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The imaginary branches of surface acoustic wave slowness curves are needed in many modal or
spectral models that account for waveguides or diffraction based on the angular spectrum of waves
approach. Their determination for an arbitrary anisotropic piezoelectric substrate considering either
free or shorted surface boundary conditions is discussed. In the case of true, i.e., lossless, surface
acoustic wave, the imaginary branches are obtained by a search in the complex transverse slowness
plane as a function of the propagation slowness. As a side result, the parabolic approximation is
compared with the exact solution and it turns out that its quality depends dramatically on the
particular material cut considered. The case of pseudo- or leaky surface acoustic waves is also
analyzed and it is found that difficulties arise in connection with the partial-wave selection rule for
semi-infinite substrates. ©2004 American Institute of Physics. [DOI: 10.1063/1.1813639]

I. INTRODUCTION

The study of waveguides by modal methods is based on
expansions on partial waves, which are obtained by solving
for plane waves in the different regions of the waveguide.1,2

This general procedure is closely related to diffraction analy-
sis by the angular spectrum of waves approach.3 In the con-
text of surface acoustic waves(SAW), the prediction of dif-
fraction has motivated numerous studies, usually in view of
identifying transducer or filter structures minimizing their
adverse effects.4–6 Waveguiding effects have been used for
various applications, including filter structures taking advan-
tage of the coupling between waveguides.7–9

Straight-crested(SC) acoustic surface waves have real-
valued components of their wave vector in the plane of the
surface. This type of surface wave is the most commonly
considered. Slowness curves can be obtained for them using
well-established methods.10,11 Among partial waves occur-
ring in waveguide or diffraction analysis, some are of the SC
type, but others have an evanescent, or more generally inho-
mogeneous, dependence along the direction transverse to the
propagation direction. We refer to them as laterally evanes-
cent (LE) surface waves. The wave vectors of LE partial
waves have one or more complex valued components. While
the slowness of SC partial waves is given by slowness
curves, LE partial waves lie on imaginary branches of these
slowness curves.

In the case of isotropic propagation, the SAW slowness
curves are circles and the imaginary branches of slowness

curves are easily obtained analytically as radical functions.
However, piezoelectric materials are necessarily anisotropic,
and the slowness curves cannot, in general, be represented in
a form suitable for the analytical expression of their imagi-
nary branches. The usual procedure is then to use an approxi-
mation to the slowness curve known as the parabolic
approximation,12,13 from which the imaginary branches can
be obtained analytically, as summarized in Sec. II. When the
parabolic approximation is not valid, the analysis cannot be
conducted further.

The purpose of this work is to obtain directly the imagi-
nary branches of SAW slowness curves by formulating a
plane-wave propagation problem with a complex transverse
slowness, as explained in Sec. III. It is expected that this will
lead to an improvement of the many modal or spectral meth-
ods that have been developed to account for waveguides or
diffraction, with the imaginary branches of slowness curves
being exact instead of the result of the parabolic or another
approximation. As a side result, the parabolic approximation
will be compared with the exact solution.

In the case of true, i.e., lossless, SAW, it will be shown
in Sec. IV that the imaginary branches can be obtained by a
search in the complex transverse slowness plane as a func-
tion of the propagation slowness. This case includes the Ray-
leigh SAW. When trying to extend the method to pseudo- or
leaky SAW (PSAW) in Sec. V, difficulties will arise as re-
gards the identification of a solution. These difficulties are
twofold, with possible problems of partial-waves selection or
the appearance of amplification rather than attenuation of
SAW in the effective permittivity computation.a)Electronic mail: vincent.laude@lpmo.edu
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II. DEFINITIONS

A generic example of a waveguiding structure for which
a partial-wave expansion is useful is depicted in Fig. 1(a).
This structure is a simple model for a strip waveguide. The
symmetric structure is composed of a central region,Ra, sur-
rounded by two semi-infinite regions,Rb. In both regions, the
propagation of surface acoustic waves is assumed nondisper-
sive but anisotropic. The particular slowness curves for SC
surface waves in regionsRa andRb are sketched in Fig. 1(b).
It is assumed that the slowness is larger in regionRa than in
region Rb since otherwise the structure would not guide
waves. The partial waves in each homogeneous region are
taken to be harmonic plane-wave solutions of the form

fsx2dexpf jvst − s1x1 − s3x3dg, s1d

wherev is the angular frequency. The space coordinates of
an observation point are(x1, x2, x3), and (s1, s2, s3) are the
components of the slowness vectors. Axisx1 is the propaga-
tion direction, axisx2 enters the substrate, and axisx3 is the
transverse direction. The dependence onx2 is not explicitly
specified at this point, but it should be kept in mind that Eq.
(1) represents a surface acoustic wave, so thatfsx2d ex-
presses the evanescent character of the amplitudes of the
wave far from the surface. This dependence will be obtained
from the surface boundary conditions. In a modal description
of the waveguide, the component of the slowness vector
along the waveguide axis,s1, is a real valued parameter
specifying the phase velocity of the particular mode for a
given angular frequencyv. For the geometry of Fig. 1(a), the
phase-matching condition imposes thats1 be the same in
regionsRa and Rb. s3 in each region is then obtained by
satisfying the dispersion relation for SAW. The slowness
curves for SC partial waves can be obtained by setting

s1 = sscdcosscd,

s3 = sscdsinscd, s2d

wherec is the propagation angle in the plane of the surface,
and by solving for the slowness moduluss as a function ofc.
In the (s1, s3) plane of Fig. 1(b) there appears three possible
situations labeled A, B, and C according to whether there
exist or not SC surface waves in regionsRa andRb ass1 is
varied. In situation A, there exist, SC surface waves in both
the central region and the surrounding surface, and true
waveguiding is not possible since elastic energy is not con-

strained to remain within the waveguide. A proper treatment
of this situation requires the concept of a continuum of radi-
ated modes as was shown in the context of dielectric optical
waveguides2 and of SAW laterally coupled waveguides.8 In
situation B, SC surface waves exist in the central region but
not over the surrounding surface, where there exist LE SAW
instead, i.e., SAW amplitudes are necessarily decreasing
away from the central region. This is the waveguiding situ-
ation for which elastic energy cannot escape from the central
region. Lateral boundary conditions at the transition from
regionRa to Rb can normally be written and will result in the
fact that only a discrete number of guided modes can exist.1,2

These lateral boundary conditions for SAW are usually based
on a scalar potential theory.8,9,14In region C, only LE surface
waves propagate in the central region and the surrounding
surface. However, no guided mode can be constructed from
only LE partial waves, as discussed in Ref. 1. In the rest of
this paper, we are interested in situation B and in obtaining
the imaginary branches giving the complex-valueds3 as a
function of the real-valueds1.

If propagation is isotropic in the plane of the surface,
then the SAW slowness curve is a circle with equation

s1
2 + s3

2 = S2, s3d

whereS is a constant slowness. This situation is, for instance,
representative ofC-axis-oriented hexagonal piezoelectric
media, such as aluminum nitride. Ifs1øS, i.e., for SC sur-
face waves, thens3 can be expressed as a function ofs1 as
the radical ±ÎS2−s1

2, which defines two real branches of the
slowness curve. Ifs1.S, i.e., for LE surface waves, then
s3ss1d= ± jÎs1

2−S2 becomes purely imaginary, which defines
two imaginary branches of the slowness curve. The choice of
the imaginary branch depends on the sign ofx3 and is made
so that the partial wave is transversally evanescent but never
increasing.

In the general case of anisotropic propagation in the
plane of the surface, it is not, in general, possible to obtain a
direct exact relation betweens1 ands3 such as Eq.(3). The
parabolic approximation is often used with anisotropic mate-
rials because it leads to such a simple relationship. Despite
its name, this approximation is that the slowness curve for
small s3 is an ellipse of equation

s1
2 + s1 + Gds3

2 = S2, s4d

whereG is a constant parameter measuring the local depar-
ture of the slowness curve from a circle.15 S is again a con-
stant slowness. The approximation of Eq.(4) is only valid
around the points1=Sands3=0. We assume for simplicity in
the following derivation that 1+G.0. The two real branches
of the slowness curve are given similarly to the isotropic case
by

s3ss1d = ±
ÎS2 − s1

2

Î1 + G
, s5d

while the two imaginary branches for propagation along the
x1 axis are given by

FIG. 1. (a) A simple symmetric strip SAW waveguide on a piezoelectric
substrate and(b) a sketch of the slowness curves for straight-crested SAW
(solid line) in regionsRa andRb of the waveguide together with the corre-
sponding imaginary branches for laterally evanescent SAW propagating
along axisx1 (dashed line).
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s3ss1d = ± j
Îs1

2 − S2

Î1 + G
. s6d

Figure 2(a) displays the real and imaginary branches of Eqs.
(5) and (6) for G=3. We emphasize that there is one funda-
mental difference between the real and imaginary branches
of slowness curves. Real branches are essentially a remap-
ping of the parametric slowness curve of Eq.(2); if the ref-
erence frame(x1, x3) of the surface is rotated by an anglec,
then the real branches are readily obtained by rotating the
slowness curve by an angle −c in the (s1, s3) plane. The
imaginary branches, however, are dependent on the propaga-
tion axisx1. In order to show explicitly this dependence, let
us consider the propagation along axisx18 which is the image
of axisx1 in a rotation of anglec. Defining(s18, s38) as the −c
rotated slowness axes, the ellipse of Eq.(4) becomes

s1 + G sin2 cdss18d
2 + s1 + G cos2 cdss38d

2

+ G sins2cds18s38 = S2. s7d

The branch point between the real and imaginary branches is
given by

ss18dB =Î1 + G cos2 c

1 + G
S, s8d

ss38dB =
− G sins2cd

2Î1 + GÎ1 + G cos2 c
S. s9d

Before the branch point, i.e., fors1, ss18dB, the real branches
are obtained as

s38ss18d =
− G sins2cds18/2 ± Î1 + GÎss18dB

2 − ss18d
2

1 + G cos2 c
, s10d

while after the branch point, i.e., fors1. ss18dB, the imaginary
branches are given by

s38ss18d =
− G sins2cds18/2 ± jÎ1 + GÎss18d

2 − ss18dB
2

1 + G cos2 c
. s11d

The real and imaginary branches of Eqs.(10) and (11) are
displayed in Fig. 2(b) for G=3 and a rotation anglec=p /4.
By the way, it is apparent that the imaginary branches can
include a real part whenevers1scd on the slowness curve is
not maximal forc=0, that is when the branch point is not on
axis.

III. METHOD OF SOLUTION

We next describe a method to obtain the imaginary
branches of SAW slowness curves that is valid for arbitrary
piezoelectric substrates without resorting to an approxima-
tion. The method is an extrapolation of the usual procedures
to find SAW slowness curves.

We start by summarizing the well-known partial-waves
theory for piezoelectric materials.16 Propagation of plane sur-
face acoustic waves with angular frequencyv is considered
in the (x1, x3) plane, with slownessess1 ands3. Assuming a
plane-wave propagation, the distribution of the electrome-
chanical fields in a piezoelectric material is fully
described16,17 using the eight-component state vector
h=su1,u2,u3,f ,T21,T22,T23,D2dt, where theui are the me-
chanical displacements,f is the electrical potential,Tij is the
stress tensor, andD2 is the electrical displacement normal to
the propagation surface. This state vector is obtained as a
superposition of eight partial waves, characterized by their
eigenvaluess2snd and their associated eigenvectors, for
n=1, . . . ,8. The eigenvaluess2snd only depend on the mate-
rial constants and on the slownessess1 ands3. Denoting byF
the 838 matrix of the vertically arranged eigenvectors, this
superposition reads

hsx1,x2,x3d = FDsx2da expf jvst − s1x1 − s3x3dg, s12d

where the dependence of the fields along axisx2 is contained
in the 838 diagonal matrixDsx2d whose elements are

Dnnsx2d = expf− jvs2sndx2g. s13d

a is the vector of the eight amplitudes of the partial waves,
whose values are obtained when the boundary conditions are
specified. To account for the permittivity of vacuum above
the substrate, the eight line of matrixF is modified according
to18

Fs8,id ← Fs8,id + je0
Îs1

2 + s3
2Fs4,id,i = 1, . . . ,8. s14d

The matrixF of eigenvectors can also be written as

FIG. 2. Real(solid line) and imaginary(dotted line) branches in the frame
of the parabolic approximation withG=3. (a) Propagation along thex1 axis
and (b) along axisx18 which is obtained by a −p / four rotation of axisx1 in
the plane of the surface.
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F =1
U
F

T
D
2 , s15d

U andT are 338 matrices containing, respectively, the dis-
placements and the normal constraints parts of the eigenvec-
tors.F andD are 138 matrices containing, respectively, the
potential and the normal electrical displacement parts of the
eigenvectors.

Because we are considering a semi-infinite substrate
supporting the propagation of SAW, not all partial waves are
acceptable solutions. When boths1 and s3 are real, the
partial-wave selection rule is well established.19 Partial
waves for whichs2 is real are acceptable if the component
along axisx2 of their Poynting vector enters the substrate;
otherwise, ifs2 is complex, only if its imaginary part is posi-
tive can the partial wave be selected. Acceptable partial
waves are referred to as reflected partial waves in analogy to
the problem of reflection of acoustic waves on the surface of
the substrate. By opposition, nonacceptable partial waves are
termed transmitted. It turns out that the selection rule always
results in four reflected(selected) and four transmitted(re-
jected) partial waves. The issue of partial-wave selection
whens1 is considered complex to account for attenuation is
still a subject of controversy in the context of PSAW.20 This
case, however, will not be considered here.s3 is here allowed
to become complex to describe transversally inhomogeneous
waves, not attenuated waves. Nevertheless, it should be veri-
fied that a meaningful partial-wave selection can be per-
formed. This discussion is deferred to Sec. V; we will as-
sume in the rest of this section that four reflected partial
waves have been selected and that the matrixF and its sub-
matricesU, T, F, andD have been restricted to the corre-
sponding four eigenvectors.

Surface wave solutions must satisfy the surface bound-
ary conditions. As is usual, we consider either free or shorted
boundary conditions. In both cases, the normal mechanical
constraints must vanish. In the case of the free surface, the
normal electrical displacement is continuous across the sur-
face, while in the case of the shorted surface, the potential
vanishes on the surface. Using these definitions with the su-

perposition of Eq.(12), it is readily found that the free
boundary conditions are satisfied only if the following 4
34 determinant vanishes:

DFss1,s3d = U T
D U . s16d

Conversely, the shorted boundary conditions are satisfied
only if the following 434 determinant vanishes:

DSss1,s3d = U T
F
U . s17d

In Eqs. (16) and (17), the dependence of the determinants
upon the surface slownesses has been explicitly indicated.
The effective permittivity is related to these determinants
through

eeffss1,s3d =
DFss1,s3d

j us1uDSss1,s3d
. s18d

Finding the SC SAW slowness curves for the free and
the shorted boundary conditions then amounts to locating the
zeros of the determinantsDF and DS. More precisely, the
polar coordinates of Eq.(2) are used, and for every value of
c, the slowness modulussscd is adjusted so that the deter-
minant vanishes. Finding the imaginary branches for LE
SAW is a relatively similar procedure. For every real value
of s1 above the branch point[defined by the anglec that
maximizessscdcosscd], a zero of the determinant is searched

FIG. 3. Slowness curves(thick solid line) and their imaginary branches for
propagation along axisx1 (thick dashed line) for (YXl )/36 quartz and for
both freesFd and shortedsSd boundary conditions. The parabolic approxi-
mation (thin dashed line) is almost indistinguishable from the real and
imaginary branches.

FIG. 4. Slowness curves(thick solid line) and their imaginary branches for
propagation along axisx1 (thick dashed line) for (YX ) lithium niobate and
for both freesFd and shortedsSd boundary conditions. The parabolic ap-
proximation(thin dashed line) is almost indistinguishable from the real and
imaginary branches.

FIG. 5. Slowness curves(thick solid line) and their imaginary branches for
propagation along axisx1 (thick dashed line) for (YXl )/128 lithium niobate,
and for both freesFd and shortedsSd boundary conditions. The parabolic
approximation(thin dashed line) is also shown.
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for by varyings3 in the complex plane. Since the transition
from the real branches to the imaginary branches must be
continuous, the branch point is a natural starting point for the
algorithm. Because the determinants of Eqs.(16) and (17)
are analytic functions of the complex slownesss3, as long as
the partial-wave selection rule is continuous, efficient algo-
rithms can be used for finding the roots in the complex plane.
Examples of imaginary branches are given in the next sec-
tion.

IV. RESULTS FOR SURFACE ACOUSTIC WAVES

Figures 3–5 show the slowness curves and their imagi-
nary branches for propagation along axisx1, for (YXl )/36
quartz, (XY ) lithium niobate(LN), and (YXl )/128 LN, re-
spectively. Material cuts are given according to the IEEE
1949 standard. For Figs. 3–5, propagation characteristics are
symmetrical with respect to thex1 axis, so that the branch
point is on axis. The parabolic approximation is also shown
for comparison, with the parameters given in Table I. These
parameters have been estimated directly from the slowness
curve. It can be observed that the parabolic approximation is
accurate for both(YXl )/36 quartz and(XY ) LN over a large
range ofs3, but over a smaller range for(YXl )/128 LN.

Figure 6 shows the slowness curve and its imaginary
branches for propagation along axisx1 for (XYt )/112.2
lithium tantalate (LT). For this material cut, propagation
characteristics are not symmetrical with respect to thex1

axis, so that the branch point is not on thex1 axis. It can be
observed that the imaginary branches possess a nonzero real
part, as in the case of the rotated ellipse of Fig. 2(b). A
further inspection, however, indicates that it cannot be ap-

proximated by a rotated ellipse; hence, the parabolic approxi-
mation as defined in Sec. II cannot be employed in this case.

Figure 7 shows the slowness curve and its imaginary
branches for propagation along axisx1 for (YZ) LN. Though
the slowness curves are symmetrical with respect to thex1

axis, the imaginary branches show a peculiar behavior; they
first exhibit a concavity as predicted by the parabolic ap-
proximation, but are then curving back towards decreasing
s1. As a result, there is a range ofs1 values for which both
straight-crested and laterally evanescent SAW solutions can
exist simultaneously.

V. CASE OF PSEUDO-SURFACE ACOUSTIC WAVES

As discussed in Ref. 20, the representation of the attenu-
ation of PSAW by complex values ofs1, with s3=0, can lead
to a discontinuity in the partial-wave selection rule. It is then
legitimate to wonder whether this is also the case whens3 is
allowed to become complex, withs1 real, to generate imagi-
nary branches of slowness curves, as in the present work. We
will only discuss this problem in the context of slowness
curves that are such that the branch point between the real
and imaginary branches of SAW slowness curves lies on
axis. This is the standard case ofY-rotated cuts of LT and
LN. As argued above, in this case, purely imaginary branches
are obtained for propagation along axisx1. We then find it
useful to explore theP13 plane, defined as the(s1, s3) plane,
with s1 purely real ands3 purely imaginary. Two tests are
performed for each point in this plane. First, it is verified that
a meaningful partial-wave selection can be performed. We

TABLE I. Parameters for the parabolic approximation. LN: lithium niobate;
BC: boundary condition.

Material cut BC S s10−4 s/md G

(YXl )/36 quartz free 3.1710 0.370
shorted 3.1730 0.369

(YX ) LN free 2.6897 −0.232
shorted 2.7092 −0.235

(YXl )/128 LN free 2.5129 −0.339
shorted 2.5831 −0.343

(YZ) LN free 2.8674 −0.798
shorted 2.9317 −0.513

FIG. 6. Slowness curves(thick solid line) and their imaginary branches for
propagation along axisx1 (thick dashed line) for (XYt )/112.2 lithium tanta-
late and for both freesFd and shortedsSd boundary conditions.

FIG. 7. Slowness curves(thick solid line) and their imaginary branches for
propagation along axisx1 (thick dashed line) for (YZ) lithium niobate and
for both freesFd and shortedsSd boundary conditions. The parabolic ap-
proximation(thin dashed line) is also shown.

FIG. 8. Locus of initially allowed(in white) vs nonallowed(in black) LE
SAW solutions in theP13 plane for(YXl )/36 lithium tantalate. The imagi-
nary branches of the slowness curve for Rayleigh-SAW propagating along
axis x1 are also shown.
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observe numerically that there is a possibility that the partial
waves be separated in a group of three reflected and a group
of five transmitted partial waves, or the converse situation,
depending on the sign of the imaginary part ofs3. A simple
example of a slowness curve exhibiting this property is dis-
cussed analytically in the Appendix. As explained in Sec. III,
the normal situation is the equipartition of reflected and
transmitted partial waves. Furthermore, the determinants of
surface boundary conditions, Eqs.(16) and(17), require four
partial waves exactly. If this is not the case, the theory pre-
sented in this paper is unable to yield a solution. Second, the
effective permittivity, as defined by Eq.(18), is computed
and it is verified that its imaginary part is either negative or
zero. When the imaginary part of the effective permittivity is
positive, this is an indication that amplification of SAW is
taking place instead of attenuation, which is not acceptable
for a meaningful solution. In the following, we will refer as
initially allowed LE SAW solutions to those point of theP13

plane for which both tests succeed. Conversely, for initially
not allowed LE SAW solutions, at least one of the tests fails.

Figure 8 displays the locus of initially allowed(in white)
and not allowed(in black) LE SAW solutions in theP13

plane for(YXl )/36 LT. Also, though this is hardly apparent
on the figure, points on axiss1 are always initially allowed.
The pseudo- or leaky SAW of(YXl )/36 LT is widely used for
radio-frequency SAW devices. There is also a Rayleigh SAW
which is seldom used in practice because of its small elec-
tromechanical coupling coefficient. The imaginary branches
of the slowness curves of the Rayleigh SAW for propagation
along axisx1, also shown in Fig. 8, are seen to be entirely
within the initially allowed region. In contrast, the imaginary

branches of the PSAW for free and shorted boundary condi-
tions, originating from thes1 axis at s1=2.4 10−4 s/m ap-
proximately, almost immediately encounter the initially not
allowed region asus3u increases from zero. The method de-
scribed in Sec. III is thus unable to generate these imaginary
branches. The situation has been verified to be similar with
others common PSAW cuts such as(YXl )/42 LT, (YXl )/41
LN, and (YXl )/64 LN.

As a further numerical verification, we have plotted loci
similar to that of Fig. 8 for the material cuts of Sec. IV. These
are shown in Figs. 9–12 for(YXl )/36 quartz, (YX ) LN,
(YXl )/128 LN, and(YZ) LN, respectively. The imaginary
branches of SAW slowness curves with free and shorted sur-
face boundary conditions, appearing in Figs. 3–5 and 7, are
also shown on the graphs. As for(YXl )/36 LT, the imaginary
branches of the SAW slowness curves are seen to be entirely
inside the respective initially allowed regions. In the particu-
lar case of(YZ) LN, Fig. 12, the abrupt endings of the imagi-
nary branches occur when the initially nonallowed region is
reached.

VI. CASE OF A FINITE-THICKNESS METALLIZATION

The previous discussion has been limited to a semi-
infinite piezoelectric substrate with either free or shorted
boundary conditions. In this section, the case of a finite
thickness metallization is considered. The algorithms of Sec.
III are straightforwardly generalized by replacing the surface
effective permittivity of Eq.(18) by the interface effective
permittivity18,21 relating surface charges to the potential at
the interface between piezoelectric and metal. The slowness

FIG. 9. Locus of initially allowed(in white) vs nonallowed(in black) LE
SAW solutions in theP13 plane for (YXl )/36 quartz. The imaginary
branches of the SAW slowness curve for propagation along axisx1 are also
shown(they appear also in Fig. 3).

FIG. 10. Locus of initially allowed(in white) vs nonallowed(in black) LE
SAW solutions in theP13 plane for (YX ) lithium niobate. The imaginary
branches of the SAW slowness curve for propagation along axisx1 are also
shown(they appear also in Fig. 4).

FIG. 11. Locus of initially allowed(in white) vs nonallowed(in black) LE
SAW solutions in theP13 plane for(YXl )/128 lithium niobate. The imagi-
nary branches of the SAW slowness curve for propagation along axisx1 are
also shown(they appear also in Fig. 5).

FIG. 12. Locus of initially allowed(in white) vs nonallowed(in black) LE
SAW solutions in theP13 plane for (YZ) lithium niobate. The imaginary
branches of the SAW slowness curve for propagation along axisx1 are also
shown(they appear also in Fig. 7).
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curves and their imaginary branches are now dispersive, i.e.,
they depend explicitly on the frequency-thickness product
fh, whereh is the metal layer thickness andf the frequency.
It is worthwhile noting that there is no partial-wave selection
rule problem in the metal since all partial waves are indis-
tinctly retained in the computation. However, the problems
encountered with pseudo-surface acoustic waves in Sec. V
still remain, though they are connected with the partial-wave
selection rule inside the substrate only. Figure 13 displays the
imaginary branches of the slowness curves of(YXl )/36
quartz with a finite aluminum layer, as a function of the
frequency-thickness productfh.

VII. CONCLUSION

We have obtained the imaginary branches of SAW slow-
ness curves by formulating a plane-wave propagation prob-
lem with a complex transverse slowness. In the case of true,
i.e., lossless, SAW, it has been shown that the imaginary
branches can be obtained by a search in the complex trans-
verse slowness plane as a function of the propagation slow-
ness. For slowness curves such that the slowness in the di-
rection of propagation is maximal on axis, it further turns out
that the imaginary branches involve only purely imaginary
transverse slownesses. A useful consequence of the approach
in this work is that the many modal or spectral methods that
have been developed to account for waveguides or diffrac-
tion based on the angular spectrum of waves approach can be
used unchanged, except for the imaginary branches of slow-
ness curves being exact instead of the result of the parabolic
or another approximation. As a side result, the parabolic ap-
proximation has been compared with the exact solution and
it turns out that its quality depends dramatically on the par-
ticular material cut considered. When trying to extend the
method to pseudo- or leaky SAW, we have faced difficulties
in the process of identifying a solution. These difficulties are
twofold, with possible problems in the partial-waves selec-
tion or the appearance of amplification rather than attenua-
tion of SAW in the effective permittivity computation. The
question of determining imaginary branches for leaky SAW
is then left open.
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APPENDIX: PARTIAL-WAVE SELECTION IN THE P13
PLANE

In this appendix, the partial-wave selection rule problem
arising in Sec. V is shown to exist on one particular example.
We consider the slowness surface for one of the four pairs of
partial waves. For real-valued slownesses, this slowness sur-
face is for bulk acoustic waves.22 We take its equation in the
form

s1
2 + s2

2 + s3
2 + 2ns2s3 = S2, sA1d

whereS andn are constants. This is an homogeneous poly-
nomial of degree 2 in the variabless1, s2, ands3 that would
represent a sphere but for the termns2s3, wheren can be
considered arbitrarily small. The problem is to obtains2 with
s1 and s3 in the P13 plane defined in Sec. V. Setting
s3=e j us3u, with e= ±1, the solution of this second degree
equation is

s2 = − e jnus3u ± Îh if h ù 0, sA2d

s2 = − e jnus3u ± jÎuhu if h , 0, sA3d

with

h = S2 − s1
2 + s1 − n2dus3u2 sA4d

It is clear that in the casehù0, the two possible values ofs2

have the same imaginary part, and both will be classified
simultaneously as reflected or transmitted depending one,
i.e., on the sign of the imaginary part ofs3. When h,0,
opposite signs of the imaginary parts are recovered as soon
as uhuùn2, i.e., if

s1
2 − us3u2 ù S2. sA5d

It can be noticed that this hyperbola shape is consistent with
the numerical examples displayed in Figs. 8–12 to describe
the shape of the curve limiting the rightmost part of the locus
of initially allowed LE SAW solutions.
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