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Hartmann wave-front scanner
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A wave-front sensor is described that uses a programmable moving aperture to scan an incoming wave front.
The position of the diffraction spot is recorded behind an objective lens with a two-dimensional sensor and gives
an estimate of the local slope at the aperture position. Then the wave front is reconstructed by processing
of the slope data. The device is basically a programmable Hartmann wave-front sensor. Compared with
a microlens Shack–Hartmann wave-front sensor, its much longer focal length provides higher resolution,
although real-time operation is lost. A practical implementation of the new scanner with a liquid-crystal
television as the programmable aperture is presented.  1999 Optical Society of America
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Interest in wave-front sensing has been driven mainly
by adaptive optics.1 In adaptive optics, the wave front
is a function of time, and the processing speed of the
wave-front sensor is of utmost importance. A closely
related application is the sensing of laser wave fronts,
for which the compensation of static or dynamic aber-
rations is required for attainment of diffraction-limited
beams. A third type of application of wave-front sens-
ing is the noncontact testing of optical components, in
which case only static aberrations have to be measured
but the required precision is generally more stringent
than for adaptive optics or laser beam sensing. Each
of these various applications has its particular charac-
teristics and demands, and no single wave-front sen-
sor is clearly better. Instead, many solutions have
been proposed, most of which can be classified into one
of three types. Phase-difference sensors, e.g., Michel-
son, Twyman–Green, and Fizeau interferometers, pro-
vide direct measurement of the wave-front phase at
some wavelength compared to some reference wave-
front phase. They are widely used for optical testing
but do not lend themselves easily to adaptive optics
or laser beam sensing. The Shack–Hartmann sen-
sor,2 which is widely used for adaptive optics, and the
three-wave lateral shearing interferometer3 are typical
of wave-front sensors that measure the local slopes of
the wave front. A third type, curvature sensing de-
vices, was also proposed.4

The wave-front sensor presented in this Letter is of
the second type.1 Its principle is that the light going
through a small hole in an opaque mask superimposed
upon the wave front will form a diffraction pattern in
the focal plane of an observation lens that is shifted
angularly according to the local slope of the wave
front. This gives essentially a sample of the derivative
of the wave front at the aperture position. A major
improvement in the Hartmann test is the use of a
lenslet array as a replacement of the hole plate in the
Shack–Hartmann sensor.

The original Hartmann principle is often employed
for inspection of optical components, but a mask with
holes provides data that are not always easily pro-
cessed with a wave-front reconstruction algorithm.
However, this shortcoming can easily be overcome5,6
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if the mask is made programmable, i.e., if the aper-
ture can be moved at will across the wave front and
the position of the diffraction pattern at a distance d
behind a lens of focal length f is measured and memo-
rized throughout this scanning process, as depicted in
Fig. 1. If x0 is the measured displacement, then
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and a similar equation holds for ≠W�≠y. From these
data, the wave front can be estimated in a modal
or zonal way, much as with a Shack–Hartmann
sensor. Unlike the former, the wave-front scanner
assumes a static wave front, but its sampling character-
istics can be programmed almost arbitrarily. Apart
from its sequential nature, this wave-front scanner
differs from the Shack–Hartmann sensor for two main
reasons: First, the focal length is not necessarily in
the usual range of lenslet arrays, i.e., a few centime-
ters, but can be much longer, say, 1 m. Hence the an-
gular sensitivity should be much higher with the
same detector size. Second, the whole surface of the
two-dimensional detector is used for every single mea-
surement, whereas in the Shack–Hartmann case only

Fig. 1. Schematic of the wave-front scanner: SLM, spa-
tial light modulator.
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a subregion of the detector is attributed to each lenslet
aperture. Hence one will use a much larger number
of pixels to estimate the position of the diffraction
spot. It is customary with Shack–Hartmann sensors
that the diffraction spot is sampled on a few pixels
only, with the consequence that accurate calibration
of the pixels’ sensitivity is a prerequisite for accuracy
in subpixel position estimation. Because many pixels
can be used for the same purpose in a wave-front scan-
ner, the quality requirement for the two-dimensional
detector can be relaxed. The angular sensitivity can
be estimated by

du � �1�q� �p�d� , (2)

where p is the CCD pixel size, d is the observation
distance, and q is the fractional degree of subpixel
position estimation; e.g., q � 10 if this estimation is
one tenth of a CCD pixel. The angular dynamic range
is given by

Du � M�p�d� , (3)

where M is the number of CCD pixels. Note that, in
the case of the Shack–Hartmann sensor, M is usually
divided by the number of subapertures. The ratio
Du�du � qM is independent of the focal length used,
which results in a simple trade-off between dynamic
range and resolution of the wave-front scanner.

We have constructed a wave-front scanner based
on a liquid-crystal television (LCTV) between two
polarizers used as the programmable aperture. The
LCTV that we used7 has 640 3 480 pixels, with a
pixel pitch of 40 mm and a fill factor of �0.56. The
total surface that can be scanned is then 2.56 cm by
1.92 cm. Pixels are grouped to define the sampling
aperture, whose typical size is 200 mm to 1 mm. The
shape of the aperture is usually rectangular but could
be set arbitrarily. The number of sampling points
on the wave front can be varied typically from 10 to
100 in each direction. This versatility has a direct
inf luence on the total sampling time; hence one can
perform a first scan with low resolution to verify the
setup before a high-precision final scan is performed.
A frame grabber with separate acquisition and display
memories is used to control both the LCTV and a CCD
camera. The diffraction spot is observed near the
focal plane of an objective lens. The focal lengths that
we used were 200, 300, 600, and 800 mm, depending
on the wave-front characteristics. Shorter or longer
focal lengths could obviously be used as well. The
CCD camera used has 11-mm square pixels, and the
acquired image has 640 3 480 pixels.

We used the classic centroid method to estimate the
center of the diffraction spots. A typical diffraction
spot obtained with our setup is shown in Fig. 2. The
centroid calculation was performed inside a window of
100 3 100 CCD pixels. The repeatability of the cen-
troid estimation was found to be one tenth of a CCD
pixel, i.e., du � 1.4 mrad for the f � 800 mm lens.
However, the practical resolution, as limited by opti-
cal noise in the setup, was found to be of the order of
5 mrad rms with the same focal length, which could
probably be reduced further if the optical quality of the
components in the setup were improved. The angular
dynamic range Du is 8.8 by 6.6 mrad.

Many wave-front reconstruction algorithms from the
slopes have been proposed.1 Zonal algorithms aim at
estimating a sampled version of the wave front, with
the sample points generally located at the same posi-
tion as the slope points. Zonal reconstruction methods
can be either direct or iterative.8 Modal algorithms
assume that the wave front can be described as a com-
bination of given parametric functions, or modes. Or-
thogonal polynomials are often used for this purpose
because they provide an exact expansion basis. How-
ever, this expansion is in practice truncated to a given
order, with the result that the estimation can be bi-
ased if high-frequency details in the actual wave front
are not adequately described by the polynomials re-
tained. We have chosen to use a modal reconstruc-
tion method based on Southwell’s algorithm.9 The
orthogonal polynomials used are the 48 first Legendre
polynomials,9 because the scanning aperture defined
by the spatial light modulator is rectangular. The
wave front is expanded as
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The piston term �m � n � 0� is excluded from ex-
pansion (4) because a piston cannot be sensed by the
Hartmann test. The unknown coefficients a�m, n� are
obtained by minimization of a least-squares criterion
that measures the distance between the slope measure-
ments and the model of Eq. (4). The solution of this
problem is well known9 and is not repeated here.

Figure 3(a) shows the experimental slopes that were
obtained with a progressive ophthalmic lens as the
sample. This object was chosen for its high dynamic
range and lack of revolution symmetry, to show that
rather complicated, although smooth, wave fronts can
be sensed with high accuracy. The focal length used
is 200 mm, with the rms acquisition noise estimated
to be �15 mrad. Acquisition noise cannot be seen in
Fig. 3(a) because of the steep slopes observed; 29 3 22
slope measurements are produced with a spacing of
800 mm 3 800 mm. The total scanning time is of the
order of 2 min and is limited by the duration of three
steps involved for each sample point, i.e., generation
of the aperture pattern onto the spatial light modu-
lator, acquisition of a video frame, and centroid cal-
culation. The duration of each of these steps could
probably be reduced by 1–2 orders of magnitude by use

Fig. 2. Typical diffraction spot.
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Fig. 3. Reconstruction of the wave front after an oph-
thalmic progressive lens: (a) experimental slopes, (b) re-
constructed wave front, (c) residual reconstruction error.

of optimized hardware. Figure 3(b) shows the recon-
structed wave front from which we have the removed
tilt aberration, because tilt can result from the posi-
tioning of the tested object and is generally not part
of the object aberration. The reconstructed wave front
shows mainly a variation of the y curvature along the x
axis, in intuitive agreement with the purpose of a pro-
gressive ophthalmic lens, i.e., a vertically varying fo-
cal length. Figure 3(c) shows the difference between
the reconstructed slopes, as obtained by differentia-
tion of Eq. (4), and the experimental slopes. This is a
quantitative indication of the quality of the reconstruc-
tion. The result is a zero-mean white-looking noise
with standard deviations of 42 and 35 mrad along the
x and y axes, respectively. Compared with the esti-
mated 15-mrad rms acquisition noise, it can be con-
cluded that most of the reconstruction error arises
from acquisition noise rather than from the recon-
struction procedure itself. Expressed differently, the
truncation of the modal description of Eq. (4) does not
introduce a significant bias over the noise level for the
tested wave front.

Because of the sequential nature of the wave-front
scanner, it should be inapplicable to problems that
require real-time operation, such as adaptive optics.
However, whenever accuracy, programmability, or dy-
namic range is a key parameter and the wave front
is static, the wave-front scanner could be a useful al-
ternative to existing wave-front sensors. Examples of
such applications are optical testing and laser beam
analysis.

The principle of a scanning wave-front sensor has
been described. The device is achromatic, offers a
high accuracy together with a large dynamic range, and
is free from the ambiguities between sampling points
that affect Shack–Hartmann sensors. No critical or
high-cost elements are required, especially for detec-
tion. The sampling geometry, and especially the size
and number of sampling points, can be programmed
easily. The drawback of the sequential nature of the
sensor is that real-time operation is not possible. A
practical implementation based on a LCTV was pre-
sented, and the experimental reconstruction of the
wave front from a progressive ophthalmic lens was dis-
cussed, showing both resolution and dynamic range.

V. Laude’s e-mail address is laude@lcr.thomson-
csf.com.
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