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Abstract—The equality of the energy and group veloci-
ties of bulk acoustic waves in a lossless piezoelectric medium
is demonstrated, with the energy velocity defined from the
generalized energy density and the generalized Poynting
vector.

I. Introduction

It is well-known that the energy and the group velocities
of bulk acoustic waves (BAW) in elastic media are equal

[1], [2]. The energy velocity, ve, is defined as the ratio of the
Poynting vector to the energy density, with the help of the
Poynting theorem. The group velocity, vg, is defined as the
derivative of the phase velocity with respect to the direc-
tion of propagation. The group velocity thus is defined on
a purely geometrical ground and is by construction normal
to the slowness surface. Further properties are the equality
of the BAW kinetic and the potential (or strain) energies,
and the orthogonality of the slowness vector to the wave-
front surface.

In the case of piezoelectric media, we are not aware of
a general demonstration of equivalent properties, though
generalized expressions have long been known for the en-
ergy density and the Poynting vector [1]. Nevertheless,
the collinearity of the generalized Poynting vector and
the group velocity is routinely used to predict the beam-
steering angle, or direction of energy transport. However,
Zaitsev and Kuznetsova [3] recently identified a possible
discrepancy that can occur if the generalized Poynting vec-
tor is used to predict the direction of energy transport in
strong piezoelectrics such as lithium niobate. Their argu-
ment relies on a dissymmetry of the mechanoelectrical and
electromechanical contributions to the generalized Poynt-
ing vector. Their work has motivated us to establish the
equality of the energy and group velocities of BAW in an
arbitrary lossless piezoelectric medium, with the energy
velocity obtained from the generalized forms of the Poynt-
ing vector and the energy density. This property settles
the apparent discrepancy.
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II. Basic Relations

We summarize in this section some well-known ener-
getic relations for BAW propagating in linear piezoelectric
media. Let us first consider a perturbance of an arbitrary
linear piezoelectric medium, characterized by the strain
Sij , the stress Tij , the electric field strength Ek, and the
electric displacement Dk. These fields are related by the
constitutive relations [1], [4]:

Tij = cijklSkl − ekijEk, (1)
Dj = ejklSkl + εjkEk, (2)

where cijkl, ekij , and εjk are the elastic, piezoelectric, and
dielectric tensors, respectively. The repeated summation
index convention is used throughout this paper. The time-
averaged generalized energy density is given by [1]:

W =
1
2
Re (TijS

∗
ij + DkE∗

k), (3)

and the time-averaged generalized Poynting vector is:

Pj =
1
2
Re (−Tijv

∗
i + (E × H∗)j), (4)

where vi is the particle velocity, Hi is the magnetic field
strength, and ∗ denotes complex conjugation.

We then consider specifically a time-harmonic plane
wave with angular frequency ω and slowness vector sj .
The displacements ui then are of the form:

ui(x, t) = ui exp(jω(t − sjxj)), (5)

and similar expressions hold for all fields. We specifically
demand that the slowness vector be real valued, i.e., the
medium is lossless and evanescent or inhomogeneous BAW
are not considered.

Considering further the quasistatic approximation [1],
Maxwell’s equations give:

Ei = jωsiΦ, (6)
(s × H)j = −Dj, (7)

sjDj = 0, (8)

where Φ is the electric potential. The constitutive relations
become:

Tij = −jω(cijklskul + ekijskΦ), (9)
Dj = −jω(ejklskul − εjkskΦ). (10)

The generalized energy density simplifies to:

W =
1
2
Re (jωTijsju

∗
i ). (11)
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It can be seen that the electromagnetic part of the en-
ergy density vanishes. The generalized Poynting vector be-
comes:

Pj =
1
2
Re (jω(Tiju

∗
i + DjΦ∗)), (12)

where vi = jωui has been used in (4).

III. Energy Velocity

We now introduce the generalized notation:

c̄ijkl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cijkl i, l = 1, 2, 3
ekij l = 4, i = 1, 2, 3
ejkl i = 4, l = 1, 2, 3
−εjk i, l = 4

. (13)

This notation should not be confused with the piezoelec-
trically stiffened elastic constants [4]. With the generalized
displacements, ūi, and stresses, T̄ij, defined as:

ūi = ui, i = 1, 2, 3, (14)
ū4 = Φ, (15)
T̄ij = Tij , i = 1, 2, 3, (16)
T̄4j = Dj , (17)

the constitutive relations can be written in a compact
way as:

T̄ij = −jωc̄ijklskūl, (18)

and the Christoffel equation [1] governing the wave dy-
namics assumes the form:

c̄ijklsjskūl = ρilūl, (19)

with:

ρil = ρ

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠. (20)

Contracting the Christoffel (19) with ū∗
i yields the re-

lation:

c̄ijklsjskūlū
∗
i = ρilūlū

∗
i = ρu∗

i ui. (21)

Inserting (9) into (11) we obtain:

W =
ω2

2
Re (cijklsjskulu

∗
i + ekijsjskΦu∗

i ),
(22)

or by inspection:

W =
ω2

2
Re (c̄ijklsjskūlū

∗
i ). (23)

Using (21), we observe that this quantity is real and thus:

W =
ω2

2
c̄ijklsjskūlū

∗
i =

ω2

2
ρu∗

i ui. (24)

This relation proves the equality of potential and kinetic
energies for BAW as in the case of elastic media [2].

The expression for the Poynting vector similarly can be
transformed by inserting (9) and (10) into (12), yielding:

Pj =
ω2

2
Re (cijklskulu

∗
i + ekijskΦu∗

i

+ ejklskulΦ∗ − εjkskΦΦ∗),
(25)

or simply:

Pj =
ω2

2
Re (c̄ijklskūlū

∗
i ). (26)

Defining the energy velocity as for BAW in elastic media
by the ratio of the Poynting vector to the energy density,
we obtain at once:

(Ve)j =
Pj

W
=

Re (c̄ijklskūlū
∗
i )

ρu∗
i ui

. (27)

Furthermore, contracting this expression with sj , the
following useful relation is obtained:

sj(Ve)j = 1, (28)

as in the case of elastic media [1], [2].

IV. Group Velocity

The components of the slowness vector can be written
si = sni for which the ni are the components of a unit vec-
tor, i.e., nini = 1. With this notation, the Christoffel (19)
becomes a generalized eigenvalue equation for the square
of the phase velocity, V = s−1,

c̄ijklnjnkūl = V 2ρilūl. (29)

The group velocity is defined as [2]:

(Vg)j =
∂V

∂nj
, (30)

which implies that the group velocity vector is normal to
the slowness surface by construction. The group velocity
vector can be obtained by differentiating with respect to
nj the identity formed by contracting (29) with ū∗

i , or:

c̄ijklnjnkūlū
∗
i = V 2ρilūlū

∗
i , (31)

which is merely a restatement of (21). In this equation, ūl is
a function of the unit vector n because it is the eigenvector
associated with the eigenvalue V 2 of the Christoffel (29)
for a fixed propagation direction. The differentiation of
(31) with respect to nj results in:

2c̄ijklnkūlū
∗
i + c̄iβklnβnk

∂ūl

∂nj
ū∗

i + c̄iβklnβnkūl
∂ū∗

i

∂nj

= 2V (Vg)jρilūlū
∗
i + V 2ρil

∂ūl

∂nj
ū∗

i + V 2ρilūl
∂ū∗

i

∂nj
. (32)
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This equation can be simplified by considering two dif-
ferent contractions of the Christoffel equation (29). First,
the contraction by ∂ū∗

i

∂nj
yields:

c̄iβklnβnkūl
∂ū∗

i

∂nj
= V 2ρilūl

∂ū∗
i

∂nj
. (33)

Second, complex conjugation of (29) and subsequent con-
traction by ∂ūi

∂nj
result in:

c̄iβklnβnkū∗
l

∂ūi

∂nj
= V 2ρilū

∗
l

∂ūi

∂nj
. (34)

Permutation of indices i and l, and β and k, respectively,
and consideration of the symmetries c̄iβkl = c̄lkβi and ρil =
ρli lead to:

c̄iβklnβnkū∗
i

∂ūl

∂nj
= V 2ρilū

∗
i

∂ūl

∂nj
. (35)

Eventually, (32) simplifies to:

(Vg)j =
c̄ijklnkūlū

∗
i

V ρuiu∗
i

=
c̄ijklskūlū

∗
i

ρuiu∗
i

. (36)

This is identical with the expression (27) for the energy
velocity and incidentally shows that the Re(.) operators
in (26) and (27) can be dropped. Thus we have shown
the equality of energy and group velocities for BAW in a
lossless piezoelectric medium.

V. Conclusions

We have demonstrated that the energy and group veloc-
ities for BAW are equal in a lossless piezoelectric medium.

Our derivation closely parallels and generalizes for piezo-
electric media the derivation of [2], that was limited to
purely elastic media. The possible discrepancy pointed out
in [3], that the mechanoelectrical and electromechanical
power flows calculated from the generalized form of the
Poynting vector for piezoelectric media do not compensate
each other, then has no significance for the estimation of
the power flow direction. Moreover, this observation is sup-
ported by the experimental results of Havlice et al. [5], who
demonstrated that the generalized Poynting vector indeed
predicts the correct beam-steering angle of longitudinal
waves along the y axis of lithium niobate. We observed
that attempting to separate the generalized energy den-
sity or the generalized Poynting vector into their purely
electrical, purely mechanical, mechanoelectrical and elec-
tromechanical parts can be confusing, because the wave
displacements are obtained as the solution of an eigen-
value problem involving the mixed elastic, electrical, and
piezoelectric properties of the medium.
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