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General solution of the coupled-wave equations of
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The basic problem of the diffraction of an optical plane wave by an acoustic plane wave in an anisotropic ho-
mogeneous medium is considered. The acousto-optical interaction is considered indifferently of the isotropic
or of the birefringent type. Coupled-wave equations are obtained rigorously and cast into an eigenvalue value
problem. A general solution is obtained for the diffraction efficiency of diffracted orders, for any interaction
length and diffraction regime. The theory includes the Bragg regime, the Raman–Nath regime, and all in-
termediate situations in the same formulation. The method of solution is both exact and computationally
efficient. It is similar in character to the rigorous coupled-wave analysis of Moharam and Gaylord but differs
by the choice of basis functions adapted to propagating rather than static gratings. Examples are given for
acousto-optical interaction in paratellurite, TeO2 . © 2003 Optical Society of America
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1. INTRODUCTION
The study of the diffraction of an optical plane wave by an
acoustic plane wave in a general anisotropic homogeneous
medium is a basic problem of acousto-optics. The deter-
mination of the diffraction efficiencies of the various or-
ders of diffraction relies on its solution. This study has
generally been divided according to the diffraction re-
gime, e.g., the Raman–Nath and the Bragg regimes,1–3

and to the interaction type, i.e., isotropic or birefringent
interaction.4 The Raman–Nath and the Bragg regimes
are special cases for which analytic solutions have long
been known because of the simplifications that can be
made in the equations. The coupled-wave equations for
isotropic media were established in the 1930s and have in
general no analytic solution. However, a complete nu-
merical solution was given by Klein and Cook in 1967.1

Their solution relies on a finite-difference approximation
of the coupled-wave equations, which can be solved with a
Runge–Kutta-type algorithm. Korpel5 summarized vari-
ous formal and numerical approaches to the problem of
light diffraction by a sound column. For birefringent
acousto-optical interaction, most studies focus on the
Bragg regime only, as it is widely used in applications.

The purpose of this paper is to obtain a general solution
of the coupled-wave equations of acousto-optical interac-
tion that is valid whatever the diffraction regime and the
crystal anisotropy and for both isotropic and birefringent
interactions. Furthermore, this general solution does
not rely on a numerical approximation of the coupled-
wave equations, as in the method of Klein and Cook,1 but
on the analytical solution of a vectorial first-order differ-
ential equation with constant coefficients. The solution
is obtained at once in the whole depth of the crystal by
solving a linear eigenvalue problem.

The coupled-wave equations are derived rigorously in
Section 2. This is necessary because previous deriva-
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tions assumed isotropic media with the coupled-wave
equations expressed for the electric field. This is not con-
sistent in a general anisotropic medium, in which the
electric displacement field should be used instead. In
Section 3 it is shown that the coupled-wave equations can
be given the form of a vectorial first-order differential
equation with constant coefficients and that the general
solution can be obtained by solving a linear eigenvalue
problem. As will be seen, the theory is similar in char-
acter to the rigorous coupled-wave analysis of Moharam
and Gaylord.6,7 However, as discussed in Section 3, a
closer look shows that it differs mainly by the choice of ba-
sis functions that are adapted to propagating rather than
static gratings. In Section 4 some examples are given of
acousto-optical interactions in paratellurite, TeO2 .

2. COUPLED-WAVE EQUATIONS
Tensor notations are used with the usual convention of
summation over repeated indices. The reference frame
of Euclidian space is denoted (x1 , x2 , x3) and can be
taken to be the natural crystallographic reference frame
of the crystal in which acousto-optical interaction takes
place or any other rotated reference frame best suited to
the interaction geometry. The optical wave equation ex-
pressed with respect to the electric displacement vector D
in an homogeneous anisotropic medium assumes the form

1

c2

]2D

]t2
5 ¹2~h : D! 2 ¹@¹ • ~h : D!#, (1)

where h is the impermeability tensor, the inverse of the
dielectric tensor e according to the relation

e ijh jk 5 d ik , (2)

where d ik is the Kronecker symbol. h ij and e ij are rank-2
symmetric tensors, with indices i and j running from 1 to
2003 Optical Society of America
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3. The notation h : D represents the right-hand-side con-
traction of tensor h by vector D, i.e., the vector with com-
ponents h ijDj . Similarly, D : h would represent the left-
hand-side contraction, i.e., the transposed vector with
components Dih ij .

The electric displacement of an optical plane wave can
be written as

Di 5 D0di exp@ j~vt 2 kjxj!# (3)

for i, j 5 1 ... 3, where v is the angular frequency, D0 is a
complex amplitude, di are the coordinates of a unit polar-
ization vector, and kj are the coordinates of the wave vec-
tor. These are also written as ki 5 kli where the li are
director cosines (lili 5 1). The electric displacement of a
plane wave is always transverse, that is, dili 5 0. By in-
serting Eq. (3) into Eq. (1), a dispersion relation is readily
found that serves as a definition of the index of refraction
seen by the plane wave, i.e.,

1

n2
5

v2

k2c2
5 d : h : d 5 dih ijdj . (4)

There are in general at most two different independent
polarization states for propagation in a given direction.

The optical instantaneous Poynting vector is defined by
S 5 E 3 H, where E and H are the electric and magnetic
vectors, respectively, and represent the transport of en-
ergy by the plane wave. The norm of the optical Poyn-
ting vector can be shown to be, in the plane wave case,

uSu 5
1

2

c

e0n3
D0

2, (5)

where c is the speed of light in a vacuum and e0 is the
vacuum permittivity.

The polarization of the acoustic plane wave is repre-
sented by the rank-2 symmetric strain tensor, Sij , accord-
ing to

Sij~t, r! 5 Sŝij sin~Vt 2 K – r!, (6)

where S is a complex amplitude, V is the acoustic pulsa-
tion, K is the acoustic wave vector, and ŝ is a unit polar-
ization rank-2 tensor. The acoustic transported power is
given by3

Pac 5 IacSt , (7)

where St is the transducer’s effective surface and where

Iac 5
1
2 rVa

3uSu2 (8)

is the acoustic intensity, i.e., the acoustic power-flux den-
sity.

The elasto-optic effect is represented in the Pockels
theory by the deformation of the impermeability tensor
caused by the acoustic wave, according to

Dh ij~t, r! 5 pijklSkl~t, r!

5 S~ pijklŝkl!sin~Vt 2 K – r!

5 Dh ij sin~Vt 2 K – r!. (9)

To solve for the optical propagation problem, it is neces-
sary to insert such a spatial dependence of the imperme-
ability tensor into the wave equation, Eq. (1). The usual
procedure3 is to represent the optical field by the super-
position

D~r, t ! 5 (
m52`

`

Dm~zm!dm exp@ j~vmt 2 km – r!#,

(10)

where

vm 5 v 1 mV, (11)

km 5 k 1 mK. (12)

It is worthwhile noting that the elementary plane waves
in the expansion of Eq. (10) are not necessarily propaga-
tion modes, since they will not, in general, satisfy the dis-
persion relation of Eq. (4). However, this is not a prob-
lem as long as their superposition is itself a solution of the
wave equation. They will be referred to as the diffraction
orders. The unit polarization vectors dm are as yet un-
specified. The functions Dm(zm) are assumed to be
slowly varying envelope functions that depend on some
coordinate zm , which is in most derivations chosen arbi-
trarily and identical for all diffraction orders, e.g., along
the acoustic wave vector.3 We next show that, in fact, the
direction of variation of the envelopes Dm(zm) cannot be
chosen arbitrarily. Let us write this direction as

zm 5 um – r, (13)

where um is a unit vector, so that the partial derivatives
with respect to the space coordinates of a function f(zm)
are

]f~zm!

]xi
5 ~um!i

df~zm!

dzm
5 ~um!if 8~zm!. (14)

The divergence of Eq. (10) must vanish in accordance
with Maxwell’s equations. Expressing this condition for
all space and time positions, we arrive at

um – dmDm8 ~zm! 2 jkm – dmDm~zm! 5 0, (15)

which holds for every diffraction order and every spatial
position zm . Then we have necessarily

um – dm 5 0, (16)

km – dm 5 0. (17)

As Eq. (17) shows, the polarization direction must be cho-
sen transverse. As is well known, the intersection of the
index ellipsoid with a plane orthogonal to a given wave-
vector direction is an ellipse, the two main axes of which
give the eigenmodes of propagation. Then the diffraction
order can be decomposed along the ordinary and extraor-
dinary polarizations, and only the polarization that is
best compatible with the dispersion relation, Eq. (4), can
be retained in the analysis in practice. The refractive in-
dex for order m is, in any case, defined by

1

nm
2

5 dm : h : dm . (18)

Furthermore, as Eq. (16) shows, it is not possible, in gen-
eral, to consider a single z axis for all diffraction orders.
Although there remains some degree of freedom in the



Vincent Laude Vol. 20, No. 12 /December 2003 /J. Opt. Soc. Am. A 2309
choice of um , the most obvious choice is to take it as the
unit vector in the direction of the wave vector km , i.e.,
um 5 lm .

Coupled-wave equations are obtained by inserting Eq.
(10) into Eq. (1). This procedure is quite straightforward
but long and is summarized in Appendix A. We give only
the final results here. The problem considered, depicted
in Fig. 1, is to find the diffraction efficiencies of all dif-
fracted orders when the interaction region is restricted to
a region of space limited by two parallel planes a distance
L apart. All the wave vectors of the diffracted orders lie
in the plane of incidence defined by k0 and K. A distance
Lm can be associated with each diffraction order, mea-
sured along the direction of its wave vector. The square
moduli of the envelopes are made proportional to the dif-
fraction efficiencies by use of the transformed functions

D̂m~Z ! 5
1

Anm
3 Lm

Dm~zm!. (19)

The division by the factor Anm
3 ensures that the envelopes

are proportional to the square root of the modulus of the
optical Poynting vector, according to Eq. (5). The division
by ALm is a correction term compensating for the varia-
tion with the diffraction order of the apparent surface
crossed by the optical flux. We have also set
Z 5 zm /Lm , where Lm is the effective interaction length
for the mth diffraction order, so that all envelopes depend
on a single reduced coordinate that equals 0 at the en-
trance of the crystal and 1 at the output. Z is termed the
normalized depth. With these notations, the coupled-
wave equations assume the simple form

D̂8~Z ! 5 jMD̂~Z !, (20)

where D̂(Z) is the vector whose components are the am-
plitudes D̂m(Z) and M is a tridiagonal square matrix
whose only nonzero elements are

Mm,m 5
1

2
kmLmS 1 2

vm
2 nm

2

c2km
2 D , (21)

Mm,m21 5 2
jv

4c
~LmLm21nm

3 nm21
3 !1/2Dnum

m21,

(22)

Fig. 1. Schematic of the interaction region. All diffraction
orders lie in the plane of incidence defined by wave vectors k0
and K.
Mm,m11 5
jv

4c
~LmLm11nm

3 nm11
3 !1/2Dnum

m11,

(23)

with the notation

Dnum
m61 5 dm : Dh : dm61 . (24)

By direct inspection, it can easily be seen that matrix M is
Hermitian symmetric, i.e., Mm21,m 5 Mm,m21* and
Mm11,m 5 Mm,m11* , whereas Mm,m is purely real.

3. METHOD OF SOLUTION
In this section we use matrix notations with explicit sum-
mations. The coupled-wave equations, Eq. (20), assume
the form of a vectorial first-order differential equation
with constant coefficients. As is well known, such equa-
tions can be simply solved by obtaining the eigenvalues
vm and the eigenvectors xm of matrix M. Such a solution
is the basis of the nth-order order approximation method8

of solving the Raman–Nath equations. With the eigen-
vectors arranged vertically in matrix X, the solution of
Eq. (20) is

D̂~Z ! 5 XD~Z !a, (25)

where D(Z) is a diagonal matrix with elements

Dm,m~Z ! 5 exp~ jvmZ ! (26)

and where a is a vector of unknown parameters, which is
obtained by expressing initial conditions. Since at the
entrance of the crystal, Z 5 0, only the diffracted order
m 5 0 is incident, then

D̂~0 ! 5 Xm,nan 5 dm , (27)

where dm equals 1 if m 5 0 and 0 otherwise, and vector a
is obtained by solution of a linear system. A few obser-
vations can be made regarding this matrix solution.
First, matrices and vectors have to be truncated in prac-
tice. The usual procedure would then be to increase the
number of selected orders of diffraction until the compu-
tation result is no longer dependent on this number. Sec-
ond, the solution is obtained at once in the whole depth of
the crystal. The computation time is mostly dictated by
the number of diffraction orders that are retained for
analysis and is mostly consumed by the eigenvalue and
eigenvectors determination. Third, as matrix M is Her-
mitian symmetric, its eigenvalues are necessarily real,
and, by proper normalization of the eigenvectors, matrix
X can be made unitary, i.e.,

X†X 5 I, (28)

where I is the identity matrix and (†) represents the
transpose conjugate of a matrix or vector. It then fol-
lows, by one’s taking the norm of Eq. (27), that

(
m

uamu2 5 1 (29)

and then, from Eq. (25) that
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(
m

uD̂m~Z !u2 5 1. (30)

As this last identity proves, the diffraction efficiencies al-
ways sum to unity, whatever the particular material prop-
erties, diffraction regime, and interaction length. This is
obviously a compelling physical property. Furthermore,
left multiplying Eq. (27) by X† yields

an 5 X0,n* , (31)

where (* ) stands for the complex conjugate. Equation
(25) can then be written explicitly as

D̂m~Z ! 5 (
n

Xm,nX0,n* exp~ jvnZ !, (32)

which emphasizes that the amplitude of each diffraction
order is the result of the interference of harmonic eigen-
modes.

The solution that has been obtained in this section
bears a strong similarity to the rigorous coupled-wave
analysis solution of plane-wave diffraction by planar-
diffraction gratings of Moharam and Gaylord.6,7 Indeed,
the coupled-wave equations obtained by these authors
were cast in a vectorial first-order differential equation
with constant coefficients and solved by an eigenvector
superposition. However, an important difference be-
tween planar gratings and acousto-optical diffraction is
the static nature of the former. When one tries to apply
the rigorous coupled-wave analysis solution of Ref. 7 to
acousto-optical diffraction, a problem arises in connection
with the choice of basis functions. Indeed, as can be seen
from Eqs. (10)–(12), the expansion used is not over true
propagation modes, since the basis functions do not sat-
isfy the dispersion relation. When one uses true propa-
gation modes, e.g., by using phase matching for two com-
ponents of the wave vectors and the dispersion relation to
find the third, the coupled-wave equations will still be in
the form of a first-order differential equation but with
nonconstant coefficients. This arises because phase
matching in the case of acousto-optical diffraction in-
volves both the spatial and the temporal dependences of
plane waves. The change in frequency of diffracted or-
ders is independent of the change in wave vector, and
hence either temporal or spatial modulation of the cou-
pling strength results.

4. EXAMPLES
The examples in this section are mostly intended to illus-
trate the application of the general solution of the
coupled-wave equations but not especially to be interest-
ing in practice. The interactions considered are in the in-
termediate regime; i.e., they are neither in the Raman–
Nath nor in the Bragg regime. The interaction geometry
is depicted in Fig. 2. A pure-shear acoustic wave is
propagating along the [110] direction in a TeO2 crystal,
polarized along the @11̄0# direction, with a velocity of 613
m/s. This wave is often used in practical devices because
the value of the figure of merit M2 is high.3,9–11 It can be
used for isotropic interaction, i.e., without any change in
the optical polarization of the diffraction orders, and for
birefringent interaction. We assume that the incident
light, in the zeroth order, is ordinary polarized. In the
case of birefringent interaction, odd diffraction orders
have an extraordinary polarization, whereas even diffrac-
tion orders have an ordinary polarization. The material
constants for TeO2 , i.e., elasto-optic and dielectric coeffi-
cients, are taken from Ref. 12. Seventeen diffraction or-
ders are taken into account in all computations, with the
index m running from 28 to 8. It was verified that the
diffraction efficiencies of higher diffraction orders are neg-
ligible in the cases considered. The crystal is assumed to
be cut normally to the [001] axis of Fig. 2. L is the inter-
action length measured along the [001] axis.

Figure 3 shows the diffraction efficiencies obtained
around normal incidence in a case close to the Raman–
Nath diffraction regime, as a function of the optical wave-
length. Diffraction regimes are customarily classified
since Klein and Cook1 according to the value of the pa-
rameter Q defined by

Q 5 ~K2L !/k. (33)

The conditions Q ! 1 and Q @ 1 define the Raman–Nath
and the Bragg interaction regimes, respectively. For the
computations shown in Fig. 3, the acoustic frequency is
V 5 20 MHz and the interaction length is L 5 1 mm.
Then Q equals approximately 1.1, 1.7, and 2.9 for an op-
tical wavelength of 0.4, 0.6, and 1 mm, respectively.
These values are higher than what is required for the
Raman–Nath diffraction regime but still close to that re-
gime. The acoustic intensity is chosen to give maximum
diffraction efficiency for the first diffraction order at an
optical wavelength of 0.63 mm. For normal incidence,
Fig. 3(a), the diffraction efficiencies are rather adequately
described by the Bessel functions’ solution specific to the
Raman–Nath regime. In particular, a maximum diffrac-
tion efficiency of 39% is obtained for the first order,
slightly higher than the 33.9% upper limit in the Raman–

Fig. 2. Definitions for the acousto-optical interaction in TeO2
considered in Figs. 3–5. Acoustic waves are propagating along
the [110] direction and are shear polarized along the @11̄0# direc-
tion. The plane of incidence is defined by axes [001] and [110].
u is the angle of incidence for incoming light.
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Nath regime, the maximum of the squared J1 Bessel
function. However, as the angle of incidence becomes dif-
ferent from 90°, the behavior of the diffraction efficiencies
changes rapidly, as depicted in Figs. 3(b) and 3(c). The
negative first diffraction order becomes dominant over
other nonzero diffraction orders.

Figure 4 shows the buildup of the Bragg interaction re-
gime for birefringent interaction and ordinary incident
light. With the acoustic frequency set to V 5 60 MHz,

Fig. 3. Diffraction efficiency for isotropic (ordinary light)
acousto-optical interaction in TeO2 in the intermediate regime.
The interaction length is L 5 1 mm, the acoustic intensity is
Iac 5 105 kg/s3, and the acoustic frequency is V 5 20 MHz. The
angles of incidence are (a) 90°, (b) 89°, and (c) 88°. Figure labels
are for diffraction orders.
the Bragg condition is achieved in the first order of dif-
fraction for l 5 0.82 mm approximately at an angle of in-
cidence of 89°. In Figs. 4(a), 4(b), and 4(c) the interaction
length L is 2, 6, and 10 mm, respectively; the value of the
parameter Q is then approximately 36, 108, and 180, re-
spectively. The acoustic intensity is chosen so that maxi-
mum diffraction efficiency is achieved in the first order at
l 5 0.82 mm. The first-order diffraction efficiency as a
function of the optical wavelength assumes the shape
typical of the Bragg regime, with only the zeroth and first
diffraction orders having nonnegligible diffraction effi-
ciency in the vicinity of l 5 0.82 mm. However, the sec-
ond order of diffraction also satisfies the Bragg condition
at l 5 0.42 mm approximately, and it is seen that its dif-
fraction efficiency can become quite important if Q is not
too high, i.e., 57% in Fig. 4(a). To emphasize this phe-
nomenon, we show in Fig. 5 the variation of the diffrac-
tion efficiencies as a function of the position inside the
crystal at l 5 0.42 mm, in the same conditions as in Fig.
4(a). The normalized depth Z is allowed to vary from 0 to
3; i.e., positions measured along the [001] axis run from 0
to 6 mm. It can be seen that the first-order diffraction
efficiency oscillates, whereas the second-order diffraction
efficiency progressively builds up until Z 5 1.3, at which
point the diffraction efficiency reaches a maximum of 94%
and then decreases.

5. CONCLUSION
A general solution of the classic problem of the diffraction
of an optical plane wave by an acoustic plane wave in an
anisotropic homogeneous medium has been presented.
The acousto-optical interaction can be indifferently of the
isotropic or of the birefringent type. Coupled-wave equa-
tions have been obtained rigorously and cast in an eigen-
value value problem. General formulas have been given
for the diffraction efficiency of all diffraction orders, for
any interaction length and diffraction regime. The
theory includes the Bragg regime, the Raman–Nath re-
gime, and all intermediate situations in the same formu-
lation. The method of solution is both exact and compu-
tationally efficient and can be used to design a particular
acousto-optical device or as the basis of a realistic model
including the finite sizes of the optical and acoustic
beams. Examples were given for acousto-optical diffrac-
tion in paratellurite, TeO2 . The theory will be further
developed by considering the case of multifrequency
acousto-optical diffraction.13–15

APPENDIX A: DERIVATION OF THE
COUPLED-WAVE EQUATIONS
In this appendix we outline the derivation of the coupled-
wave equations (20)–(23). From Eq. (10), we wish to de-
termine all terms in the wave equation, Eq. (1). The time
derivative is

1

c2

]2D

]t2
5 2(

m

vm
2

c2
Dm~zm!dm exp~ jfm!, (A1)
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where we have introduced the notation

fm 5 vmt 2 km – r. (A2)

The time- and space-dependent impermeability tensor
uses Eq. (9):

Fig. 4. Diffraction efficiency for birefringent acousto-optical in-
teraction in TeO2 in the intermediate regime, for ordinary
incident light. The acoustic frequency is V 5 60 MHz, and
the angle of incidence is 89°; the Bragg condition is achieved
in the first order of diffraction for l 5 ;0.82 mm. The interac-
tion length and the acoustic intensity are, respectively, (a)
L 5 2 mm and Iac 5 119,200 kg/s3, (b) L 5 6 mm and
Iac 5 13,000 kg/s3, and (c) L 5 10 mm and Iac 5 4768 kg/s3.
The acoustic intensity is set to yield maximum diffraction effi-
ciency in the first diffraction order at l 5 0.82 mm. Figure la-
bels are for diffraction orders.
h~t, r! 5 h 1
1

2j
Dh$exp@ j~Vt 2 K – r!#

2 exp@2j~Vt 2 K – r!#%. (A3)

We next obtain

h : D~r, t ! 5 (
m

Dm~zm!h : dm exp~ jfm!

1
1

2j (m Dm~zm!Dh : dm exp~ jfm11!

2
1

2j (m Dm~zm!Dh : dm exp~ jfm21!.

(A4)

The Laplacian of this expression reads as

¹2@h : D~r, t !# 5 2(
m

@km
2 Dm~zm!

1 2j~km – um!Dm8 ~zm!#h : dm exp~ jfm!

2
1

2j (m Dm~zm!km11
2 Dh : dm

3 exp~ jfm11! 1
1

2j (m Dm~zm!km21
2

3 Dh : dm exp~ jfm21!. (A5)

In this equation, all terms that are of the second order or
higher with respect to Dh and the derivatives of envelope
functions Dm(zm) have been neglected. This amounts to
assuming Dh ! h and the envelope functions are slowly
varying. On rearrangement of the summation order, it
comes to

Fig. 5. Evolution of the diffraction efficiency for anisotropic
acousto-optical interaction in TeO2 as a function of the position
inside the crystal, for ordinary incident light. The acoustic
frequency is V 5 60 MHz, and the angle of incidence is 89°.
L 5 2 mm and Iac 5 119,200 kg/s3 as in Fig. 4(a). Figure labels
are for diffraction orders.
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¹2@h : D~r, t !# 5 2(
m

@km
2 Dm~zm!

1 2jkmDm8 ~zm!#h : dm exp~ jfm!

2
1

2j (m km
2 Dm21~zm21!Dh : dm21

3 exp~ jfm! 1
1

2j (m km
2 Dm11~zm11!

3 Dh : dm11 exp~ jfm!. (A6)

Proceeding to the second term of the right-hand side of
Eq. (10), we have

¹ • @h : D~r, t !#

5 (
m

@2jDm~zm!~km : h : dm!

1 Dm8 ~zm!~um : h : dm!#exp~ jfm!

2
1

2 (
m

Dm~zm!~km11 : Dh : dm!exp~ jfm11!

1
1

2 (
m

Dm~zm!~km21 : Dh : dm!exp~ jfm21!

(A7)

and then

¹$¹ • @h : D~r, t !#% 5 2(
m

km@Dm~zm!~km : h : dm!

1 2jDm8 ~zm!~lm : h : dm!#

3 exp~ jfm! 1
j

2 (
m

Dm~zm!

3 km11~km11 : Dh : dm!

3 exp~ jfm11! 2
j

2 (
m

Dm~zm!

3 km21~km21 : Dh : dm!

3 exp~ jfm21! (A8)

or, on rearrangement,

¹$¹ • @h : D~r, t !#%

5 2(
m

km@Dm~zm!~km : h : dm!

1 2jDm8 ~zm!~lm : h : dm!#exp~ jfm!

1
j

2 (
m

kmDm21~zm21!~km : Dh : dm21!exp~ jfm!

2
j

2 (
m

kmDm11~zm11!~km : Dh : dm11!exp~ jfm!.

(A9)
All terms have now been expressed, and Eqs. (A1),
(A6), and (A9) can be inserted into Eq. (1). In the result-
ing equation, terms with the same fm dependence must
be grouped and equated to zero, by virtue of the phase-
matching principle. Left multiplying with dm , we see it
further comes to

S vm
2

c2
2

km
2

nm
2 D Dm~zm! 2 2j

km

nm
2

Dm8 ~zm!

5
km

2

2j
@Dnum

m21Dm21~zm21! 2 Dnum
m11Dm11~zm11!#.

(A10)

On rearranging, the coupled-wave equations are of the
form

Dm8 ~zm! 5
j

2
kmS 1 2

vm
2 nm

2

c2km
2 D Dm~zm! 1

1

4
nm

2 km

3 @Dnum
m21Dm21~zm21!

2 Dnum
m11Dm11~zm11!#. (A11)

By use of definition (19), it comes to

D̂m8 ~Z ! 5 ALm /nm
3 Dm8 ~zm! (A12)

and then

D̂m8 ~Z ! 5
j

2
kmLmS 1 2

vm
2 nm

2

c2km
2 D D̂m~Z !

1
1

4
AnmLmkmAnm21

3 L21Dnum
21D̂21~Z !

2
1

4
AnmLmkmAnm11

3 Lm11Dnum
11D̂m11~Z !.

(A13)

As discussed in Section 3, matrix M in Eqs. (20)–(23)
should be Hermitian symmetric to have the physical
property that the computed diffraction efficiencies sum to
unity. Equation (A13) does not possess this property but
can be made to have it by use of the approximation

km ' nm

v

c
, (A14)

but only for the off-diagonal terms of M. This leads to
the final Hermitian symmetric form

D̂m8 ~Z ! 5
j

2
kmLmS 1 2

vm
2 nm

2

c2km
2 D D̂m~Z !

1
1

4

v

c
Anm

3 LmAnm21
3 Lm21Dnum

m21D̂21~Z !

2
1

4

v

c
Anm

3 LmAnm11
3 Lm11Dnum

m11D̂m11~Z !.

(A15)



2314 J. Opt. Soc. Am. A/Vol. 20, No. 12 /December 2003 Vincent Laude
ACKNOWLEDGMENTS
The author acknowledges enlightening discussions with
Pierre Tournois, Daniel Kaplan, and Thomas Oksenhen-
dler.

V. Laude can be reached by e-mail at
vincent.laude@lpmo.edu.

REFERENCES
1. W. R. Klein and B. D. Cook, ‘‘Unified approach to ultrasonic

light diffraction,’’ IEEE Trans. Sonics Ultrason. SU-14,
123–134 (1967).

2. T. C. Poon and A. Korpel, ‘‘Feynman diagram approach to
acousto-optic scattering in the near-Bragg region,’’ J. Opt.
Soc. Am. 71, 1202–1208 (1981).

3. J. Xu and R. Stroud, Acousto-Optic Devices: Principles, De-
sign, and Applications (Wiley, New York, 1992).

4. R. W. Dixon, ‘‘Acoustic diffraction of light in anisotropic me-
dia,’’ IEEE J. Quantum Electron. QE-3, 85–93 (1967).

5. A. Korpel, Acousto-Optics (Marcel Dekker, New York, 1988).
6. M. G. Moharam and T. K. Gaylord, ‘‘Rigorous coupled-wave

analysis of planar-grating diffraction,’’ J. Opt. Soc. Am. 71,
811–818 (1981).

7. M. G. Moharam and T. K. Gaylord, ‘‘Three-dimensional vec-
tor coupled-wave analysis of planar-grating diffraction,’’ J.
Opt. Soc. Am. 73, 1105–1112 (1983).

8. R. A. Mertens, W. Hereman, and J.-P. Ottoy, ‘‘The Raman–
Nath equations revisited. II. Oblique incidence of the
light—Bragg reflection,’’ in Proceedings of Ultrasonics In-
ternational (Elsevier, New York, 1987), pp. 84–89.

9. I. C. Chang, ‘‘Acoustooptic devices and applications,’’ IEEE
Trans. Sonics Ultrason. SU-23, 2–22 (1976).

10. V. Voloshinov, ‘‘Close to collinear acousto-optical interaction
in paratellurite,’’ Opt. Eng. 31, 2089–2094 (1992).

11. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P.
Tournois, ‘‘Arbitrary control of phase and amplitude of ul-
trashort pulses with an acousto-optic programmable disper-
sive filter: application to pulse compression and pulse
shaping,’’ Opt. Lett. 25, 575–577 (2000).

12. N. Uchida and A. Ohmachi, ‘‘Elastic and photoelastic prop-
erties of TeO2 single crystal,’’ J. Appl. Phys. 40, 4692–4695
(1969).

13. D. L. Hecht, ‘‘Multifrequency acoustooptic diffraction,’’
IEEE Trans. Sonics Ultrason. SU-24, 7–18 (1977).

14. Y. Tao and J. Xu, ‘‘Feynman diagram analysis of intermodu-
lation products in Bragg cells,’’ J. Opt. Soc. Am. A 9, 2223–
2230 (1992).

15. F. Verluise, V. Laude, J.-P. Huignard, P. Tournois, and A.
Migus, ‘‘Arbitrary dispersion control of ultrashort optical
pulses using acoustic waves,’’ J. Opt. Soc. Am. B 17, 138–
145 (2000).


