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The imaginary branches of surface acoustic wave slowness curves are needed in many modal or
spectral models that account for waveguides or diffraction based on the angular spectrum of waves
approach. Their determination for an arbitrary anisotropic piezoelectric substrate considering either
free or shorted surface boundary conditions is discussed. In the case of true, i.e., lossless, surface
acoustic wave, the imaginary branches are obtained by a search in the complex transverse slowness
plane as a function of the propagation slowness. As a side result, the parabolic approximation is
compared with the exact solution and it turns out that its quality depends dramatically on the
particular material cut considered. The case of pseudo- or leaky surface acoustic waves is also
analyzed and it is found that difficulties arise in connection with the partial-wave selection rule for
semi-infinite substrates. @004 American Institute of PhysiddDOI: 10.1063/1.1813639

I. INTRODUCTION curves are easily obtained analytically as radical functions.
However, piezoelectric materials are necessarily anisotropic,
The study of waveguides by modal methods is based o&nd the slowness curves cannot, in general, be represented in
expansions on partial waves, which are obtained by solving, form suitable for the analytical expression of their imagi-
for plane waves in the different regions of the wavegditie. nary branches. The usual procedure is then to use an approxi-
This general procedure is closely related to diffraction analymation to the slowness curve known as the parabolic
sis by the angular spectrum of waves appro%ttrhthe €ON- approximation>** from which the imaginary branches can
text of surface acoustic wavgSAW), the prediction of dif- o yained analytically, as summarized in Sec. Il. When the

fractl_on_ has motivated numerous studies, “S_“‘?‘”Y in V'EW_Ofparabolic approximation is not valid, the analysis cannot be
identifying transducer or filter structures minimizing their conducted further

-6 .
adverse effect$:® Waveguiding effects have been used for The purpose of this work is to obtain directly the imagi-

various appllcathns, including filter str_uc_:tures taking advan-nary branches of SAW slowness curves by formulating a
tage of the coupling between waveguides.

Straight-crestedSC) acoustic surface waves have real- plane-wave propagatioq problem WiFh a complex trangver;e
valued components of their wave vector in the plane of th lowness, as explained in Sec. lll. It is expected that this will
surface. This type of surface wave is the most commonl ead to an improvement of the many modal or spectral _meth-
considered. Slowness curves can be obtained for them usirfffiS that have been developed to account for waveguides or
well-established method&* Among partial waves occur- iffraction, with the imaginary branches of slowness curves
ring in waveguide or diffraction analysis, some are of the gcbeing exact instead of the result of the parabolic or another
type, but others have an evanescent, or more generally inh@PProximation. As a side result, the parabolic approximation
mogeneous, dependence along the direction transverse to tWéll be compared with the exact solution.
propagation direction. We refer to them as laterally evanes- In the case of true, i.e., lossless, SAW, it will be shown
cent (LE) surface waves. The wave vectors of LE partialin Sec. IV that the imaginary branches can be obtained by a
waves have one or more complex valued components. Whileearch in the complex transverse slowness plane as a func-
the slowness of SC partial waves is given by slownession of the propagation slowness. This case includes the Ray-
curves, LE partial waves lie on imaginary branches of theséeigh SAW. When trying to extend the method to pseudo- or
slowness curves. leaky SAW (PSAW) in Sec. V, difficulties will arise as re-

In the case of isotropic propagation, the SAW slownessyards the identification of a solution. These difficulties are
curves are circles and the imaginary branches of slownesgofold, with possible problems of partial-waves selection or
the appearance of amplification rather than attenuation of
@Electronic mail: vincent.laude@Ipmo.edu SAW in the effective permittivity computation.
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strained to remain within the waveguide. A proper treatment
of this situation requires the concept of a continuum of radi-
ated modes as was shown in the context of dielectric optical
Waveguidei‘. and of SAW laterally coupled Waveguid%skm
situation B, SC surface waves exist in the central region but
not over the surrounding surface, where there exist LE SAW
instead, i.e., SAW amplitudes are necessarily decreasing
@ (b) away from the central region. This is the waveguiding situ-
FIG. 1 (&) A Simple svmmetric strio SAW e on a b et ation for which elastic energy cannot escape from the central
subétrétéa)andjé; apsiest)éh ofethlg :IOI\/!\)/ness cnvr?/\(/eigfgr ztrc;igﬁtgrizsczsdecsAl\clvreglon' Lateral boundary conditions at the transition from

(solid line) in regionsR, and R, of the waveguide together with the corre- €GIONR, to R, can normally be written and will result in the
sponding imaginary branches for laterally evanescent SAW propagatinfact that only a discrete number of guided modes can %ist.

Ry 478

T
Ry

along axisx, (dashed ling These lateral boundary conditions for SAW are usually based
on a scalar potential theofy:**In region C, only LE surface
[l. DEFINITIONS waves propagate in the central region and the surrounding

A generic example of a waveguiding structure for which surface. Hovyever, no guide_d mode can be constructed from
a partial-wave expansion is useful is depicted in Fig).1 only LE partial waves, as discussed in Ref. 1. In the rest of

This structure is a simple model for a strip waveguide. ThethiS paper, we are interestgq in situation B and in obtaining
symmetric structure is composed of a central regRypsur- 1€ imaginary branches giving the complex-valugdas a
rounded by two semi-infinite regiong,. In both regions, the function of the real-valued,.

propagation of surface acoustic waves is assumed nondisper- If propagation is isotropic n thg pIane. of the §urface,
sive but anisotropic. The particular slowness curves for Séhen the SAW slowness curve is a circle with equation
surface waves in regior®, andR, are sketched in Fig.(I).

It is assumed that the slowness is larger in redirhan in
region R, since otherwise the structure would not guide
waves. The partial waves in each homogeneous region a
taken to be harmonic plane-wave solutions of the form

s’+s2=%, (3)

hereSis a constant slowness. This situation is, for instance,
representative ofC-axis-oriented hexagonal piezoelectric
media, such as aluminum nitride. 3f<S, i.e., for SC sur-
fOxp)exdjo(t - six; = S3%g) ], (1)  face waves, thes, can be expressed as a functionspfas
ofhe radical +/S-s,%, which defines two real branches of the
slowness curve. I5,>S, i.e., for LE surface waves, then
components of the slowness vectors. Axjss the propaga- S3(S1)= ij.\’yslz‘sz becomes purely imaginary, which defines
tion direction, axisx, enters the substrate, and axisis the WO imaginary branches of the slowness. curve. Tr_le choice of
transverse direction. The dependencexgris not explicitly ~ the imaginary branch depends on the sigixpénd is made
specified at this point, but it should be kept in mind that Eq.S° that _the partial wave is transversally evanescent but never
(1) represents a surface acoustic wave, so ftig) ex- INcreasing. . . o
presses the evanescent character of the amplitudes of the N the general case of anisotropic propagation in the
wave far from the surface. This dependence will be obtaineflane of the surface, it is not, in general, possible to obtain a
from the surface boundary conditions. In a modal descriptioffliréct exact relation betweesy ands; such as Eq(3). The
of the waveguide, the component of the slowness Vectop_arabohc appr_oxmatlon is often uged with an_|sotrc_)p|c matg-
along the waveguide axisy,, is a real valued parameter _nals becausg it Ieads. to s_uch_ a simple relationship. Despite
specifying the phase velocity of the particular mode for alts name, this a_pproxmatlon_ls that the slowness curve for
given angular frequency. For the geometry of Fig.(&), the ~ Small s is an ellipse of equation
phase-matching condition imposes tlgtbe the same in
regionsR, and Ry,. s3 in each region is then obtained by

satisfying the dispersion relation for SAW. The slowness . )
curves for SC partial waves can be obtained by setting wherel is a constant parameter measuring the local depar-

ture of the slowness curve from a ciréfeS is again a con-

wherew is the angular frequency. The space coordinates
an observation point argy, X,, X3), and(s,, s,, Sp) are the

s2+(1+)s?=S, (4)

sy =s(g)cody), stant slowness. The approximation of E4) is only valid
_ around the poing;=Sands;=0. We assume for simplicity in

S3=s(y)sin(y), (2)  the following derivation that 1¥ >0. The two real branches
wherey is the propagation angle in the plane of the surface©f the slowness curve are given similarly to the isotropic case
and by solving for the slowness modulsias a function of. y
In the (s;, $3) plane of Fig. 1b) there appears three possible SR
situations labeled A, B, and C according to whether there si(s) = + VS -5 (5)
exist or not SC surface waves in regidRsandR, ass; is ToN1+T

varied. In situation A, there exist, SC surface waves in both
the central region and the surrounding surface, and truwhile the two imaginary branches for propagation along the
waveguiding is not possible since elastic energy is not conx; axis are given by
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FIG. 2. Real(solid line) and imaginarydotted ling branches in the frame
of the parabolic approximation with=3. (a) Propagation along the, axis
and(b) along axisx; which is obtained by a =/four rotation of axisx; in
the plane of the surface.
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- T sin(2
(g = Sin(2¢)

= . 9
2V1+TV1+T cog ¢ ®

Before the branch point, i.e., f@& <(s))g, the real branches
are obtained as

~Tsin2g)s}/2 + V1 +T\(s])g2 - ()2
1+T cos ¢

Sy(sy) = ., (10

while after the branch point, i.e., fef > (s;)g, the imaginary

branches are given by

~ T sin2y)s}/2 £ V1 +TV(s)? - (s})g2
1+T cod ¢ '

sy(sp) = (12)

The real and imaginary branches of E¢k0) and (11) are
displayed in Fig. gb) for I'=3 and a rotation angl¢=/4.

By the way, it is apparent that the imaginary branches can
include a real part whenevsi(i) on the slowness curve is
not maximal forg=0, that is when the branch point is not on
axis.

[ll. METHOD OF SOLUTION

We next describe a method to obtain the imaginary
branches of SAW slowness curves that is valid for arbitrary
piezoelectric substrates without resorting to an approxima-
tion. The method is an extrapolation of the usual procedures
to find SAW slowness curves.

We start by summarizing the well-known partial-waves
theory for piezoelectric materiajrgPropagation of plane sur-
face acoustic waves with angular frequeneys considered
in the (x4, Xg) plane, with slownesses ands;. Assuming a
plane-wave propagation, the distribution of the electrome-
chanical fields in a piezoelectric material is fully

Figure 2a) displays the real and imaginary branches of Eqsdescribe®!’ using the eight-component state vector
(5) and(6) for I'=3. We emphasize that there is one funda-h=(u;,u,,us, ¢, T»1, T>s, T3, D), Where theu; are the me-
mental difference between the real and imaginary brancheghanical displacementgis the electrical potentiall; is the
of slowness curves. Real branches are essentially a remagtress tensor, ari, is the electrical displacement normal to

ping of the parametric slowness curve of EB); if the ref-
erence framéx,, x3) of the surface is rotated by an angle

the propagation surface. This state vector is obtained as a
superposition of eight partial waves, characterized by their

then the real branches are readily obtained by rotating theigenvaluess,(n) and their associated eigenvectors, for

slowness curve by an angley-in the (s;, s;) plane. The

n=1,...,8. The eigenvalues(n) only depend on the mate-

imaginary branches, however, are dependent on the propaggal constants and on the slownessgands,. Denoting byF
tion axisx;. In order to show explicitly this dependence, let the 8x 8 matrix of the vertically arranged eigenvectors, this

us consider the propagation along axjsvhich is the image
of axisx, in a rotation of angley. Defining(sy, s3) as the
rotated slowness axes, the ellipse of E).becomes

(1+T sir? )(s;)?+ (1 +T cog )(s})?

+ T sin(2y)s;sy = S (7)

The branch point between the real and imaginary branches

given by

. _ |1+ cody
(sp)e= 14T S,

8)

superposition reads

h(Xy,%2,%3) = FA(Xp)a exdjo(t — $1X; — S3X3) ], (12

where the dependence of the fields along axis contained
in the 8x 8 diagonal matrixA(x,) whose elements are

Ann(Xp) = exl -~ jwsy(n)Xp]. (13

a is the vector of the eight amplitudes of the partial waves,
whose values are obtained when the boundary conditions are
gpecified. To account for the permittivity of vacuum above
the substrate, the eight line of matkxis modified according

t018
F(8,i) — F(8,) +jeoVs, 2 +s,°F(4,i),i=1,...,8. (14

The matrixF of eigenvectors can also be written as
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(15

SIS

8, (10 s/im)

U and7 are 3X 8 matrices containing, respectively, the dis-
placements and the normal constraints parts of the eigenvec- - .=
tors.® andD are 1X 8 matrices containing, respectively, the 25 255 26 265 2.7 275 2.8 2.85 29
potential and the normal electrical displacement parts of the 81 (10 s/m)

eigenvectors. . . L FIG. 4. Slowness curveghick solid ling and their imaginary branches for
Bec_ause we are CF)nSIdel’Ing a Sem"mf'r_“te SubStratﬁropagation along axig, (thick dashed lingfor (YX) lithium niobate and
supporting the propagation of SAW, not all partial waves areor both free(F) and shortedS) boundary conditions. The parabolic ap-

acceptable solutions. When bo#) and s; are real, the proximation(thin dashed lingis almost indistinguishable from the real and
partial-wave selection rule is well establisH@dPartial ~™aginary branches.

waves for whichs, is real are acceptable if the component

along axisx, of their Poynting vector enters the substrate;perposition of Eq.(12), it is readily found that the free
otherwise, ifs, is complex, only if its imaginary part is posi- boundary conditions are satisfied only if the following 4
tive can the partial wave be selected. Acceptable partiak 4 determinant vanishes:

waves are referred to as reflected partial waves in analogy to

the problem of reflection of acoustic waves on the surface of A (s s;) =
the substrate. By opposition, nonacceptable partial waves are

termed transmitted. It turns out that the selection rule alway
results in four reflectedselectegl and four transmittedre-
jected partial waves. The issue of partial-wave selection
whens; is considered complex to account for attenuation is _
still a subject of controversy in the context of PSANThis As(s15) =
case, however, will not be considered hegds here allowed )
to become complex to describe transversally inhomogeneod8 EGs.(16) and (17), the dependence of the determinants
waves, not attenuated waves. Nevertheless, it should be vefPON the surface slownesses has been explicitly indicated.
fied that a meaningful partial-wave selection can be per:rhe effective permittivity is related to these determinants

formed. This discussion is deferred to Sec. V: we will as-through

: (16)

%onversely, the shorted boundary conditions are satisfied
only if the following 4X 4 determinant vanishes:

T‘ 17
ol 17

sume in the rest of this section that four reflected partial Ap(s1,S3)

waves have been selected and that the m&trand its sub- €eft(S1,S3) = slAdsusy) (18)
matriceslt, 7, ®, and D have been restricted to the corre- 115 153

sponding four eigenvectors. Finding the SC SAW slowness curves for the free and

Surface wave solutions must satisfy the surface boundthe shorted boundary conditions then amounts to locating the
ary conditions. As is usual, we consider either free or shortederos of the determinantdg and As. More precisely, the
boundary conditions. In both cases, the normal mechanicadolar coordinates of Eq2) are used, and for every value of
constraints must vanish. In the case of the free surface, thg, the slowness modulux ) is adjusted so that the deter-
normal electrical displacement is continuous across the suminant vanishes. Finding the imaginary branches for LE
face, while in the case of the shorted surface, the potentidbAW is a relatively similar procedure. For every real value
vanishes on the surface. Using these definitions with the swf s; above the branch poirjdefined by the angles that

maximizess(i)cog )], a zero of the determinant is searched

06 &
04 15
Py 14§
E 02}
E 02 = sl
12 0 % .
5 02 : L o
0.4 ® 05
0.6 ‘ . . . ) 4L
31 3.2 3.14 316 3.18 3.2 3.22 3.24 “ i
84 (107 sim) 235 24 245 2.5 255 2.6 2.65 2.7 2.75

$4 (10 s/m)
FIG. 3. Slowness curveashick solid ling and their imaginary branches for
propagation along axig; (thick dashed lingfor (YXI)/36 quartz and for  FIG. 5. Slowness curvgshick solid line) and their imaginary branches for
both free(F) and shortedS) boundary conditions. The parabolic approxi- propagation along axis; (thick dashed lingfor (YXI)/128 lithium niobate,
mation (thin dashed lingis almost indistinguishable from the real and and for both freg(F) and shortedS) boundary conditions. The parabolic
imaginary branches. approximation(thin dashed lingis also shown.
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TABLE |. Parameters for the parabolic approximation. LN: lithium niobate;
BC: boundary condition. 04
! 4 = 02
Material cut BC S(10%*s/m) r g
(YXI)/36 quartz free 3.1710 0.370 72 0
shorted 3.1730 0.369 @ 02
(YX) LN free 2.6897 -0.232
shorted 2.7092 -0.235 04}
(YX1)/128 LN free 2.5129 -0.339 . . - .
shorted 2.5831 -0.343 286 288 20 292 294
(YZ) LN free 2.8674 -0.798 81 (107 s/m)
shorted 2.9317 -0.513

FIG. 7. Slowness curveghick solid ling and their imaginary branches for
propagation along axis, (thick dashed lingfor (YZ) lithium niobate and
for both free(F) and shortedS) boundary conditions. The parabolic ap-

for by varyings; in the complex plane. Since the transition proximation(thin dashed lingis also shown.

from the real branches to the imaginary branches must be

continuous, the branch point is a natural starting point for theyroximated by a rotated ellipse; hence, the parabolic approxi-
algorithm. Because the determinants of EG®) and (17)  mation as defined in Sec. Il cannot be employed in this case.
are analytic functions of the complex slownegsas long as Figure 7 shows the slowness curve and its imaginary
the partial-wave selection rule is continuous, efficient algohranches for propagation along axisfor (YZ) LN. Though
rithms can be used for finding the roots in the complex planethe slowness curves are symmetrical with respect toxthe
Examples of imaginary branches are given in the next secaxis, the imaginary branches show a peculiar behavior; they

tion. first exhibit a concavity as predicted by the parabolic ap-
proximation, but are then curving back towards decreasing
IV. RESULTS FOR SURFACE ACOUSTIC WAVES s;. As a result, there is a range sf values for which both

Figures 3-5 show the slowness curves and their imagigtralght-crested and laterally evanescent SAW solutions can

nary branches for propagation along axis for (YXI)/36 exist simultaneously.
quartz,(XY) lithium niobate(LN), and (YXI)/128 LN, re-
spectively. Material cuts are given according to the IEEEV. CASE OF PSEUDO-SURFACE ACOUSTIC WAVES

1949 standard. For Figs. 3-5, propagation characteristics are

symmetrical With respect to thml aXiS’_SO 'Fhat_the branch ation of PSAW by complex values sf, with s;=0, can lead
point is on axIS. T_he parabolic apprOX|_mat|(_)n Is also show% a discontinuity in the partial-wave selection rule. It is then
for comparison, with the parameters given in Table I. Thes‘?egitimate to wonder whether this is also the case wéés
parameters have been estimated directly from the Slowne%ﬁlowed to become complex, with real, to generate imagi-
curve. It can be observed that the parabolic approximation iﬁary branches of slowness c,urves as ’in the present work. We
accurat(: fOLb?thXI /36 q:Jlartz and);Y};)l(_IN/fg/grL?\llarge will only discuss this problem in the context of slowness
rang; 'S, 6u hover atlhsmal er range fev'x|) dits i " . curves that are such that the branch point between the real
b |ﬁuref shows ? som:ness cqrve]:c an X\I(f /'Eazgzmaryand imaginary branches of SAW slowness curves lies on
ranches for propagation along axig for (XY1) "~ axis. This is the standard case ‘frotated cuts of LT and
lithiurn ta_ntglate(LT). For this ma‘e”?' cut, propagation LN. As argued above, in this case, purely imaginary branches
chfaractenstlcs are not symm_etncal with respect to Xpe are obtained for propagation along axis We then find it
axis, so that the branch point is not on theaxis. It can be useful to explore thél 5 plane, defined as the,, s,) plane
observed that the imaginary branches possess a nonzero r h s, purely real ands, purély imaginary T\;vo tests a,re

1 .

part, as in the case of the rotated ellipse of Figh)2A performed for each point in this plane. First, it is verified that

further inspection, however, indicates that it cannot be ap; meaningful partial-wave selection can be performed. We

As discussed in Ref. 20, the representation of the attenu-

/4

[

\
\\

85 (10°* s/m)
(=]
|
%
i
imis,] (10 s/m)

4 . 1 2 3 4 5
29 295 3 305 31 315 32 Rels;] (10* s/m)
84 (107 sim)

FIG. 8. Locus of initially allowed(in white) vs nonallowed(in black) LE
FIG. 6. Slowness curveashick solid ling and their imaginary branches for SAW solutions in thdl,; plane for(YXI)/36 lithium tantalate. The imagi-
propagation along axis; (thick dashed lingfor (XYt)/112.2 lithium tanta-  nary branches of the slowness curve for Rayleigh-SAW propagating along
late and for both freéF) and shortedS) boundary conditions. axis x; are also shown.
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3
- 2 -
E E
R @
v 4 S
z 0 z
B \\ =
@ b,
E E

-3

1 2 3 4 5 5
Rels,] (1 0 s/m) Refs] (1 0* s/im)
FIG. 9. Locus of initially allowed(in white) vs nonallowed(in black) LE FIG. 11. Locus of initially allowedin white) vs nonallowedin black) LE

SAW solutions in thell;; plane for (YXI)/36 quartz. The imaginary SAW solutions in thdl,; plane for(YXI)/128 lithium niobate. The imagi-
branches of the SAW slowness curve for propagation alongxaxse also nary branches of the SAW slowness curve for propagation alongxazise
shown(they appear also in Fig.)3 also shown(they appear also in Fig.)5

observe numerically that there is a possibility that the partiaPranches of the PSAW for free and shorted boundary condi-
waves be separated in a group of three reflected and a grod§gns, originating from thes, axis ats,=2.4 10*s/m ap-
of five transmitted partial waves, or the converse situationProximately, aimost immediately encounter the initially not
depending on the sign of the imaginary partsgf A simple allowed region ags;| increases from zero. The method de-
example of a slowness curve exhibiting this property is disScribed in Sec. lil'is thus unable to generate these imaginary
cussed analytically in the Appendix. As explained in Sec. 11, branches. The situation has been verified to be similar with
the normal situation is the equipartition of reflected andOthers common PSAW cuts such @sx1)/42 LT, (YXI)/41
transmitted partial waves. Furthermore, the determinants d¢N, and (YXI)/64 LN.
surface boundary conditions, Eq&6) and(17), require four As a further numerical verification, we have plotted loci
partial waves exactly. If this is not the case, the theory Ioresimilar to that of Fig. 8 for the material cuts of Sec. IV. These
sented in this paper is unable to yield a solution. Second, th@'® shown in Figs. 9-12 fofYXl)/36 quartz,(YX) LN,
effective permittivity, as defined by Eq18), is computed (YXI)/128 LN, and(YZ) LN, respectively. The imaginary
and it is verified that its imaginary part is either negative orbranches of SAW slowness curves with free and shorted sur-
zero. When the imaginary part of the effective permittivity is face boundary conditions, appearing in Figs. 3-5 and 7, are
positive, this is an indication that amplification of SAW is @IS0 shown on the graphs. As f0fX1)/36 LT, the imaginary
taking place instead of attenuation, which is not acceptabl@ranches of the SAW slowness curves are seen to be entirely
for a meaningful solution. In the following, we will refer as inside the respective. initially allowed regiqns. In the partic.u—
initially allowed LE SAW solutions to those point of tHé;; 1@ case ofYZ) LN, Fig. 12, the abrupt endings of the imagi-
plane for which both tests succeed. Conversely, for initially"ary branches occur when the initially nonallowed region is
not allowed LE SAW solutions, at least one of the tests failséached.

Figure 8 displays the locus of initially allowéah white)
and not allowed(in black LE SAW solutions in thell;3 ) cASE OF A FINITE-THICKNESS METALLIZATION
plane for(YXI)/36 LT. Also, though this is hardly apparent
on the figure, points on axis; are always initially allowed. The previous discussion has been limited to a semi-
The pseudo- or leaky SAW @ X1)/36 LT is widely used for  infinite piezoelectric substrate with either free or shorted
radio-frequency SAW devices. There is also a Rayleigh SAWboundary conditions. In this section, the case of a finite
which is seldom used in practice because of its small electhickness metallization is considered. The algorithms of Sec.
tromechanical coupling coefficient. The imaginary branchedl! are straightforwardly generalized by replacing the surface
of the slowness curves of the Rayleigh SAW for propagatioreffective permittivity of Eq.(18) by the interface effective
along axisx,, also shown in Fig. 8, are seen to be entirelypermittivity'®?! relating surface charges to the potential at
within the initially allowed region. In contrast, the imaginary the interface between piezoelectric and metal. The slowness

£ E
£ K
1 ’9
£ &
E E
4 5
Rels,] (10" s/m) Re[s,] (10 s/m)
FIG. 10. Locus of initially allowedin white) vs nonallowedin black) LE FIG. 12. Locus of initially allowedin white) vs nonallowedin black) LE

SAW solutions in thell,; plane for(YX) lithium niobate. The imaginary =~ SAW solutions in thell,; plane for(YZ) lithium niobate. The imaginary
branches of the SAW slowness curve for propagation alongx@xse also  branches of the SAW slowness curve for propagation alongx@xase also
shown(they appear also in Fig.)4 shown(they appear also in Fig.).7
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8 APPENDIX: PARTIAL-WAVE SELECTION IN THE 1II,3

I (10° sim) T — PLANE
08 In this appendix, the partial-wave selection rule problem
oe arising in Sec. V is shown to exist on one particular example.
02 We consider the slowness surface for one of the four pairs of

partial waves. For real-valued slownesses, this slowness sur-
face is for bulk acoustic wavés We take its equation in the

100 355 < 732 form
h (/) 3.16 84 (107 s/m)

3.28

S48 57+ 2155 =F, (A1)

FIG. 13. Imaginary branches of the SAW slowness curvegYofl)/36 -
quartz with a finite aluminum layer as a function of the frequency-thicknessVhereS and » are constants. This is an homogeneous poly-

productfh. nomial of degree 2 in the variablsg, s,, ands; that would
represent a sphere but for the tems,s;, where v can be

curves and their imaginary branches are now dispersive, i.eSonsidered arbitrarily small. The problem is to obtsiwith
they depend explicitly on the frequency-thickness producf:r and ss in the II;3 plane defined in Sec. V. Setting
fh, whereh is the metal layer thickness aridhe frequency. Ss=€ilSql, with e=+1, the solution of this second degree
It is worthwhile noting that there is no partial-wave selection€quation is

r_ule proble_m in_the metal since_ all partial waves are indis- S, = - €j1]s \77 if 7=0, (A2)
tinctly retained in the computation. However, the problems
encountered with pseudo-surface acoustic waves in Sec. V
still remain, though they are connected with the partial-wave
selection rule inside the substrate only. Figure 13 displays theith

s=-eis| |7 if <0, (A3)

imaginary branches of the slowness curves (Kl )/36 _ 2 N |2

quartz with a finite aluminum layer, as a function of the =S -5+ (1=l (Ad)

frequency-thickness produéh. Itis clear that in the casg= 0, the two possible values sf
have the same imaginary part, and both will be classified

VII. CONCLUSION simultaneously as reflected or transmitted dependings,on

. ) ] i.e., on the sign of the imaginary part ef. When <0,
We have obtained the imaginary branches of SAW slow-pposite signs of the imaginary parts are recovered as soon
ness curves by formulating a plane-wave propagation probsg| =2 je., if
lem with a complex transverse slowness. In the case of true, ) o
i.e., lossless, SAW, it has been shown that the imaginary Si ~[Ss*=S". (A5)

branches can be obtained by a search in the complex rang-can pe noticed that this hyperbola shape is consistent with
verse slowness plane as a function of the propagation slowpe nymerical examples displayed in Figs. 8-12 to describe

ness. For slowness curves such that the slowness in the qfg shape of the curve limiting the rightmost part of the locus
rection of propagation is maximal on axis, it further tums out initially allowed LE SAW solutions.

that the imaginary branches involve only purely imaginary
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