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Noise analysis of the measurement of group delay
in Fourier white-light

interferometric cross correlation
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The problem of noise analysis in measuring the group delay introduced by a dispersive optical element by use
of white-light interferometric cross correlation is investigated. Two noise types, detection noise and position
noise, are specifically analyzed. Detection noise is shown to be highly sensitive to the spectral content of the
white-light source at the frequency considered and to the temporal acquisition window. Position noise, which
arises from the finite accuracy of the measurement of the scanning mirror’s position, can severely damage the
estimation of the group delay. Such is shown to be the case for fast Fourier transform–based estimation al-
gorithms. A new algorithm that is insensitive to scanning delay errors is proposed, and subfemtosecond ac-
curacy is obtained without any postprocessing. © 2002 Optical Society of America
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1. INTRODUCTION
Measuring dispersion with subfemtosecond accuracy has
been a longstanding problem. For the propagation and
the generation of femtosecond light pulses, knowledge of
the dispersion introduced by optical elements is compul-
sory. With the advent of chirped mirrors, which control
the group delay on reflection on a femtosecond scale, this
problem has become even more acute.1,2 However,
chirped mirrors are complex dielectric stacks, and deposi-
tion errors can cause the actual dispersion to move away
from the design goal, hence causing the actual dispersion
to differ notably from the predicted dispersion.3 It is
then essential to have an apparatus that can measure the
group delay as a function of frequency with the best pos-
sible accuracy. The most widespread, and arguably the
most precise, apparatus used for measuring the disper-
sion of mirrors or other samples is white-light interfero-
metric cross correlation,4 as depicted in Fig. 1. This in-
strument is basically a Michelson interferometer with one
scanning mirror. The intensity is recorded as a function
of the delay and is written as

I~t! 5 I0 1
1

2p
E

2`

`

dvS~v!exp$2i@vt 2 f~v!#%,

(1)

where I0 is a constant, S(v) is the spectral intensity or
spectrum, and f(v) is the spectral phase. We refer to
I(t) as the cross-correlation signal. The spectral phase is
the difference of the phase on reflection over each mirror
plus the dispersion of the beam splitter, and the spectrum
is that of the white-light source filtered by the optical el-
ements in the setup.

From the measurement described by Eq. (1), the spec-
trum and the phase can be obtained as the solution of an
inverse problem. The chosen estimation algorithm will
engender a trade off among accuracy, robustness to noise,
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and processing speed. In the setup reported in Ref. 4, a
tunable narrow-band filter was used to alter the spectrum
of the white-light source; then the group delay was com-
puted as the center of each filtered light packet. This
procedure is quite slow, because the filter has to be tuned
for every frequency, but in turn it gives precise and stable
results, although part of the apparent robustness to noise
should be attributed to heavy spectral smoothing over the
bandwidth of the filter. For an 8-nm-wide tunable filter
near 800 nm, subfemtosecond precision was achieved.

In a proposed setup later,5 Naganuma et al. avoided
the use of a tunable filter by computing the fast Fourier
transform (FFT) of the interferogram obtained with the
whole white-light spectrum, i.e., of a sequence of sam-
pling points in delay. This computation yielded at once
the group-delay variation as a function of frequency, pro-
viding fast operation. We note, however, that there are
several drawbacks in the FFT method that were not
present in the first version of Ref. 4. First, the Fourier
transform of Eq. (1) yields the spectral phase f(v), and
the group delay has to be obtained by differentiation,
which is known to amplify estimation noise. Second, the
FFT requires equally spaced sampling points in both the
temporal and the spectral domains. In the research re-
ported in Ref. 5, a He–Ne laser ranging technique is used
to sample I(t) at intervals of l/4. Although the Nyquist
criterion is satisfied, i.e., the signal is correctly sampled,
use of a large spectral bandwidth results in a cross-
correlation signal that is strongly concentrated about
t 5 0, so few sampling points actually convey useful in-
formation. As a result, sensitivity to noise is not opti-
mized, and heavy data smoothing has to be performed to
yield reasonable accuracy.5,6

Here we investigate the noise properties of the mea-
surement of the group delay in Fourier white-light inter-
ferometric cross correlation. In Section 2 some prerequi-
2002 Optical Society of America
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site definitions for the analysis are given. We consider
two main sources of noise, in the detection process and in
the position of the scanning mirror, which are discussed
in Sections 3 and 4, respectively. Position noise arises,
for instance, from optical detection of the scanning mir-
ror’s position. Section 5 gives some group-delay mea-
surement examples and illustrates the main results of
Sections 3 and 4.

Before turning to the main subject of this paper, let us
note that the technique of white-light interferometric
cross correlation is closely related to the technique of
spectral interferometry, in which the signals from the two
arms of the Michelson interferometer that have a fixed
delay between them are made to interfere inside a
spectrometer.7,8 More precisely, the measurement pro-
vided by spectral interferometry is the Fourier transform
of Eq. (1). An important difference, however, is that the
dispersion information is sampled temporally for white-
light interferometric cross correlation and spectrally for
spectral interferometry. Although position noise is
meaningless to spectral interferometry, other sources of
error are specific to this technique.9 A comparison of the
noise sensitivities of the two techniques would be instruc-
tive but is however beyond the scope of this paper.

2. ESTIMATION OF THE GROUP DELAY
Figure 2(a) shows an example of a raw measurement of
the cross-correlation signal as a function of the delay.
This measurement was obtained with the setup described
in Section 5 below that was devoted to experimental re-
sults but is shown here to facilitate the discussion.
There are 40,000 samples taken over a 2.1-ps delay range
at a rate of 20,000 samples/s; i.e., the total scanning time
is ;2 s. The cross-correlation signal is a rapidly oscillat-
ing function of the delay. Figure 2(b) is a close-up of the
central region of Fig. 2(a) from which the oscillatory be-
havior can better be seen. Figure 2(c) shows the recorded
intensity for the He–Ne fringes. The position of the mir-
ror is estimated from this signal. It can be seen that the
period of the fringes fluctuates, indicating the influence of
the low-frequency noise that can arise, for instance, from
vibrations in the optical table, which is not stabilized in
this case. As a consequence the samples are not taken to
be uniform in delay, though they are in time, but the po-
sition of the mirror can still be monitored quite precisely.

It is well known that the spectrum and the spectral
phase can be obtained by a Fourier transform of the mea-
surement modeled by Eq. (1):

Fig. 1. White-light interferometric cross-correlation setup.
Photodiode PD1 monitors the white-light dispersion signal and
photodiode PD2 monitors the He–Ne. laser position signal (BSs,
beam splitters; M1, scanning mirror; M2, mirror).
S~v!exp@if~v!# 5 FT@I#~v!, (2)

where the following notation has been used for the win-
dowed Fourier transform:

FT@ f #~v! 5
1

T
E

2T/2

1T/2

f~t!exp~ivt!dt. (3)

In Eq. (2) the normalization by delay range T has been ar-
bitrarily introduced, so both the spectrum and the cross-
correlation signal are given in the same units, i.e., volts;
this choice has no practical consequence for the forthcom-
ing analysis and simplifies the expressions. Of course,
Eq. (2) is an idealization when the delay window is suffi-
ciently large to contain all useful data.

The group delay is defined as the derivative of the spec-
tral phase, according to

tg~v! 5
df~v!

dv
5 f 8~v!. (4)

Differentiating Eq. (2), we obtain

Fig. 2. Example of a cross-correlation measurement: (a) Dis-
persion signal on photodiode PD1 with white-light illumination,
(b) closeup of (a), (c) position signal on photodiode PD2 with
632.8-nm He–Ne laser illumination.
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@S8~v! 1 if 8~v!S~v!#exp@if~v!# 5 iFT@tI#~v!. (5)

We then note that the group delay can be estimated from
the following integral formula:

tg~v! 5 R

E
2T/2

1T/2

dttI~t!exp~ivt!

E
2T/2

1T/2

dtI~t!exp~ivt!

5 R
FT@tI#~v!

FT@I#~v!
,

(6)

where R stands for the real part. The imaginary part is
connected to the variations of the spectrum through

S8~v!

S~v!
5 2I

FT@tI#~v!

FT@I#~v!
, (7)

where I stands for the imaginary part. All expressions
until now were written with continuous integrals. How-
ever, in the experiment we have access only to a certain
number of sampling points, from which the integrals have
to be estimated by use of some quadrature formula (see,
e.g., Ref. 10 for practical quadrature formulas). The
sampling points will not in general be equally spaced in
delay if the experimental apparatus does not specifically
impose the delay5 or if resampling is performed. Assum-
ing N equally spaced sampling points, we can approach
the windowed Fourier transform of Eq. (3) by the simplest
quadrature formula as

FT@I#~v! .
1

N (
p

I~tp!exp~ivtp!, (8)

in which dt has been approximated by T/N. If this in-
tegral has to be evaluated only at equally spaced angular
frequencies separated by dv 5 2p/T, the summation in
expression (8) will be the discrete Fourier transform,
which can be computed efficiently by use of a FFT algo-
rithm. For a typical temporal window of 2 ps, as used in
this study, the spectral spacing is 500 GHz, or approxi-
mately 1 nm for a wavelength of 800 nm.

Approaching this continuous integral with a finite sum-
mation over sampling points requires care that is not
taken in the FFT algorithm. It is well known that the
FFT is relatively immune to additive white detection
noise. However, another source of error stems from the
positioning of the scanning mirror. Even a l/100 posi-
tioning error will result in degraded estimation perfor-
mance, because t is the integrant of the two integrals in
Eq. (6), as is shown in Section 4 below.

3. DETECTION NOISE
In this section we discuss the sensitivity of the estimation
of the group delay with respect to detection noise. This
analysis is rather independent of the choice made regard-
ing the evaluation of integrals of the type of Eq. (3); for
convenience we choose the approximation of expression
(8), as it simplifies the mathematics. We assume that de-
tection noise is a white Gaussian stochastic process, i.e.,
that many photons are available for each measurement.
The measured intensity is then written for each sample
as
J~tp! 5 I~tp! 1 n~tp!, (9)

where I(tp) is the true cross-correlation signal given by
Eq. (1). We have

^n~tp!& 5 0 (10)

^n~tp!n~tq!& 5 s 2dp2q , (11)

where ^ & denotes an ensemble average, s 2 is the noise
variance, and dp2q is the Kronecker delta function. A
noise analysis of the estimation procedure requires the
evaluation of stochastic integrals of the form

FT@nf #~v! .
1

N (
p

n~tp!f~tp!exp~ivtp!. (12)

It is straightforward to show that

^FT@nf #~v!& 5 0 (13)

and that

^FT@nf #~v!FT@ng#~v!* & 5
s 2

N2 F(
p

f~tp!g* ~tp!G ,

(14)

with the special cases that ^FT@nf #(v)2& equals s 2/N and
s 2T2/(12N) if f(t) 5 1 and f(t) 5 t, respectively.

Let us first consider the estimation of the spectrum and
of the phase, which we obtain by computing the Fourier
integral FT@J#(v). This estimation is unbiased because

^FT@J#~v!& 5 FT@I#~v! 5 S~v!exp@if~v!#, (15)

and the variance of the estimation is

VAR1 5 ^uFT@J#~v! 2 FT@I#~v!u2&

5 ^uFT@n#~v!u2& 5 s 2/N. (16)

This estimation is seen to be independent of the spectral
content of the white-light source, and moreover the
signal-to-noise ratio (SNR) improves proportionally to the
number of samples, as is usual for sums of independent
measurements:

SNR1 5 N
S2~v!

s 2 . (17)

The situation is much different for the estimation of the
group-delay, as we shall now see. To obtain tractable ex-
pressions we expand the estimator to first order in the de-
tection noise; by this procedure we seek approximate ex-
pressions for the mean and the variance of the estimator.
We write the group-delay estimator as

t̂g~v! 5 R
FT@tJ#~v!

FT@J#~v!
. (18)

Its first-order expansion reads as

t̂g~v! . R
FT@tI#~v!

FT@I#~v!
F1 1

FT@tn#~v!

FT@tI#~v!
2

FT@n#~v!

FT@I#~v!
G .

(19)

To first order the estimator is unbiased because

^ t̂g~v!& . R
FT@tI#~v!

FT@I#~v!
5 tg~v!. (20)
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It is shown in Appendix A that the estimator variance is

VAR2 5
1

2N

s 2

S2~v!
H T2

12
1 tg

2~v! 1 FS8~v!

S~v!
G2J . (21)

It can be seen that this estimation variance is inversely
proportional to the SNR of the estimation of the spec-
trum; i.e., the more energy for a particular frequency in
the spectrum, the better the estimation of the group delay
at that frequency. Moreover, the estimation degrades
with the size of the delay window T, as is probably less
natural. This is so because the useful signal occupies a
given delay window, although whether this is so cannot be
known before the measurement, and because adding more
samples outside this window only introduce more noise
into the estimation. It can be noted that this effect is ab-
sent from the estimation of the spectrum. The presence
of the last two terms in braces in Eq. (21) indicates that
the estimation degrades with the dispersion of the signal
and with the variations of the spectrum, respectively.
These last-named effects will in general be smaller than
the effect of the delay window, especially if care is taken
that the maximum group delay that has to be measured
be smaller than the delay window used for measurement.
However, Eq. (21) also shows that the spectrum of the
light source should be chosen to be very smooth. In any
case, the standard deviation for the estimation of the
group delay is seen to have a lower bound as

AVAR2 >
T

2A6N

s

S~v!
. (22)

A numerical example of the influence of detection noise is
given in Section 5 below.

4. POSITION NOISE
Let us write the general sampled version of Eqs. (2) and
(6), using an arbitrary quadrature formula, as

S~v!exp@if~v!# 5 (
p

Wpg~tp!, (23)

tg~v! 5 R

(
p

Wpf~tp!

(
p

Wpg~tp!

, (24)

where Wp are weighting factors, tp are sampling delays,
f(t) 5 tI(t)exp(ivt), and g(t) 5 I(t)exp(ivt). For the
FFT case, delay samples tp are equally sampled, and the
weights Wp 5 1/N are uniform. It is the simplest
quadrature formula that one can think of. For accuracy,
it is generally preferable to use a more-refined quadra-
ture formula, e.g., a Newton–Cotes or a Gauss formula.
In these cases the weights depend explicitly on the delay
samples tp .

As was discussed in Section 1, the actual position of the
scanning mirror cannot be known with arbitrary preci-
sion; i.e., there is noise in the delay samples. In Eqs. (23)
and (24), errors in tp will to the first order be proportional
to the derivatives of functions f and g and possibly of the
weights. Indeed, if we write
tp 5 t̄p 1 qp , (25)

where t̄p is the actual mirror delay and qp is the error,
then

(
p

Wpf~tp! . (
p

Wpf~ t̄p! 1 (
p

Wpqpf 8~ t̄p!

1 (
p

(
q

qq

]Wp

]tq
f~ t̄p!, (26)

and a similar equation holds for function g(t). In ex-
pression (26) the weights should be chosen to minimize
sensitivity to position noise. In practice, the influence of
position noise on the group-delay estimation given by Eq.
(24) will be much more noticeable on the integral of func-
tion f than it will be for the integral of function g because
the first involves a further multiplication of its integrant
by the delay. We can then approximate the effect of po-
sition noise by transforming Eq. (24) into

tg~v! 5 R

(
p

Wpf~ t̄p!

(
p

Wpg~ t̄p!

1 R

(
p

Wpqpf 8~ t̄p! 1 (
p

(
q

qq

]Wp

]tq
f~ t̄p!

(
p

Wpg~ t̄p!

.

(27)

A. Case of the Fast Fourier Transform
In the case of the FFT, the weights are constant, and ex-
pression (26) becomes

1

N (
p

f~tp! .
1

N (
p

f~ t̄p! 1
1

N (
p

qpf 8~ t̄p!. (28)

We assume that the position noise has white-noise statis-
tics, at least to second order; i.e., that

^qp& 5 0, (29)

^qpqq& 5 sq
2dp2q . (30)

From these definitions it is easy to obtain that the esti-
mation is unbiased, because its mean is

K 1

N (
p

f~tp!L .
1

N (
p

f~ t̄p!, (31)

and that its variance is

VAR3 .
sq

2

N2 (
p

u f 8~ t̄p!u2 5 sq
2h2T22 (

p
u f 8~ t̄p!u2,

(32)

where we have used the notation h 5 T/N. The vari-
ance of the estimation of the group delay can then be ap-
proximated as
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VAR4 .

sq
2h2 (

p
u f 8~ t̄p!u2

T2S2~v!
. (33)

As can be seen from Fig. 2, f(t) is a fast varying function
of t, which implies that, even if position noise variance
sq

2 is small, the estimation variance will be increased no-
tably, as is shown by a numerical example in Section 5 be-
low.

B. Case of the Trapezoidal Rule
Given a sequence of sampling points in an interval on
which a function is to be integrated, we can set up
Newton–Cotes formulas by specifying that all polynomi-
als to a given degree be integrated exactly.10 For in-
stance, for the trapezoidal rule this degree is 2 and for
Simpson’s rule it is 3. When the sampling points are not
known in advance, the trapezoidal rule is the only for-
mula that will retain an unchanging expression, which is
given by

(
p

Wpf~tp! 5
1

2T (
p52

N

~tp 2 tp21!@ f~tp! 1 f~tp21!#.

(34)

It is shown in Appendix B that to first order in position
noise the estimation is again unbiased and that its vari-
ance is approximately

VAR5 .
sq

2

16T2 (
p52

N21 Uf 9~ t̄p!~dtp
2 2 dtp11

2!

2
1

3
f -~ t̄p!~dtp

3 1 dtp11
3!U2

, (35)

where dtp 5 t̄p 2 t̄p21 . Expression (35) shows that the
estimation error for the trapezoidal rule is at least of sec-
ond order with regard to the sampling interval, whereas
it is of first order for the FFT, as is apparent from expres-
sion (32). The variance of the estimation of the group de-
lay can then be approximated as
VAR6 .

sq
2 (

p52

N21 Uf 9~ t̄p!~dtp
2 2 dtp11

2! 2
1

3
f -~ t̄p!~dtp

3 1 dtp11
3!U2

16T2S2~v!
. (36)
Furthermore, if the signal is equally sampled, then
dtp 5 h, and the estimation error is of third order:

VAR5 .
sq

2

36T2 h6 (
p52

N21

u f -~t̄p!u2, (37)

and the variance of the estimation of the group delay can
then be approximated as
VAR6 .

sq
2h6 (

p52

N21

u f -~ t̄p!u2

36T2S2~v!
, (38)

as is shown by a numerical example in Section 5.

C. Comparison
A direct comparison of expressions (33) and (36) or (38) for
the FFT and the trapezoidal rule, respectively, proves
that the latter has better robustness to position noise be-
cause, when one is using the trapezoidal rule, the factor h
is raised to the sixth power, whereas with the FFT it is
raised only to the second power. The sums involved in
these expressions are of the same order, because the inte-
grated functions are fast oscillating and can be approxi-
mated by the amplitude-modulated sinusoid. This fact
will be confirmed by the numerical examples given in Sec-
tion 5. In addition, in both cases using more sampling
points helps to improve accuracy, because the estimation
SNR depends dramatically on the sampling interval
h 5 T/N. Using more sampling points would be seen as
oversampling the signal in the FFT sense, because ac-
cording to the Nyquist criterion the number of samples is
limited by the bandwidth of the signal, but an increase in
the number of samples greatly reduces the noise sensitiv-
ity. Such is also true for the case of detection noise, be-
cause the estimation variance of Eq. (21) is inversely pro-
portional to the number of samples N, but in this case the
improvement is the same for both the FFT and the trap-
ezoidal rule.

5. EXPERIMENTS
We set up a white-light interferometric cross correlator
that is basically similar to that described in Ref. 5. One
difference is that we take sampling points at approxi-
mately l/40 intervals instead of at l/4 intervals, where
l 5 632.8 nm is the He–Ne laser wavelength. Further-
more, we do not impose the condition that these sampling
points be equally spaced, unlike for the FFT, because the
trapezoidal rule of Eq. (34) is used. With ;40,000 sam-
pling points, a temporal window of 2.1 ps is scanned.
The total scanning time is 2 s, with a sampling rate of
20,000/s. Figure 3(a) shows a typical calibration result
obtained with two bare gold mirrors. The observed dis-
persion is that of the beam splitter. No data smoothing
was performed. It can be observed that the accuracy is
maximum where the spectral content is highest, i.e., near
1 mm. Figure 3(b) shows the difference between the mea-
sured group delay and a polynomial fit to illustrate the
variations in degree of accuracy.

The group delay’s standard deviation owing to detec-
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tion noise in the experiment is estimated from inequality
(22) as follows: The detection noise is taken to be mostly
the quantization noise of the 12-bit analog-to-digital con-
verter with a signal range of 4 V, resulting in a standard
deviation of approximately 2.8 3 1024 V. For compari-
son, a hypothetical 16-bit analog-to-digital converter is
also considered, with the assumption that the detection
noise is still given by the quantization noise. Figure 4
shows the standard deviation as a function of frequency,
in femtoseconds. From expressions (33) and (36), and us-
ing the experimental data of Fig. 2 that were used for the
estimation results shown in Fig. 3, we can compute the
group-delay variances caused by position noise that would
be obtained with a FFT algorithm and with the trapezoi-
dal rule of Eq. (34), respectively. Figure 4 shows the
standard deviation as a function of frequency as com-
puted from expressions (33) and (36), assuming a conser-
vative value of l/100 for position accuracy. It can be seen
that using the trapezoidal rule, greatly reduces the effect
of the position noise compared with the noise for the FFT
algorithm. In the reported experiments the standard de-

Fig. 3. Calibration example: (a) calibration intensity and
group delay, (b) difference between the calibration group delay
and a polynomial fit to third order.
viation that is due to position noise when the trapezoidal
rule is used is then negligible compared with that which
is due to detection noise with a 12-bit analog-to-digital
converter, which would not have been the case for a FFT-
based estimation algorithm. Assuming a 16-bit analog-
to-digital converter, we predict that the position and de-
tection noise will be comparable.

Figure 5 shows the measured group delay on reflection
from a chirped mirror designed for the 765–865-nm band-
width as related to compression of ultrashort pulses from
a Ti:sapphire laser in air.11 Note that this bandwidth is
not the best part of the spectrum for estimation accuracy,
as one can see from Fig. 4. The design was specified to
fifth order with a group-delay dispersion of 2200 fs2, a
third-order dispersion of 500 fs3, a fourth-order dispersion
of 216,250 fs4, and a fifth-order dispersion of 125,000 fs5.

Fig. 4. Group-delay standard deviation caused by detection and
position noise.

Fig. 5. Chirped-mirror measurement. The two thin solid
curves are one standard deviation away from the measurement
(thicker solid curve).
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Two thin solid curves were added at a distance of one
standard deviation away from the measurement (thick
solid curve) to show the accuracy of the measurement.
The oscillations in the measured group delay can be at-
tributed to the mirror itself and not to the measurement.

6. CONCLUSION
We have investigated the problem of noise analysis dur-
ing the measurement of the group delay introduced by a
dispersive optical element, using white-light interfero-
metric cross correlation. Two noise types, i.e., detection
noise and position noise, were specifically analyzed. De-
tection noise is the additive noise that arises from mea-
surement of the intensity of the white-light fringes with a
photodetector. Detection noise was shown to be highly
sensitive to the spectral content of the white-light source
at the frequency considered and to the temporal acquisi-
tion window. Position noise, which arises from the finite
accuracy of the measurement of the scanning mirror’s po-
sition, was found to be a severe source of error in the es-
timation of the group delay with discrete Fourier-
transform-based estimation algorithms. A new
estimation algorithm that is insensitive to position noise
was proposed, and subfemtosecond accuracy was obtained
without any postprocessing.

APPENDIX A
In this appendix we demonstrate Eq. (21). Starting from
expressions (19) and (20), the variance of the estimation
is

^@tg~v! 2 t̂g~v!#2&

. K FR FT@tn#~v!

FT@I#~v!
2 R

FT@tI#~v!FT@n#~v!

FT@I#~v!2 G2L , (A1)

which we write as

^@tg~v! 2 t̂g~v!#2&

.
1

4 K FFT@tn#~v!

FT@I#~v!
2

FT@tI#~v!FT@n#~v!

FT@I#~v!2 1 c.c.G2L ,

(A2)

where c.c. stands for the complex conjugate. The right-
hand side of expression (A2) has 10 terms. However, six
of them are proportional to expectations of the form

^FT@nf #~v!FT@ng#~v!&

5
s 2

N2 F(
p

f~tp!g~tp!exp~2ivtp!G (A3)

or its complex conjugate, where functions f and g are ei-
ther 1 or t, or approximately

^FT@nf #~v!FT@ng#~v!&

5
s 2

NT F E
2T/2

T/2

f~t!g~t!exp~2ivt!dtG . (A4)
The integrants in Eq. (A4) are rapidly oscillating func-
tions of the delay, resulting in destructive interference.
They can then be neglected. Furthermore, we have

^FT@tn#~v!FT@n#~v!* & 5 0. (A5)

Then the variance of expression (A2) has only two domi-
nant terms and can be written as

VAR2 .
1

2uFT@T#~v!u2 F ^uFT@tn#~v!u2&

1
uFT@tI#~v!u2

uFT@I#~v!u2 ^uFT@n#~v!u2&G . (A6)

Using Eqs. (2), (5) and (14), we conclude that

VAR2 5
1

2N

s 2

S2~v!
H T2

12
1 tg

2~v! 1 FS8~v!

S~v!
G2J , (A7)

which is Eq. (21).

APPENDIX B
In this appendix we demonstrate expression (35). Insert-
ing Eq. (25) into Eq. (34), we have for the integral of any
function f evaluated from the trapezoidal rule

(
p

Wpf~tp! 5 S̄ 1
1

2T (
p52

N

@~qp 2 qp21!~ fp 1 fp21!

1 ~ t̄p 2 t̄p21!~qpf 8p 1 qp21f 8p21!#,

(B1)

with the notation fp 5 f( t̄p) and

S̄ 5 (
p

Wpfp . (B2)

Neglecting side effects for the first and the last samples
and performing index shifts, we find for Eq. (B1) that

(
p

Wpf~tp! 5 S̄ 1
1

2T (
p52

N21

qp

3 @ fp21 2 fp11 1 ~ t̄p11 2 t̄p21!f 8p#.

(B3)

Then, using the Taylor expansion of function f to third or-
der,

f~ t̄p 1 e! . fp 1 ef 8p 1
e2

2
f 9p 1

e3

6
f -p , (B4)

yields for Eq. (B3)

(
p

Wpf~tp!

5 S̄ 1
1

4T (
p52

N21

qp

3 F f 9p~dtp
2 2 dtp11

2 ! 2
1

3
f -p~dtp

3 1 dtp11
3 !G (B5)



1008 J. Opt. Soc. Am. B/Vol. 19, No. 5 /May 2002 Vincent Laude
with the notation dtp 5 t̄p 2 t̄p21 . Taking the expecta-
tion of Eq. (B5), we obtain that the estimation is unbi-
ased, with a variance given by expression (35).
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1. R. Szipöcs, K. Ferencz, Ch. Spielmann, and F. Krausz,

‘‘Chirped multilayer coatings for broadband dispersion con-
trol in femtosecond lasers,’’ Opt. Lett. 19, 201–203 (1994).

2. A. Stingl, Ch. Spielmann, F. Krausz, and R. Szipöcs, ‘‘Gen-
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