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Surface Green’s Function of a Piezoelectric
Half-Space

Vincent Laude, Member, IEEE, Carlos F. Jerez-Hanckes, and Sylvain Ballandras

Abstract—The computation of the two-dimensional har-
monic spatial-domain Green’s function at the surface of
a piezoelectric half-space is discussed. Starting from the
known form of the Green’s function expressed in the spec-
tral domain, the singular contributions are isolated and
treated separately. It is found that the surface acoustic wave
contributions (i.e., poles in the spectral Green’s function)
give rise to an anisotropic generalization of the Hankel func-
tion H(2)

0 , the spatial Green’s function for the scalar two-
dimensional wave equation. The asymptotic behavior at in-
finity and at the origin (for the electrostatic contribution)
also are explicitly treated. The remaining nonsingular part
of the spectral Green’s function is obtained numerically by
a combination of fast Fourier transform and quadrature.
Illustrations are given in the case of a substrate of Y-cut
lithium niobate.

I. Introduction

Green’s functions are extensively used in the numeri-
cal simulation of surface acoustic wave (SAW) trans-

duction problems. Usually in SAW problems, the Green’s
function relates the excitation at the origin in term of
stresses and electrical charges to the response at another
point of the surface in terms of mechanical displacements
and electric potential [1], [2]. For instance, the finite-
element method/boundary-element method (FEM/BEM)
relies on a spatial-domain Green’s function used to account
for wave propagation in the substrate but also to describe
the electrostatic response of the substrate. Such Green’s
functions can include the periodicity of the excitation, as
in the case of the periodic FEM/BEM [3]–[9], which de-
scribes the propagation of waves in an infinite periodic
electrode grating. Because of the use of Floquet waves in
the periodic case, it turns out that it is the spectral-domain
Green’s function that is needed. This is not the case of
the so-called finite, two-dimensional (2-D) FEM/BEM, in
which the full 1-D spatial Green’s function is used [10].
Even though the finite FEM/BEM can describe accurately
the response of a finite length SAW device, it cannot take
into account the transverse dimension, and hence misses
important phenomena such as diffraction and wave guid-
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ing effects, or more subtle transverse effects such as the
generation of spurious surface waves in the region between
electrodes and buses [11]. Many approximate models have
been proposed to handle transverse and diffraction effects
[12]–[17]. However, a rigorous description should encom-
pass all wave generation, propagation and detection phe-
nomena together with electrostatic effects within the qua-
sistatic approximation [18], [19]. The spatial Green’s func-
tion of the surface of a piezoelectric half-space is in this
sense the most elementary yet complete description of 3-D
effects.

The computation of the spatial Green’s function of the
surface of a piezoelectric half-space relies on the Fourier
transform of the spectral Green’s function. The spectral
Green’s function is obtained by assuming plane wave prop-
agation with a given wavevector in the plane of the sur-
face, and solving for the wavevector component along the
axis entering the substrate. Hence, it inherently includes
a complete 3-D description. In this work, we consider the
computation of the full 2-D surface Green’s function of
a piezoelectric half-space. By 2-D we mean that the spa-
tial variables are considered along the surface with the
third dimension (orthogonal to the surface) implicitly in-
cluded. We consider this problem as a necessary step to-
ward the generalization of 2-D FEM/BEM algorithms to
3-D FEM/BEM algorithms. As remarked above, what is
basically needed is to compute the 2-D Fourier transform
of the spectral surface Green’s function of the piezoelec-
tric half-space. However, this is not straightforward as the
most interesting features of the problem arise as singu-
larities of the spectral Green’s function. For instance, the
surface acoustic waves themselves contribute as poles, and
bulk acoustic waves contribute less singularly as disconti-
nuities of the first derivative. Furthermore, the asymptotic
behaviors at infinity and at the origin also must be treated
with care. In particular, the 1/s singularity at the origin
only appears in the electrostatic part of the problem.

In Section II, we recall how the spectral Green’s func-
tion can be computed efficiently, and we discuss the form
of the different singular contributions. In Section III, we
isolate the case of poles (i.e., SAW contributions at infinity
in the spatial domain) and show how the well-known 2-D
spatial isotropic Green’s function is generalized in the case
of anisotropy. In Section IV, we briefly discuss the case of
asymptotic contributions and give analytic expressions for
them. In Section V, we propose an efficient algorithm to
obtain the nonsingular part of the Fourier transform and
gather up the different contributions that make up the 2-D
spatial Green’s function.

0885–3010/$20.00 c© 2006 IEEE



laude et al.: computation of 2-d harmonic spatial-domain green’s function 421

Fig. 1. Definition of axes and coordinates for the computation of the
spatial Green’s function of a piezoelectric half-space.

II. Spectral Green’s Function

The most usual form of the spectral Green’s function, or
spectral Green’s dyadic, for a piezoelectric half-space is in
the form of a linear relation between generalized displace-
ments and stresses [20]. The generalized displacements in-
clude the mechanical displacements u1, u2, u3, and the
electrical potential as u4 = φ. The generalized stresses in-
clude the mechanical stresses applied to the surface T21,
T22, T23, and the electrical displacement normal to the
surface as T24 = D2. Throughout this paper, we assume a
time-harmonic dependence of the form exp(ıωt). The no-
tations for axes are given in Fig. 1. Solving the problem
of plane wave propagation with given slownesses s1 and
s3 along the surface, a linear relation between generalized
displacements and stresses is found as:

⎛
⎜⎜⎝

ũ1
ũ2
ũ3
ũ4

⎞
⎟⎟⎠ =

G̃(s1, s3)
−ıω

⎛
⎜⎜⎝

T̃21

T̃22

T̃23

T̃24

⎞
⎟⎟⎠ , (1)

where we use the tilde over a field (e.g., ũ1) to empha-
size that the quantity is considered in the spectral do-
main rather than in the spatial domain. In this equation,
G̃ is a square matrix of functions of dimension 4, termed
the spectral Green’s function. Various practical methods
for the computation of the spectral Green’s function of a
piezoelectric half-space have been given in the literature
[1], [2], [21], [22]. We assume in the following that G̃ can
be obtained efficiently and with great precision.

In this paper, we shall be concerned with obtaining the
surface Green’s function G in the spatial domain, i.e., the
2-D Fourier transform of G̃. The spatial-domain Green’s
function of a piezoelectric half-space is here defined as
the generalized displacements response to a time-harmonic
generalized stress excitation located at the origin. From
the spectral Green’s function, the spatial Green’s function
at the point of the surface with polar coordinates (R, θ) is
obtained as the 2-D Fourier transform:

G(R, θ) =
∫ ∞

0

kdk

(2π)2

∫ 2π

0
dψG̃(k, ψ)e−ıkR cos(ψ−θ).

(2)

Fig. 2. Cross sections of four of the spectral Green’s function com-
ponents as a function of slowness for Y+128 lithium niobate and X
propagation. The real (solid line) and imaginary (dashed line) parts
are shown.

This formula follows from the plane wave expansion of the
exciting delta function:

δ(x1, x3) =
∫ ∞

−∞

∫ ∞

−∞

dk1dk3

(2π)2
e−ı(k1x1+k3x3)

=
∫ ∞

0

kdk

(2π)2

∫ 2π

0
dψe−ıkR cos(ψ−θ).

(3)

In the above equations, the wave vector k is linked
to the slowness vector s by k = ωs. Furthermore, k1 =
k cos(ψ) and k3 = k sin(ψ).

It is not possible to use directly a numerical algorithm
like the fast Fourier transform (FFT) because G̃ has singu-
larities in the spectral plane. Consider the plots in Fig. 2
that display some representative components of G̃ in the
particular case of a Y+128 cut lithium niobate half-space
as cross sections along the crystallographic X axis. All
cross sections exhibit two poles placed symmetrically with
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respect to the origin that are the signature of the SAW.
We model this pole by a function of the form:

G̃s(k, ψ) = as(ψ)
k2
0

k2 − k2
s(ψ)

, (4)

with ks(ψ) = ωss(ψ) where ss(ψ) is the slowness of the
SAW in the direction given by ψ obtained on a stress-free
surface with open-circuited condition; k0 is an arbitrarily
chosen wave vector used only for normalization purposes;
as(ψ) amounts for the anisotropy of the electromechanical
coupling of the SAW and has the same units as the con-
sidered spectral Green’s function component. Note that,
even though the SAW slowness satisfies the central sym-
metry property s(ψ) = s(ψ + π), such is not necessarily
the case for as(ψ); s(ψ) and as(ψ) can be estimated using
fit procedures [15].

There is an additional pole at the origin only in the case
of G̃44, i.e., for the electrostatic part of the spectral Green’s
function only. This pole can be interpreted as arising from
the singularity due to an infinite line charge on the surface
and is modeled as:

G̃0(k, ψ) = a0(ψ)
k0

k
. (5)

The symmetry relation a0(ψ + π) = a0(ψ) holds; a0(ψ)
can be obtained as the limit of kG̃44/k0 as k tends to zero.
The asymptotic behavior at infinity for all Green’s function
components also is governed by a slow 1/k decrease that
we model as:

G̃∞(k, ψ) = a∞(ψ)
k0k

k2
0 + k2 . (6)

This form is chosen such as not to introduce a pole at the
origin while still having the required 1/k asymptotic be-
havior at infinity. In the case of G̃44, the value of a∞(ψ)
includes a correction equal to −a0(ψ) because (5) intro-
duces a spurious 1/k asymptotic behavior at infinity. The
symmetry relation a∞(ψ + π) = a∞(ψ) holds; a∞(ψ) can
be obtained as the limit of kG̃ij/k0 as k tends to infinity.

A discontinuity at the origin is seen to exist in the case
of G̃14. It will be seen later that it is not necessary to
model explicitly this form of contribution. Discontinuities
of the first derivative of the functions are seen to occur at
definite slownesses. These slownesses correspond to bulk
acoustic waves propagating in the sagittal plane with their
Poynting vector oriented in the direction ψ, the so-called
surface skimming bulk waves (SSBW). All these features
need to be taken into account in the Fourier transform.
Clearly, the surface wave contribution is the most impor-
tant in the far field in which it is expected to be dominant.
Bulk waves are classically expected to decrease faster with
increasing distance from the origin of the excitation [1]. It
is important to note that, although the discontinuities can
be sharp, their dependence with the direction of propaga-
tion is always smooth. Fig. 3 displays the slowness curves
for the pole created by the SAW and for the bulk acous-
tic waves within a Y+128 cut lithium niobate half-space.

Fig. 3. Slowness curves for the SAW and the bulk acoustic waves
(QS1, QS2, QL) propagating in the plane of a Y+128 lithium niobate
half-space. QS1 and QS2 stand for the two quasishear bulk acoustic
waves, and QL stands for the quasilongitudinal bulk acoustic wave.

The essential features of these slowness curves is that they
are very smooth and periodic. These properties will be
exploited in the following derivations.

The surface Green’s function will be computed by sepa-
rating the different singular contributions and the regular
part of the spectral Green’s function. It takes the form:

G(R, θ) = Gs(R, θ) + G0(R, θ) + G∞(R, θ) + Gns(R, θ),
(7)

where Gs, G0, G∞, and Gns account for the SAW con-
tribution, the electrostatic contribution, the asymptotic
contribution at infinity, and the nonsingular contribution,
respectively.

III. Surface Acoustic Wave Contribution

The SAW contribution to the spectral Green’s function
assumes the form of (4). The spatial contribution to the
Green’s function is then:

Gs(R, θ) =
k2
0

(2π)2

∫ 2π

0
as(ψ)dψ,

∫ ∞

0
kdk

e−ıkR cos(ψ−θ)

k2 − k2
s(ψ)

,

(8)

where we explicitly take the k-integral before the ψ-
integral. The k-integral is singular, and before it can be
evaluated by the residue theorem the poles must be dis-
placed slightly from the real axis. Such a procedure is usual
in textbooks dealing with Green’s functions of the wave
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Fig. 4. Contours for integration in the complex k-plane. (a) Contour
used when R cos(ψ−θ) > 0. (b) Contour used when R cos(ψ−θ) < 0.
The pole ks due to the SAW is displaced downward vertically from
the real axis.

Fig. 5. Plot of function h(x) defined by (10).

equation and can be derived from the principle of limiting
absorption [23]. The rule is that the pole at +ks(ψ) must
be displaced downward vertically in the complex plane,
and the pole at −ks(ψ) must be displaced upward verti-
cally. The integration contours in the complex k-plane are
indicated in Fig. 4. The result of the integration depends
on the sign of R cos(ψ − θ). When R cos(ψ − θ) > 0, the
integration contour includes the SAW pole and then by
application of the residue theorem:∫ ∞

0
kdk

e−ıkR cos(ψ−θ)

k2 − k2
s(ψ)

= h(ks(ψ)R cos(ψ − θ))

− ıπ exp(−ıks(ψ)R cos(ψ − θ)), (9)

with:

h(x) =
∫ ∞

0
ydy

exp(−yx)
y2 + 1

. (10)

This integral, which has the form of a Laplace trans-
form, is rapidly converging for x �= 0 although divergent
at the origin. The function h(x) is easily evaluated numer-
ically by standard algorithms and is plotted in Fig. 5. For
small x, h(x) ≈ − log(x)−C where C is the Euler constant,
and h(x) ≈ 1/x2 for large x. When R cos(ψ − θ) < 0, the
integration contour does not include the pole and:∫ ∞

0
kdk

e−ıkR cos(ψ−θ)

k2 − k2
s(ψ)

= h(ks(ψ)R| cos(ψ − θ)|).
(11)

Gathering up the results, we obtain that the SAW con-
tribution to the spatial surface Green’s function is:

Gs(R, θ) =

k2
0

(2π)2

( ∫ 2π

0
dφas(φ + θ)h(ks(φ + θ)R| cosφ|

− ıπ

∫ π/2

−π/2
dφas(φ + θ)e−ıks(φ+θ)R cos φ)

)
, (12)

with φ = ψ − θ. This formula generalizes the scalar case
as is easily seen by inserting ks(ψ) = ki and as(ψ) = ai

which, as outlined in the Appendix, results in Gs(R, θ) =
−ı(k2

0ai/4)H(2)
0 (kiR), i.e., that in this case the spatial

Green’s function is the Hankel function of zero-th order
and second kind, as it should [24]. In other words, we
have found an integral representation of the SAW con-
tribution to the anisotropic spatial Green’s function that
generalizes naturally the well-known isotropic case. It is
remarkable that the angular integral involves solely the
SAW slowness curve, which stresses the intimate relation-
ship between the slowness curve and the far field behavior
of waves in anisotropic media. The first integral in (12) is
an expansion over evanescent waves that has non-negligible
values only in the near field, i.e., close to the origin. The
second integral is an expansion over plane waves and is
dominant in the far field. Only one-half of the slowness
curve is involved in the superposition at the observation
point. The involved plane waves can be viewed physically
as the only outgoing plane waves emitted at the origin that
encounter the observation point.

Fig. 6 displays the SAW contribution to the spatial sur-
face Green’s function G44 computed for a Y+128 lithium
niobate half-space, for three different propagation direc-
tions. It can be seen that this function has an oscillatory
behavior that resembles that of Bessel functions. In partic-
ular, the envelope of the oscillations decreases as 1/

√
R as

R increases. The near field disappears rapidly within a few
oscillations. It also is seen that the amplitude of the oscil-
lations depends rather strongly on the propagation direc-
tion, indicating that the surface Green’s function is rather
strongly anisotropic. This last point can be emphasized
by further observing that the oscillations on the surface
concentrate along the wave surface. To see this, the sta-
tionary phase principle can be applied to the plane wave
expansion in (12) that is dominant in the far field. The
stationary points of the integral are given as a function
of the observation direction θ by the angles φ that satisfy
(d/dφ)(ks(φ+θ) cos φ) = 0. This last condition defines the
power-flow angle from the slowness surface in anisotropic
media.

The case of pseudo or leaky surface waves (LSAW) also
is included in the result (12). Indeed, in this case the dis-
placement of the poles from the real axis depicted in Fig. 4
is now not a mathematical artifice but the consequence of
the appearance of an imaginary part of the slowness ss(ψ)
[1], [25]–[27].



424 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 53, no. 2, february 2006

Fig. 6. Real (a) and imaginary (b) parts of G44,s, the SAW contribu-
tion to the spatial surface Green’s function G44, for Y+128 lithium
niobate.

IV. Asymptotic Behavior Contribution

As explained in Section II, the asymptotic behavior
at the origin of the spectral Green’s function is of the
form a0(ψ)k0/k. The asymptotic contribution to the spa-
tial Green’s function is then:

G0(R, θ) =
∫ ∞

0

k0dk

(2π)2

∫ 2π

0
dφa0(φ + θ)e−ıkR cos φ.

(13)

Because a0 is a 2π-periodic function, we can insert its
Fourier series representation:

a0(ψ) =
∞∑

n=−∞
a0n exp(ınψ), (14)

in (13) to obtain:

G0(R, θ) =
k0

2π

∞∑
n=−∞

ına0n exp(ınθ)
∫ ∞

0
Jn(kR)dk,

(15)

where the following integral representation of Bessel func-
tions of integer order was used:

Jn(x) =
1

2πın

∫ 2π

0
dy exp(ı(ny + x cos y)).

(16)

Using the normalization of Bessel function:∫ ∞

0
Jn(x)dx = (sgn(n))n, (17)

where sgn(n) is the sign function that equals 1 if n ≥ 0
and −1 otherwise, we finally have:

G0(R, θ) =
k0

2πR

∞∑
n=−∞

ın(sgn(n))na0n exp(ınθ).
(18)

This contribution is easily obtained numerically from the
Fourier coefficients of a0. The 1/R behavior at the origin
is typical of electrostatic surface problems and the sum-
mation accounts for anisotropy.

As explained in Section II, the asymptotic behavior at
infinity of the spectral Green’s function is of the form
a∞(ψ)k0k/(k2

0 + k2). The asymptotic contribution to the
spatial Green’s function is then:

G∞(R, θ) =
k0

(2π)2

∫ ∞

0

k2

k2
0 + k2 dk

×
∫ 2π

0
dφa∞(φ + θ)e−ıkR cos φ. (19)

Again, since a∞ is a 2π-periodic function, we can insert
its Fourier series representation:

a∞(ψ) =
∞∑

n=−∞
a∞n exp(ınψ) (20)

in (19) to obtain:

G∞(R, θ) =
k0

2π

∞∑
n=−∞

ına∞neınθ

∫ ∞

0

k2Jn(kR)
k2
0 + k2 dk.

(21)

Using (17), we finally have:

G∞(R, θ) =
k2
0

2π

∞∑
n=−∞

ına∞n exp(ınθ)

(
(sgn(n))n

k0R

−
∫ ∞

0

Jn(yk0R)
1 + y2 dy

)
. (22)

The integral on the right-hand side of (22) can easily be
evaluated by quadrature.

Fig. 7 displays the imaginary part of the asymptotic
contributions to the spatial surface Green’s function G44
for Y+128 lithium niobate half-space, again for three dif-
ferent propagation directions. Note that a0 and a∞ are
both purely imaginary. It is seen that the asymptotic con-
tributions are mostly localized in the near field and ex-
hibit a 1/R dependence at the origin. The anisotropy is
very weak in comparison with the SAW amplitude shown
in Fig. 6.
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Fig. 7. Imaginary part of G44,0 + G44,∞, the asymptotic contribu-
tions to the spatial surface Green’s function G44, for Y+128 lithium
niobate.

V. Nonsingular Part Contribution

The singular contributions discussed above can be ef-
ficiently removed from the spectral Green’s function by
fitting to the models in (4)–(6). The result of this proce-
dure is depicted in Fig. 8 for the three propagation direc-
tions already used in plotting Figs. 6 and 7. It can be seen
that there remains mostly smooth variations, except at the
slownesses of the SSBW in which the derivative can be
discontinuous, although the function remains continuous.
Only in the direction θ = π/2 can a LSAW contribution
be seen to remain. This contribution is due to a weak lon-
gitudinally polarized LSAW. However, due to its losses, it
does not vary too abruptly and the nonsingular spectral
Green’s function can be sampled at a moderate rate along
the slowness axis.

The contribution of the nonsingular part of the spectral
Green’s function is:

Gns(R, θ) =
∫ 2π

0
dψ

∫ ∞

0

kdk

(2π)2

× G̃ns(k, ψ)e−ıkR cos(ψ−θ). (23)

This integral is, of course, nonsingular, but it remains to
be evaluated efficiently. A possibility would be to switch
back to Cartesian coordinates and take a 2-D FFT of the
spectral Green’s function. The practical application of this
procedure is limited by the sampling requirement along the
k-axis. Indeed, G̃ns(k, ψ) is a relatively fast varying func-
tion of k but slowly varying function of ψ. Using Cartesian
coordinates means that the sampling along both axes k1
and k3 must be as fine as it would be along the radial
k axis. Instead, we prefer to use a 1-D FFT along k and
a simple quadrature formula along ψ. More precisely we
transform (23) to:

Gns(R, θ) =
∫ π/2

−π/2
dψ

∫ ∞

−∞

|k|dk

(2π)2

× G̃ns(k, ψ)e−ıkR cos(ψ−θ), (24)

Fig. 8. Real (a) and imaginary (b) parts of the spectral surface
Green’s function G44 with the SAW pole and the asymptotic contri-
butions removed, for Y+128 lithium niobate.

where we extend the domain of definition of the
Green’s function to negative k-value by the definition
G̃ns(ψ,−k) = G̃ns(ψ + π, k). Noting the Fourier variable
ξ = R cos(ψ − θ), we obtain:

Gns(R, θ) =
1
2π

∫ π/2

−π/2
dψĜns(ξ, ψ), (25)

where Ĝns(ξ, ψ) is the 1-D Fourier transform of
|k|G̃ns(k, ψ) along the k axis. This 1-D Fourier transform
is evaluated by FFT for every angle ψ, and the result then
is fed back into (24) to evaluate the angular integral. It
also can be remarked that discontinuities at the origin as
displayed by G̃14 in Fig. 2 are naturally removed by mul-
tiplication with |k|.

Fig. 9 displays the nonsingular contribution to the spa-
tial surface Green’s function G44 for Y+128 lithium nio-
bate half-space, again for three different propagation direc-
tions. It is mainly concentrated in the near field, with only
the longitudinal LSAW giving rise to a pronounced oscilla-
tory behavior for the propagation direction θ = π/2. Prac-
tically, 16,384 uniformly distributed samples were used
along the k-axis for the FFT, and the integration was car-
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Fig. 9. Real (a) and imaginary (b) parts of G44,ns, the nonsingular
contribution to the spatial surface Green’s function G44, for Y+128
lithium niobate.

ried out from −0.02 to 0.02 s/m in slowness units. The
angular integral in (25) was evaluated with one sample
per degree and using the trapezoid rule as the quadrature
formula. It can be noted that the 1-D FFT can be com-
puted first and stored for each required value of ψ, then be
used to obtain the value of Gns(R, θ) for any observation
point in an efficient manner.

Fig. 10 displays the imaginary part of the full surface
Green’s function of a half-space of Y+128 lithium nio-
bate, i.e., the superposition of the contributions displayed
in Figs. 6, 7, and 9.

VI. Conclusions

We have discussed the computation of the 2-D harmonic
spatial-domain Green’s function at the surface of a piezo-
electric half-space. The surface Green’s function has been
expressed in polar coordinates that are the natural coordi-
nates for a point-source problem. Starting from the known
form of the Green’s function expressed in the spectral do-

Fig. 10. Imaginary part of the spatial surface Green’s function G44
for a Y+128 lithium niobate half-space. Only the first quadrant is
displayed.

main, the various singular contributions are isolated and
treated separately. It has been demonstrated that the SAW
contributions give rise to an anisotropic generalization of
the Hankel function H

(2)
0 , the spatial Green’s function for

the scalar 2-D wave equation. The SAW contributions are
dominant in the far field. The asymptotic behavior at in-
finity and at the origin (for the electrostatic contribution)
also have been explicitly treated and shown to affect only
the near field. The remaining nonsingular part of the spec-
tral Green’s function has been obtained numerically by a
combination of FFT along the slowness axis and quadra-
ture over the propagation direction. Illustrations have been
given in the case of a Y+128 lithium niobate half-space for
the G44 Green’s function that gives the electrical potential
response of the surface to a point charge excitation. The
same procedures are straightforwardly extended to purely
mechanical or mixed electric-mechanical excitation prob-
lems. In addition to its application to the 3-D simulation
of SAW devices, we believe that the surface Green’s func-
tion we have obtained will be useful in the description of
SAW in phononic band gap materials [28]–[30].

Appendix A

In this appendix, it is shown that the SAW contri-
bution to the spatial Green’s function, (12), reduces to
gs(R, θ) = −ı(k2

0ai/4)H(2)
0 (kiR) in case of isotropic SAW

propagation. Substituting ks(ψ) = ki and as(ψ) = ai in
(12) we have:

Gs(R, θ) =
k2
0ai

(2π)2

(
2

∫ π/2

−π/2
dψh(kiR cosψ)

− ıπ

∫ π/2

−π/2
dψ exp(−ıkiR cosψ)

)
. (26)
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Now we have:∫ π/2

−π/2
dψh(kiR cosψ)

=
∫ ∞

0

ydy

1 + y2

∫ π/2

−π/2
dψe−ykiR cos ψ,

=
∫ ∞

0
e−y1kiRdy1

∫ ∞

−∞

dy3

1 + y2
1 + y2

3
,

=
∫ ∞

0
e−y1kiRdy1 × π√

1 + y2
1

,

= π

∫ ∞

0
dt exp(−kiR sinh t),

(27)

where use has been made of identity 3.111 in [31]. In ad-
dition, we have:∫ π/2

−π/2
dψe−ıkiR cos ψ =

∫ π

0
dψe−ıkiR sin ψ. (28)

Remembering the following integral representations of
Bessel and Neumann functions (formulas 8.411 and 8.415.4
in [31]):

J0(x) =
1
π

∫ π

0
cos(x sin θ)dθ, (29)

N0(x) =
1
π

∫ π

0
sin(x sin θ)dθ − 2

π

∫ ∞

0
dte−x sinh t,

(30)

and the definition of the Hankel function of second kind
and zero-th order, H

(2)
0 (x) = J0(x) − ıN0(x), we finally

obtain:

gs(R, θ) = −ı(k2
0ai/4)H(2)

0 (kiR). (31)
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[10] P. Ventura, J. M. Hodé, and B. Lopes, “Rigorous analysis of
finite saw devices with arbitrary electrode geometries,” in Proc.
IEEE Ultrason. Symp., 1995, pp. 257–262.

[11] J. Koskela, J. V. Knuuttila, P. T. Tikka, C. S. Hartmann, V. P.
Plessky, and M. M. Salomaa, “Mechanism for acoustic leakage in
surface-acoustic wave resonators on rotated y-cut lithium tanta-
late substrate,” Appl. Phys. Lett., vol. 75, no. 17, pp. 2683–2685,
1999.

[12] G. Clark, R. F. Milsom, and J. Schofield, “3-D modal analysis of
SAW filters,” in Proc. IEEE Ultrason. Symp., 1985, pp. 26–30.

[13] K. Hashimoto, G. Endoh, M. Ohmaru, and M. Yamaguchi,
“Analysis of SAWs obliquely propagating under metallic grat-
ings with finite thickness,” Jpn. J. Appl. Phys., vol. 35, no. 5B,
pp. 3006–3009, 1996.

[14] M. Jungwirth, N. Pocksteiner, G. Kovacs, and R. Weigel, “Anal-
ysis of general multi-channel planar waveguides,” IEEE Trans.
Ultrason., Ferroelect., Freq. Contr., vol. 49, no. 4, pp. 519–527,
2002.

[15] V. Laude and S. Ballandras, “Slowness curves and characteristics
of surface acoustic waves propagating obliquely in periodic finite-
thickness electrode gratings,” J. Appl. Phys., vol. 94, no. 2, pp.
1235–1242, 2003.

[16] M. Solal, “A P-matrix based model for the analysis of SAW
transversely coupled resonator filters including guided modes
and a continuum of radiated waves,” IEEE Trans. Ultrason.,
Ferroelect., Freq. Contr., vol. 50, no. 12, pp. 1729–1741, 2003.

[17] M. Solal, V. Laude, and S. Ballandras, “A p-matrix based model
for SAW grating waveguides taking into account modes conver-
sion at the reflection,” IEEE Trans. Ultrason., Ferroelect., Freq.
Contr., vol. 51, no. 12, pp. 1690–1696, 2004.

[18] H. Zidek, A. Baghai-Wadji, and F. Seifert, “Full-wave 3D anal-
ysis of singly- and doubly-periodic SAW structures,” in Proc.
IEEE Ultrason. Symp., 1992, pp. 11–14.

[19] H. Zidek, A. Baghai-Wadji, and O. Männer, “Full-wave 3D
analysis of wave scattering on SAW-structures with finite aper-
ture,” in Proc. IEEE Ultrason. Symp., 1993, pp. 149–152.

[20] A. H. Fahmy and E. L. Adler, “Propagation of surface acoustic
waves in multilayers: A matrix description,” Appl. Phys. Lett.,
vol. 22, no. 10, pp. 495–497, 1973.

[21] P. M. Smith, “Dyadic Green]s function for multi-layer SAW sub-
strates,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.
48, no. 1, pp. 171–179, 2001.

[22] T. Pastureaud, V. Laude, and S. Ballandras, “Stable scattering-
matrix method for surface acoustic waves in piezoelectric multi-
layers,” Appl. Phys. Lett., vol. 80, no. 14, pp. 2544–2546, 2002.

[23] J. G. Harris, Linear Elastic Waves. Cambridge: Cambridge
Univ. Press, 2001.

[24] P. M. Morse and H. Feshbach, Methods of Theoretical Physics.
New York: McGraw-Hill, 1953.

[25] L. Boyer, J. Desbois, Y. Zhang, and J.-M. Hodé, “Theoretical
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