions remain non viscous in the EPWE computation.

FIG. 5. (Color online) Complex dispersion relation computed
with the EPWE method for a lossy square-lattice phononic crystal
of steel rods in epoxy, with parameters a = 3 mm, d = 2.5 mm, and
η44 = 80 Pa·s. In the complex band structure, the reduced frequency
is presented as a function of (a) the real part and (b) the imaginary
part of the wave vector. (c) The group slowness is shown as a function
of the reduced frequency.
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FIG. 6. (Color online) Complex dispersion relation computed
with the EPWE method for a lossy square-lattice phononic crystal
of steel rods in epoxy, with parameters a = 3 mm, d = 2.5 mm, and
η44 = 160 Pa·s. In the complex band structure, the reduced frequency
is presented as a function of (a) the real part and (b) the imaginary
part of the wave vector. (c) The group slowness is shown as a function
of the reduced frequency.

The most striking modification of the band structure occurs
around the zero group velocity points, including the edges
of the stop bands at the � and the X points of the Brillouin
zone. Indeed, every sharp corner of the band structure becomes
rounded. This rounding effect is more pronounced at higher
frequencies, as the effect of viscosity on the elastic constants
increases linearly with frequency. It can also be seen that
viscosity is affecting more the real part than the imaginary part
of the wave vector, in striking contrast with the homogeneous
case.

The shear viscosity is further increased to η44 = 80 Pa·s and
160 Pa·s in Figs. 5 and 6, respectively. The trends observed
with the smaller value of η44 are naturally amplified, and it can
be further observed that the influence of viscosity is greater on
the bands with the smallest imaginary part of the wave vector
and the smallest group velocity in the lossless case. Frustrated
evanescent Bloch waves, i.e., bands with a diffraction order
larger than one, are almost not affected as long as the frequency
remains well below their cutoff. The rather flat real bands
that were connecting the first and the second band gap in
the lossless case (part of B0+ and B0−) are washed out
with increasing viscosity. It can also be observed that band
gaps cannot anymore be defined when viscosity is important,
because all k values are complex and the bang gap edges
have no precise value. Again, because the effects of viscosity
increase with frequency, this is even more pronounced at the
exit than at the entrance of a band gap. On the technical side,

one good point is that there are no more degenerated points
in the band structures, so that it becomes easier to distinguish
between the different Bloch waves.

The group slowness was going to infinity at four different
frequencies in the lossless case of Fig. 2. As the viscosity
is increased in Figs. 4, 5, and 6, the corresponding peaks
become more and more attenuated. Similarly to the photonic
crystal case discussed by Pedersen et al.,19 the group velocity
is then limited to finite values larger than zero, the value of the
limit increasing with viscosity. We finally note that the group
slowness (or the group velocity) can change from positive to
negative as a result of a combination of damping and dispersion
for some bands.

IV. CONCLUSION

We have constructed a model for lossy phononic crystals
containing viscoelastic media. We have shown how complex
band structures can be computed in this case via the extended
plane-wave expansion method (EPWE). As any material is
intrinsically lossy, especially at high frequencies, such a model
is important when analyzing the results of actual experiments.
Significantly, we have found that contrary to homogeneous
materials, the real part of the wave vector is more affected
by losses than is its imaginary part. This effect is especially
pronounced whenever the group velocity is small, for instance
at the edges of a band gap. It also causes flat bands to
acquire enhanced losses. Furthermore, the group velocity
is limited by losses to finite values larger than zero, the
value of the limit increasing with the level of viscosity. The
combination of damping and dispersion could give rise to an
increase in the absorption of waves by phononic crystals, with
potential applications to sound shields or backing materials for
ultrasound.
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APPENDIX

Let us rewrite Eq. (3) as

A1(ω)hr (ω) = k(ω)A2(ω)hr (ω), (A1)

with

A1(ω) =
(−C2 Id

ω2R − B 0

)
, (A2)

A2(ω) =
(

D 0

C1 Id

)
, (A3)

hr (ω) =
(

U

jT ′

)
. (A4)

Note that the dependence on frequency of matrix A2 is only
active with loss, because of the viscosity term in the elastic
constants. However, matrix A1 is frequency dependent even
for lossless materials, because of the ω2 term in factor of
the R sub-matrix in Eq. (A2). In Eq. (A1), hr (ω) is a right
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eigenvector associated with the eigenvalue k(ω). Conversely,
a left-eigenvector of the same eigenvalue satisfies

hl(ω)T A1(ω) = k(ω)hl(ω)T A2(ω), (A5)

where ()T stands for the transposition of a vector. Left and right
eigenvectors of the same eigenvalue are generally not equal.

We differentiate Eq. (A1) with respect to ω to get

∂A1

∂ω
hr + A1

∂hr

∂ω
= ∂k

∂ω
A2hr + kA2

∂hr

∂ω
+ k

∂A2

∂ω
hr . (A6)

We then left-multiply the result by hl and make use of Eq. (A5)
to get

hT
l

∂A1

∂ω
hr = ∂k

∂ω
hT

l A2hr + hT
l

∂A2

∂ω
hr, (A7)

and finally the following expression for the group slowness:

sg(ω) = Re

(
hT

l

(
∂A1
∂ω

− k ∂A2
∂ω

)
hr

hT
l A2hr

)
. (A8)

The group velocity is simply the inverse of this expression.
It can be noted that the group velocity goes to zero if
hT

l A2hr = 0. According to Eq. (A1) or (A5), then in this
case we also have hT

l A1hr = 0, though the ratio of the
two quantities has a finite value, k(ω). This explains why
the value of k(ω) is very sensitive to any perturbation
around a zero group velocity point, as for instance incurred
when losses are turned on in the computation.
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