Multicriteria characterization of coding domains
with optimal Fourier spatial light modulator filters

V. Laude and Ph. Réfrégier

A multicriteria optimization method is introduced in order to find optimal filters for implementation on
arbitrary spatial light modulators in the Fourier plane of an optical correlator. This method is applied to
the trade-offs between noise robustness, sharpness of the correlation peak, and optical efficiency. A fast
and simple algorithm is given in this case, which is independent of the particular form of the spatial light

modulator coding constraint.

It is used to characterize and to compare typical coding domains through

the performances of their associated optimal filters.
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1. Introduction

For more than 10 years many authors have studied
the performances of correlation filters for optical
pattern recognition. For comparison of filters, quan-
titative criteria have been proposed.:2 Optimal fil-
ters, with respect to one criterion or a set of criteria,
have been derived and studied (see Ref. 3 for a
review). But it is only recently that the optimal
implementation of these filters in an optical correla-
tor started to be analyzed.* Indeed, many optical
correlators now use spatial light modulators (SLM’s)
to display both input scene and filter. But a draw-
back is that they cannot achieve every real or complex
value that is required. Thus the mathematical for-
mulation of the optimization of a filter with respect to
given criteria has to include the constraint imposed
by the SLM, which is that the filter values must
belong to a given coding domain. It is naturally
expected that the more restrained the coding domain,
the less efficient the displayable filters. But this
intuitive conjecture needs to be quantified, and the
performances of filters displayable on typical SLM’s

should be compared to enable choice between SLM’s

for a particular application.
The aim of this paper is to present the derivation
and the calculation of optimal filters for any given
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Fourier SLM coding domain. For the solution of
this problem, different methods have been proposed.
Juday* introduced a general approach consisting of
optimizing a metric, constructed in view of obtaining
desired properties of the filter, under the constraint
that the filter values belong to the coding domain.
Based on this method, algorithms have been derived
and filter design examples have been presented.5-8
The differences and new results obtained with our
approach are detailed at the end of Section 2.

Mait et al.® proposed an iterative algorithm with
the objective, starting from a given unconstrained
filter, of using design freedoms to modify the distribu-
tion of Fourier values yet maintaining its perfor-
mance as a filter. They illustrated this method with
binary-amplitude phase-only, ternary, and phase-
only coding. Future research should make clear the
relations and the distinctions of the different possible
approaches to the optimization of SLM filters.

The approach we follow in this paper is to consider
a set of criteria, each measuring a desired property of
the filter, and seeking optimal trade-offs between
them. The most useful criteria are generally thought
to be signal-to-noise ratio (SNR) for noise robustness,
peak-to-correlation energy (PCE) for sharpness of the
correlation peak, and optical efficiency (v ) for detec-
tion convenience.:2 With the multicriteria optimiza-
tion method, optimal filters were obtained previously
considering both unit-disk coding'® and binary-
amplitude phase-only and ternary coding.!!

In the present paper it is generalized to any SLM
coding domain. In particular, a geometric interpre-
tation of trade-offs between criteria is given. A
simple and fast algorithm is introduced for obtaining
filters achieving optimal trade-offs among SNR, PCE,
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and mgy, independent of the coding-domain shape.
This algorithm is used to characterize and to compare
typical coding domains in terms of the performances
of their associated filters. The approach we propose
could also be applied to discrimination capability as
introduced by Yarolavsky,'? and it could take into
account detector noise as discussed in Ref. 10 for
unit-disk coding. These straightforward generaliza-
tions are not discussed in detail in the following for
the sake of clarity and brevity.

2. Background: Multicriteria Optimization Method

In this section, the optimal trade-off optimization
method is presented on a geometrical basis. The
coherent correlator considered is sketched in Fig. 1.
The filter is displayed on a SLM, in the Fourier
domain. See, for example, Ref. 13 for an implemen-
tation of this architecture. All images have N pixels
and are represented as one-dimensional vectors for
clarity. x denotes the pattern or reference to be
recognized, and %X denotes its discrete Fourier trans-
form. The pattern element at frequency % is then
denoted £,., The filter to be determined is denoted
h, which is h in the Fourier domain. The correlation-
peak central valuesis ¢y = 3 A3%,. The use of a SLM
to display the filter imposes that the filter values A,
belong to a certain domain & of the complex plane.
As SLM’s are passive optical elements, & is con-
tained in the unit disk. In Fig. 2 are represented
some examples of such ideal and realistic domains.
Unit-disk (full complex modulation),* phase-only!®
and amplitude-only!6 codings are idealized versions of
what currently available SLM’s can achieve. Binary
phase-only and ternary codings can be achieved,
respectively, with ferroelectric liquid-crystal'” and
magneto-optic SLM’s.18 Spiral coding, parameter-
ized by maximum phase shift K, was observed with
twisted-nematic liquid-crystal SLM’s.}? This list is
of course not exhaustive. .

Suppose we consider p criteria E;(h) with { =
1...pandp > 2. Thecriterion E;(h)is a continuous
real function of the filter h such that the smaller its
value, the more the filter h displays the desired
behavior. Let us denote {E;(h)} as the point at which
coordinates are the criteria value for a given filter h.
As we consider the SLM coding domain 2, h is an
element of Y. We can plot, for every possible filter,
the point {E;(h)} on a graph on which axes correspond
to the criteria values. We thus obtain a cloud of

SLM1 L1 SLM2 L2
i 1
coherent {
light
[ i

filter h correlation plane

Fig. 1. Schematic of the coherent optical correlator. Lens L1
forms the Fourier transform of the input image, displayed on
SLM1, in its back focal plane, where the filter is displayed on
SLM2. The correlation plane is observed in the back focal plane of

lens L2.

input image x
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(d)
Fig. 2. Examples of coding domains: (a) unit disk; (b) phase
only; (¢) amplitude only; (d) spiral, parametrized by maximum
phase shift K; (e) binary phase only; (f) ternary.

points %, sketched in Fig. 3 for p = 3. This cloud
represents all the combinations of the criteria consid-
ered that can exist for a particular coding domain &
and permits a quantitative comparison of filters.
Obviously, & contains in practice so many points
that they cannot all be calculated. Fortunately this
is not needed, as we need to consider only the best
points.

This intuition can be formalized with the use of the
set For of optimal trade-off filters (OT filters), which

Es

Fig.3. Comparison of filters through their criteria values, with an
example of three criteria. Set # is composed of all combinations
of criteria values generated by filters satisfying the coding-domain
constraint. %t is the set of OT filters that are obtained by a
search for planes tangent to % and that are referenced by their

normal vector .



are defined?® by the condition that, whatever filter h
is represented by a point of cloud %, on OT filter hoT,
itself represented by a point of %, performs better
than h for at least one criterion. % is represented
in Fig. 3 for p = 3. An important property is that,
given any filter h, there always exists an OT filter hOT
that performs better than h for all eriteria.2! Inthat
sense, OT filters provide a useful figure of merit for
filter design. The problem now amounts to finding
these optimal filters.

To expose the optimization method, let us consider
the case in which p = 3. The following results are
easily generalized to other values of p. For clarity
we suppose that the criteria are positive functions,
but the following construction is generalized easily to
negative criteria. Let (o, B, v) be the coordinates of a
unit vector # of the first quadrant. They are posi-
tive, and o2 + B2 + y2 = 1. Let us then consider all
the pla.nes that are orthogonal to unit vector #, as
shownin Fig. 3. The particular plane that is tangent
to # defines on OT filter hOT at the intersection.
Mathematically this can be wrltten as

hY" = argmin{aE,(h) + BEy(h) + vEs(h)}. (1)
hegV

This is the minimization of an energy function that is
the scalar product of unit vector & with vector {E;(h)}.
Thus by varying the (a, B, y) parameters, we can
generate OT filters. Geometrically this amounts to
determining a part of the convex envelop of set %,
called the optimal characteristics curve for a two-
criteria optimization problem?° and the optimal char-
acteristics surface (OCS) for more criteria. These
optimal characteristics curves and OCS’s permit a
direct comparison of coding domains.

As is said above, this optimization method is ap-
plied in this paper with consideration of the SNR,
PCE, and ny criteria. These are defined as

NH = ICOI2: (23)
SNR = I\/PSHE (2b)
PCE = gpg- 2¢)

The optical efficiency my of Eq. (2a) is generally!
divided by the reference-image total energy 3, |£:|%,
but we omit this, as it does not affect the filter
optimization. Mean-square-error (MSE) and correla-
tion-peak energy (CPE) are expressed as

MSE = X, Cislhul?, (3a)
k

CPE = >, Dy hy|2 (3b)
k

In these last expressions, Cisthe noise power spectral
density and D is the reference power spectral density
(Dyy, = |%?). CandD are diagonal matrices of dimen-

sion N X N, with positive real elements. MSE and
CPE are quadratic forms of the filter, an interesting
property that is used in the following. It was proved!?
that the optimal trade-off filters for the SNR, PCE,
and my criteria can be found easily from those for the
MSE, CPE, and |cg| criteria. This last problem is
computationally much less difficult.

An important difference with previous studies*?8 is
the search for optimal trade-offs instead of the optimi-
zation of a single metric. In particular, Juday® pro-
posed optimizing the peak-to-total-energy metric,
which is expressed as ny/(MSE + CPE). It can be
shown that this is equivalent to finding an OT filter
for the MSE, CPE, and |co| criteria, with a = B, and in
which y hastobe optimized. Thus the filter maximiz-
ing the peak-to-total energy yields a single point on
the OCS, which is not enough to compare between
coding domains. Moreover, it can be remarked that
the position of this point on the OCS depends, for
example, on the assumed total noise power = Cp .
It might not be clear a priori what the value of this
constant should be in a particular application.

Thus in addition to providing a rigorous method of
comparison between different codings, finding the
optimal trade-offs lets one obtain all the information
at hand to implement a given application optimally.
In other words it lets one separate the problem of
evaluating the performances obtainable with a given
coding domain from the problem of the selection of a
filter with given criteria values, which can be done
directly on the graphical representation of the OCS.

Moreover, it is shown in Section 3 that the determi-
nation of the optimal trade-offs leads to a very simple
and efficient algorithm. In particular there is no
need to use differential calculus to prove the mini-
mum-distance principle introduced by Juday.8

3. Simple Algorithm for Quadratic Criteria
In this section we now consider the particular case of
quadratic criteria and derive a simple solution for this
case for any given SLM coding domain <. For
clarity the method is exposed with the example of the
MSE, CPE, and |¢| criteria, and the necessary proofs
are given in Appendix A.

The energy function we wish to minimize can be
written as follows:

E(h) = oMSE(h) + BCPE(h) - 2v|co(h), (4)
where (o, B, 2v) are the three positive coordinates of a
unit vector Z, implying that o2 + p2 + 4vy2 = The
minus sign before |cy| replaces maximization by mini-
mization, and the factor 2 is only used for convenience.
Equation (4) can be written as

E(h) = ; [Balusl |2 - 27] ; Radal, (5)

where the diagonal matrix B, is defined by [Bﬂ]k,k =
aCy + BDyy.  Minimization of this energy function
without consideration of the coding-domain con-
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straint leads to the classical OT filterl®:
A%
a Xp
(hg)k =Yz *
[Bale s

In the graph of Fig. 4(b) is plotted a typical complex
histogram of an OT filter h0 Each point of this his-
togram corresponds to a complex value (h,z) With
this representation, y appears as a scaling parameter,
measuring the saturation of the filter in the sense
that it determines the number of points contained in
the unit disk. £%/[By]s determines the shape of the
histogram. It can be seen that some points can be
very far from the coding domain, illustrated in the
example of Fig. 4(b) with a spiral coding.

As demonstrated in the appendix, minimizing the
energy function of Eq. (5) is equivalent to minimizing

2 |y —

with &, € 2 and where ¢ € [0, 27] is an angular

(6)

(h9)x explie)|?, (7)

(b)
(a) 64 x 64 reference image used for simulations; (b)
typical complex histogram of an OT filter, generated with the
reference in (a) without the coding contraint. Each point of the
histogram has to be projected on the coding constraint (here the
spiral), which is rotated to find the global optimum.

Fig. 4.
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parameter to be optimized. This expresgion is the
Euclidean distance between filters h and hd[exp(i)].
If displayed in Fig. 4(b), the complex histogram
of filter hY[exp(ie)] would simply be that of hY rotated
by an angle ¢. For a fixed ¢ the sum in Eq. (7) is
minimized if all of its terms are minimized. This is
obtained when point Fy, is the Euclidean projection of
point (A0),[exp(i¢)] on the coding domain & for each
spatial frequency 2. We write this projected filter as

hg = 2,[h} explie)] (8)
Let us then define the function
falo) = E(hg) = E{z%[h explie)]}, 9)

obtained by inserting hg in Eq. (5). A typical func-
tion f,(¢) is plotted in Fig. 5, which was obtained with
the spiral coding and the reference image of Fig. 4.
Once obtained, the angle ¢ minimizing this function
yields the optimum SLM filter minimizing E(h) in ¥
simply by replacement of ¢ by ¢% in Eq. (8). Thus
the optimization problem of Eq. (1), a search over all
the filters that are elements of 2V, is replaced by a
simple search over a continuous real parameter ¢.
It can be shown, although the demonstration is
beyond the scope of this paper, that f;(¢) is always a
continuous function, whatever the shape of the cod-
ing domain 9.

We now can give a simple algorithm for obtaining
the OCS for any coding domain 2. For a fixed unit
vector i, do the following:

® Calculate the OT filter h), without coding-
domain constraint, by Eq. (6).

® For every ¢, do the following:

Calculate the projected filter h¢ by Eq. (8).
Calculate the corresponding value f;(¢) by Eq. (9).
® Select angle ¢S, which minimizes Fy(¢). The
optlmum SLM constrained filter is then the pro;ected
filter hgS.

o Calculate the values of SNR, PCE, and ny, as
given by Egs. (2), for h$S. A point on the '0CS is thus
obtained.

® Repeat the preceding steps for another unit
vector Z.

o

0 2r
Rotation angle ¢ (rad)
Fig. 5. Typical function fy(¢), measuring the quality of projected
filters versus rotation angle ¢. Optimal angle ¢S yields the OT
filter satisfying the coding-domain contraint.

Energy function fu(p) (a.u.)



POF

gificiency (¢B)

Fig.6. Optimal characteristics surface (OCS) for unit-disk coding.
POF, MF, and IF stand for phase-only, matched, and inverse
filters, respectively. Boundary curves C1, C2, and C3 joining
these points represent, respectively, the optimal trade-offs between
SNR and optical efficiency, between PCE and optical efficiency, and
between SNR and PCE.

Practically, for the numerical simulations de-
scribed in Section 4 we calculated f;(p) every 10° and
kept the minimum. For the coding domains consid-
ered, this rather loose sampling always led suffi-
ciently close to the actual global minimum. The
most time-consuming step in the algorithm is the
projection, depending directly on the number of points
defining the coding domain.

4, Characterization of Typical Coding Domains

In this section the previous results are used to
characterize typical coding domains, through their
optimal filters for the SNR, PCE, and my criteria.
For each of the six coding domains depicted in Fig. 2
the OCS was generated with the 64 x 64 reference
image of Fig. 4(a). For the spiral coding two values
of maximal phase shift are considered, K = 180° and
K = 360°, and both are quantized on 32 levels.

As all the coding domains considered are subsets of
the unit disk, it is clear that this last coding domain
must yield the best performances of all. Conse-
quently all criteria are normalized by their maximum
values attained with the unit disck and expressed in
decibel units, i.e., 10 log(E /E,,,) for criterion E.

It is well known that the optical efficiency my is
maximized by the phase-only filter h;, = £}/|%,
yielding (Mz)max = (2| |)? from Eq. (2a). This filter
is obtained with unit-disk coding as y tends to 1/2
(fully saturated filter).

Similarly, signal-to-noise ratio (SNR) is maximized
by the matched filter h, = vi}/Cy,;, yielding (SNR) o =
24 Dyy/Cry from Eq. (2b). The matched filter is
obtained with unit-disk coding for B = 0 and for vy
sufficiently small to avoid saturation.

Finally, peak-to-correlation energy (PCE) is maxi-
mized by the inverse filter h, = y£}%/Dsy, yielding
(PCE)nax = N from Eq. (2¢). The inverse filter is
obtained with unit-disk coding for o = 0 and for v
sufficiently small to avoid saturation.

f
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Fig. 7. Optimal trade-offs between SNR and optical efficiency for
the coding domains of Fig. 2.

The OCS for unit-disk coding is shown in Fig.
6. The phase-only, matched, and inverse filters ap-
pear as limiting points on this surface. The bound-
ary curves that join these points, denoted C1, C2, and
C3in Fig. 6, are used to compare the different coding
domains of Fig. 2. Figure 7, corresponding to C1,
presents the optimal trade-offs between SNR and
optical efficiency. It is obtained by the settingof B =
0; i.e., we do not take into account the PCE and we
vary v, for example. Similarly, Fig. 8, corresponding
to C2, presents the optimal trade-offs between PCE
and optical efficiency. It is obtained by the setting of
o = 0; i.e., we do not take into account the SNR and
we vary v. Figure 9, corresponding to C3, presents
the optimal trade-offs between SNR and PCE. It is
obtained by variation of «, for example, and optimiza-
tion of y for each value of a. Although the present
analysis is restricted to these three sections, others
might be used as well; for example, constant optical
efficiency sections may be used.

From Figs. 7-9 the following observations can be

made. As expected, unit-disk coding always yields
the best performances. It is the only coding that can
0
o '\-\_
s \GM\%%O\O\
)
g N\\\ ~
[
:é; -10 Hﬂ\ﬂ_ - \
& L
-3 - unit disk
N e phase only \
8 o
5 D ek a6
3 &  spiralK = 180°
4 -3 binary
-~ ternary
-20 :
-20 -15 -10 -5 0

Normalized PCE (dB)

Fig. 8. Optimal trade-offs between PCE and optical efficiency for
the coding domains of Fig. 2.
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Fig. 9. Optimal trade-offs between SNR and PCE for the coding
domains of Fig. 2.

20 -

Normalized PCE (dB)

»bOo OO0 0N

v .95 -

-30

be used to display any given filter, provided the
saturation parameter v is sufficiently small, that
accordingly lowers the optical efficiency.

For phase-only and binary phase-only codings the
following holds: there is no way to trade off between
the three chosen criteria, variation of unit vector
always yields the same filter, and the OCS reduces to
a single point. Both codings are overspecialized for
optical efficiency.

Amplitude-only coding is always associated with
the poorest performance of all. This makes it un-
suited for practical applications.

For spiral coding, associated with twisted-nematic
liquid-crystal SLM’s, the larger the maximum phase
shift K, the better the performance. This is an
interesting property that might be used, as maximum
phase shifts larger than 400° were observed recently
with such modulators.22

Ternary coding turns out to perform surprisingly
well although it uses only three levels, and it almost
always does better than the 180° spiral coding, which
uses 32 levels. These observations demonstrate the
key importance of choosing a SLM for use in the
Fourier plane of an optical correlator.

5. Conclusion

We have introduced a multicriteria optimization
method, based on a geometrical interpretation of
trade-offs between criteria, for any Fourier SLM
coding-domain constraint. We have applied this
method to the SNR, PCE, and my criteria. In this
case we have given a fast and simple algorithm for
designing OT filters for any coding domain. We
have characterized unit-disk, phase-only, amplitude-
only, spiral, binary phase-only, and ternary codings
through their optimal characteristics surfaces and
curves, and we have compared them. Unit-disk cod-
ing yields the best performances. According to the
criteria chosen, phase-only and binary phase-only
codings provide very few freedom degrees for filter
design, and amplitude coding is not suited for Fourier
filtering. But, remarkably, spiral and ternary cod-
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ing have turned out to show interesting perfor-
mances.

Appendix A: Some Results for Quadratic Criteria

In this appendix the properties used in Section 3 are
demonstrated. For brevity we use vectorial nota-
tions for images. Superscripts T'and T denote, respec-
tively, transposition and complex-conjugate transpo-
sition of a vector.

With these notations the energy function of Eq. (5)
becomes

E(h) = h'B,h — 2y|hT - %/.
Let us introduce the modified energy function,

E(h) = h'B;h — 2yR[hT - k exp(—ip)], (Al)
where R stands for the real part of a complex number
and ¢ is a real parameter in the range [0, 2]
Defining ¢(h) as the phase of the correlation peak h7 -
X, we can write

E,(h) = h'B;h — 2y|h” - %[cos[¢(h) - o], (A2)

®

from which it can be seen that

A A

E(h) = E(h), (A3)
with equality occurring if and only if $(h) = ¢.

In order to find the minimum of E(h) without
consideration of the coding domain, let us consider a
small variation dh of filter h. The corresponding
variation 3E,(h) of the modified energy function
E,(h)is

3E,(h) = E,(h + 3h) - E,(h), (A4)

whose first order is
SE,(h) = 2R[5h'B,h — voh” - % exp(~ie)]. (A5)

It is easily verified that equating this first-order
variation to zero yields the extremum filter
hY[exp(ip)], where hY is given by Eq. (6). Further-
more, it is immediately proven that

E[hS exp(ie)] = E[h] exp(ie)] = E(RY) (A6)
and that the modified energy function takes the
following form:

E,(h) = [h — h exp(ie)'B,[h — hY expli¢)] + E(hY).
(A7)

The right-hand side of this last equation is composed
of two terms. The first term is a positive quadratic
form, reaching zero when h = hf[exp(i¢)], and the
second term is a constant independent of parameter
¢. With the help of these properties it is seen that
the extremum filter h)[exp(ip)] indeed minimizes
E(h) without consideration of the coding constraint.
And in addition, because B, is a diagonal matrix with



positive real elements, minimizing E,(h) in 27 is
equivalent to minimizing the Euclidean distance of
Eq. (7). For a given parameter ¢ the filter that
minimizes Eq,(h) considering the coding constraint is
then the filter h{ = ,97’_@[]1,1 exp(ip)] of inequality (8), in
which the pro_]ectlon operator on the coding con-
straint % is defined in Section 3.

Let us then consider a filter hs that minimizes E(h)
in 2V, From inequality (A3) we can write for any
value of parameter ¢ the following:

E,(hY) > E(h3) > E(hY), (A8)
from which comes, with definition (9) of f;(¢),
min (f,(¢)} = E(h). (A9)
¢€[0,27)

Furthermore, defining the phase ¢ = ¢(hS), from
inequality (A3) we then haye E, (h?). But then hS
necessarily minimizes Eq,s(h) in& N as is seen from
inequality (A8). This last property can be written
fa(¢S) = E(h3), which shows that inequality (A9) is
indeed an equality. This provegs that in order to find
the OT filter that minimizes E(h) in 2V, we can seek

the phase ¢S that minimizes f;(o).

The authors are grateful to J. P. Huignard for
support in this research and to J. Figue and P. Chavel
for enlightening discussions. They acknowledge
stimulating conversations with R. D. Juday.
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