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The elastic modes guided along the axis of an optical fiber are obtained for an arbitrary finite cross section
using waveguide finite element analysis. The band structure of acoustic phonons is obtained from this full-
vector computation. The analysis is applied to the case of a photonic crystal fiber possessing a honeycomb
lattice. It is shown that this fiber exhibits band gaps for elastic modes propagating along the longitudinal fiber
axis. For frequencies within a band gap, the external boundary of the fiber becomes a defect of the phononic
crystal that supports the propagation of guided elastic modes. Such boundary modes are very sensitive to the
boundary conditions. The further introduction of a defect within the two-dimensional phononic crystal leads to
the formation of highly confined elastic waveguide modes that copropagate in the same core volume as the
guided optical mode. We consider the application of these properties to the suppression of stimulated Brillouin
scattering and to enhanced collinear acousto-optical interactions. In particular, we obtain the optimum elastic
modal shape that maximizes the acousto-optical scattering coefficient for given optical modes.
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I. INTRODUCTION

The study of wave propagation in microstructured and
nanostructured materials is a subject of intense current re-
search. Much attention has focused on electromagnetic wave
propagation in photonic crystals1,2 and photonic crystal fibers
sPCFd,3 and in parallel on acoustic or elastic wave interac-
tions in phononic crystals.4,5. From a fundamental viewpoint,
both phononic and photonic crystals possess remarkable
properties such as the existence of absolute band gaps that
forbid the propagation of waves in any direction, which has
already led to a number of important applications in both the
photonics and acoustics fields. In particular, phononic and
photonic crystals have been demonstrated to allow for very
efficient mirrors, cavities and waveguides, acting on a wave-
length scale.

In most previous works, the phononic and photonic prop-
erties of periodically structured materials have been consid-
ered independently, although the idea emerges that the inter-
action of photons and phonons within band-gap materials
will lead to novel or enhanced effects,6–8 beyond traditional
plane-wave acousto-optical interactions. However, the com-
bination of phononic and photonic crystal structures has been
addressed in the frame of a restricted dimensionality: en-
hanced photon-phonon interactions within one-dimensional
acoustic band gaps have been considered6,8 and, for the case
of PCFs, phononic band gaps have been demonstrated in a
preform.7 The latter situation, analyzed by Rayleigh7 and
finite-difference time domain9 sFDTDd methods, was re-
stricted to two-dimensional in-plane band gapssi.e., for a
zero longitudinal acoustic wavevectord that give rise to static
elastic modes confined across the transverse fiber cross sec-
tion. The acousto-optical interaction in the case of static elas-
tic modes can be employed to modulate dynamically the

phase of an optical beam,7 however, it cannot give rise to
optical mode coupling through acousto-optical diffraction.
The more general consideration of acousto-optical diffraction
then requires us to increase the dimensionality of the prob-
lem by performing a global analysis of phononic-band-gap
modes. This is the purpose of the present paper, which con-
siders the full three-dimensional problem. More precisely,
we focus on the PCF case, in the aim of showing it can also
be considered a phononic crystal fiber.

Recently, the out-of-plane acoustic band gaps in a two-
dimensional solid-solid phononic crystal were investigated
by a plane-wave expansionsPWEd approach.10 The appear-
ance of elastic modes guided along a defect of the two-
dimensional solid-solid phononic crystal was further
demonstrated.11 However, the PWE method12 followed in
these works can not be applied directly in the case of a finite
PCF cross section, since it assumes either an infinite struc-
ture or periodic boundary conditions. Furthermore, the PWE
method applies to a solid-solid composition, whereas a PCF
is a periodic arrangement of micron-size cylindrical parallel
hollow holes inside a silica matrix. We make use in this work
of a particular formulation of the finite element method
sFEMd, the waveguide FEM,13 that is suited to the descrip-
tion of the propagation of elastic modes guided along a cy-
lindrical fiber. With this technique, the waveguide modes can
be obtained by imposing a longitudinal wave vector and
solving for the discrete eigenfrequencies. By this procedure
the band structure for acoustic modes is obtained.

For illustration purposes we consider the case of a PCF
with a honeycomb lattice, forming a two-dimensional
phononic crystal. We observe the existence of out-of-plane
phononic band gaps in the PCF and exploit this property for
strongly confining elastic waveguide modes that propagate
along the longitudinal fiber axis. We further verify that the
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PCF supports single-mode optical guidance, though by
modified total internal reflection rather than by a photonic
crystal effect. This yields insights into the physics and prop-
erties of microstructures and nanostructures supporting
phononic-band-gap guidance of elastic modes while simulta-
neously presenting single-mode optical guidance in the same
PCF core region. Purposely, we then discuss particular de-
sign examples that could lead to the hypersonic band-gap
inhibition of stimulated Brillouin scattering and to enhanced
acousto-optical interactions by energy confinement. Design
rules for optimizing or conversely minimizing the elasto-
optical scattering coefficient are drawn.

II. ELASTIC WAVEGUIDE MODES

A PCF is typically based on a periodic arrangement of
micron-size cylindrical parallel holes inside a silica matrix,
with a central defect acting as a core. Light is guided along
the hollow or solid core either by a photonic-band-gap
effect14 or by modified total internal reflection,15 respec-
tively. As regards the propagation of elastic waves, the elas-
tic energy vanishes within the hollow cylinders and is thus
constrained to remain within the silica. The boundaries of the
hollow cylinders can be considered as free from tractions and
act as very efficient scatterers for elastic waves of any polar-
ization. Silica is an isotropic material for the propagation of
elastic waves.

Our analysis of the elastic modes is based on the wave-
guide finite element methodsFEMd which combines a plane-
wave-like ansatz for modes along the assumed infinite propa-
gation direction with a finite element approach that is
advantageous in allowing the modeling of arbitrary cross
sections.13 With this technique, the two-dimensional wave-
guide section in the planesx,yd is meshed using finite ele-
ments, and the displacements are represented by piecewise
polynomials within the elements. Along the propagation di-
rectionz saligned with the PCF axisd a sinusoidal variation of
the displacements is imposed with a given wave vectork. To
account for propagation along thez axis, a harmonic depen-
dence expf jsvt−kzdg is considered. Figure 1 displays an ex-
ample of a mesh used in this work to represent the cross
section of a PCF. The finite elements are triangles with three

vertices and six nodes, that is one node at each vertex plus
one node at the center of each edge. The mesh of Fig. 1
includes 1856 finite elements and a total of 4441 nodes. The
unknowns, or degrees of freedomsDOFd, are the three dis-
placements at each node which amounts to a total of 13323
DOF. Interpolating polynomials of degree 2 in the intrinsic
coordinates of the triangle are used.

For isotropic materials and a cylindrical geometry, the
transverse componentsux and uy and the longitudinal com-
ponentuz of the displacements are in phase quadrature. In
order to guarantee a unique solution to the variational prob-
lem associated to the finite element method, we use the real-
valued formulation within each finite element

uxsx,y,z;td = psx,ydT · ûx cossvt − kzd, s1d

uysx,y,z;td = psx,ydT · ûy cossvt − kzd, s2d

uzsx,y,z;td = psx,ydT · ûz sinsvt − kzd, s3d

whereû=sûx,ûy,ûzdT is the vector of the 3n displacements at
the n nodes of the finite element and thep is a vector ofn
Lagrange interpolation polynomialssn=6 in all computa-
tions in this workd. The dynamics of elastic waves are ob-
tained as the solution of a variational problem involving the
kinetic and strain energies. The kinetic energy in a one-
wavelength-long finite element with sections is

K = v2E
0

2p/k

dzE
s

dxdyuT · r ·u, s4d

where r is the mass density and the displacement vector
u=sux,uy,uzdT. Inserting Eqs.s1d–s3d and integrating alongz
yields

K =
v2

2k
sûT · Ms · ûd, s5d

with the elementary mass matrixMs and the polynomial
matrix P defined by

Ms =E
s

dxdyPT · r · P, s6d

and

P = 1pT 0 0

0 pT 0

0 0 pT2 . s7d

Matrices Ms and P have dimensions 3n33n and 333n,
respectively. Note that the considered finite element is im-
plicitly three dimensional, although only its two-dimensional
cross section needs to be specified; its length along thez axis
is exactly one wavelength. Similarly, the strain energy within
the finite element is

U =E
0

2p/k

dzE
s

dxdyST ·c ·S, s8d

where the strain tensorS and the elastic tensorc are written
in contractedsor Voigtd notation, i.e.,c is a 636 matrix and

FIG. 1. Example of a finite element mesh of a honeycomb pho-
tonic crystal fiber.
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S is a six-component vector. Inserting Eqs.s1d–s3d, integrat-
ing alongz and making use of sine and cosine orthogonality,
the strain energy can be expressed as

U =
1

2k
sûT ·Ks · ûd, s9d

with the elementary stiffness matrix

Ks =E
s

dxdysAr
T ·c ·Ar + Ai

T ·c ·Aid, s10d

where

Ar =1
p,x

T 0 0

0 p,y
T 0

0 0 kpT

p,y
T p,y

T 0

0 0 0

0 0 0

2 , s11d

Ai =1
0 0 0

0 0 0

0 0 0

0 0 0

0 − kpT p,y
T

− kpT 0 p,x
T

2 , s12d

and the vectors p,x
T =s]p1/]x, . . . ,]pn/]xd and

p,y
T =s]p1/]y, . . . ,]pn/]yd. The matrix Ks has dimensions

3n33n while matricesAr andAi have dimensions 633n.
As is usual with elastic FEM problems, the solution of the

variational problem with no external applied forces is given
by the linear equation

sKskd − v2Mdû = 0, s13d

where the stiffness matrixKskd and the mass matrixM are
obtained by assembling the elementary stiffness and mass
matrices respectively by standard procedures.16 Kskd is actu-
ally a second order matrix polynomial ink, as can be seen
from Eqs. s10d–s12d, while M is k independent. Equation
s13d is in the form of a generalized eigenvalue problem for
v2 if k is considered a parameter. The corresponding eigen-
modes are the elastic waveguide modes of the fiber, or alter-
natively acoustic phonons. It is worth noting that for all
eigenmodes, the kinetic and strain energies are equal. In fact
they each amount to one half of the total mode energy. As a
test for the waveguide FEM, we first verified that we were
able to obtain the elastic modes guided by a plain cylinder
with a circular cross section, for which analytical solutions
are known in connection with the Pochhammer-Chree disper-
sion relations.17

We have then used the waveguide FEM technique to ana-
lyze the phononic band-gap characteristics of the silica-air
honeycomb structures shown in the meshed cross section as
insets in Fig. 2. Note that here, as elsewhere in this paper,
open circles are associated with holes. We consider in Fig. 2

honeycomb structures bothsad without andsbd with a central
solid silica defect. For this structure having a hole pitch
scenter-to-center distanced of a, the PCF diameter is then
approximately 10a. Band structures are obtained by solving
for the generalized eigenvalue problem of Eq.s13d as a func-
tion of the longitudinal wave vectork. It can be remarked
that the static elastic modes confined across the transverse
fiber cross section, considered, e.g., in Refs. 7 and 9, are
obtained fork=0. Using proper finite elements, both the
stiffness and mass matrices are positive definite, which en-
sures the positivity of the eigenvalues. We use a Cholesky
factorization of the stiffness matrix to transform the general-
ized eigenvalue problem into a standard one, followed by a
Lanczös algorithm to obtain the lowest eigenvalues. The
band structure in Fig. 2sad for elastic modes without a central
defect exhibits high density except in several regions where
only isolated branches exist. An examination of the corre-
sponding eigenvectors reveals that in the dense regions the
elastic modes are similar to those of a solid cylinder. In par-
ticular, their energy density is spread in the whole fiber. In
contrast, isolated branches correspond to modes that are con-
fined to the external boundary of the PCF, which is clamped
in the calculation. When the external boundary is considered
stress-free instead, modes in the dense regions are only very
slightly affected, but isolated branches are displaced. We in-
terpret the isolated branches as corresponding to surface
modes that are trapped along the external boundary of the
PCF when the frequency falls within a phononic band gap.

FIG. 2. Band structures for elastic waveguide modes of honey-
comb silica photonic crystal fiberssad without andsbd with a central
defect. The two-dimensional meshes of the cross-sections are
shown as insets. The longitudinal line in silica is shown insad.
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Indeed, in this case the waves cannot penetrate deeply the
inner honeycomb structure and the external boundary acts as
a defect of the phononic crystal that supports highly confined
modes. Figure 3 displays the energy distribution of several
such phononic crystal boundary modes.

Considering now the phononic band-gap properties of the
structure shown in Fig. 2sbd, which is identical to the perfect
crystal structure in Fig. 2sad except for an additional central
silica defect, we expect confined elastic modes to appear
within the bandgaps. A comparison of the band structures of
Figs. 2sad and 2sbd reveals that the densely populated mode
regions, as well as the isolated branches corresponding to
modes confined between the external boundary and the
honeycomb-structured interior, are very similar, indicating
insensitivity of these modes to the presence of the core de-
fect. However, it is significant that additional isolated
branches appear within the bandgaps in Fig. 2sbd, and an
examination of modes along these particular branches re-
veals that they are confined and trapped within the silica
defect. Figure 4 illustrates the energy distribution of several
of these core modes. Their waveguiding clearly relies on the
out-of-plane elastic band-gap properties of the PCF. It is also
significant that some of these core modes can exhibit surpris-
ing dispersion relations. For instance, the mode depicted in
Fig. 4sad fpoint D in Fig. 2sbdg has a zero group velocity for
some value of thek wave vector.

III. ELASTO-OPTICAL INTERACTIONS

Beam propagation methodsBPMd simulations were used
to check that optical core guidance is possible under realistic

conditions for the PCF with a central core defect depicted in
Fig. 2sbd. Figure 5sad and 5sbd show the fundamental optical
TE and TM modes at 1.55mm, for a hole diameter and pitch
of 1.01mm and 1.13mm, respectively. With such dimen-
sions, the frequency of the acoustic waveguide mode of Fig.
4sbd, corresponding to pointsEd in Fig. 2sbd, is 1.3 GHz.
Hence, from Figs. 4 and 5, we anticipate that guided acoustic
modes within such an out-of-plane phononic band-gap struc-
ture will enable enhanced collinear acousto-optical interac-
tions, presenting both a significantly increased interaction
length compared to in-plane acousto-optical interactions
across the PCF cross section7 and the possibility of coher-
ently coupling and transferring energy between several opti-
cal modes.

Clearly, in the usual case of plane-wave acousto-optical
interaction in a bulk material, the acoustic or elastic waves
are generated by an extended plane transducer and it is dif-
ficult to match the optical and acoustic modal shapes. The
possibility of copropagating optical and elastic energy along
the same fiber core with tight confinement is then intuitively
appealing in view of enhancing elasto-optical interactions.
For definiteness, we consider the elasto-optical diffraction
coefficient to be proportional to

k =E
s

dxdyEi
s1dEj

s2dpijklSkl, s14d

whereEs1d andEs2d are thesreal-valuedd electric field vectors
of the incident and the scattered optical modes, respectively,
S is the strain tensor associated to the elastic mode, andp is
the elasto-optical tensor. In this expression, and from this

FIG. 4. Energy densitysshown in gray-scaled of guided elastic
modes propagating in the core of the photonic crystal fiber of Fig.
2sbd by a phononic band-gap effect for the points labeledsad D, sbd
E, andscd F in the band structure of Fig. 2sbd.

FIG. 3. Energy densitysshown in gray-scaled of guided elastic
modes propagating along the external boundary of the photonic
crystal fiber of Fig. 2sad for the points labeledsad A andsbd B in the
band structure of Fig. 2sad.

FIG. 5. Opticalsad TE andsbd
TM mode simulations in the same
photonic crystal fiber as in Fig. 4.
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point on, we use full tensorial notation and the repeated in-
dex summation convention; indicesi , j ,k, l =1,2,3. We fur-
ther rewrite the strain energy of Eq.s8d as

U =
2p

k
E

s

dxdySijcijklSkl s15d

and notice that the elastic energy is twice this quantity. We
wish to identify the elastic modal shape that will maximizek
for given optical modes and a fixed elastic energy, for in-
stance unity. This can be accomplished by using the
Lagrange multiplier method. Introducing the Lagrange mul-
tiplier j, we look for an extremum of the functionalk−jU,
considered a function ofSij , and then identifyj by the con-
dition U=1. The result is that the elastic stress tensor asso-
ciated with the elastic mode,Tij =cijklSkl must be

Tij = ApijklEk
s1dEl

s2d, s16d

whereA is some proportionality constant. It might be diffi-
cult in practice to achieve an elastic modal shape given ex-
actly by the optimal shape of Eq.s16d. However, even a
partial matching of optical and elastic modes will clearly
result in an improved elasto-optical diffraction coefficient.
Among the three elastic core modes shown in Fig. 4, the
mode labeledsEd has the largest elasto-optical diffraction
coefficient in combination with the TE or TM optical modes
displayed in Fig. 5. By controlling the anisotropy of the PCF,
e.g., through the anisotropic distribution of holes, anisotropic
acousto-optical interaction between optical modes of differ-
ent polarization should also be possible. Such an interaction
may, for instance, find applications in ultrashort laser pulse
shaping, as an alternative to bulk acousto-optical program-
mable filters.18

As another possible application of elasto-optical interac-
tion in a PCF, we suggest that the design of a proper nano-
structuration of the fiber could lead to the inhibition of
stimulated Brillouin scatteringsSBSd, or at least to an in-
crease in the SBS threshold, by engineering a phononic band
gap such that the phonons involved in SBS are not allowed
to propagate any more. This is, for instance, of much practi-
cal significance around the technologically important wave-
length range around 1550 nm as SBS is highly detrimental
for fiber communications systems.19

SBS is a three-wave nonlinear interaction in which an
intense, incident optical pump wave of frequencyvp is back-
scattered into a downshifted Stokes wave of frequency
vs=vp−v through the coherent generation of an acoustic
phonon at frequencyv via material electrostriction.20 The
scattered acoustic phonons modulate the refractive index of
the medium, acting as a Bragg grating propagating forward
at the longitudinal acoustic velocityv, so that the reflected
optical mode is downshifted through the Doppler effect. The
longitudinal wave vector of the SBS phonon is given by the
phase matching condition,k=kp−ks, wherekp andks are the
optical pump and Stokes wave vectors, andv=vk defines the
SBS phonon dispersion relation. In silica,v=5970 m/s,
which is much smaller than the speed of light, so that the
acoustic wave vector and the SBS hypersound frequency are
very well approximated in single-mode fibers byk=2kp and
thenv=2nvvp/c, wheren is the effective index of the opti-
cal mode. Using typical parameters for telecommunication
fibers at 1.55mm, the acoustic wavelength and frequency are
respectively 543 nm and 11 GHz. In general, optically guid-
ing high air-fill fraction PCFs will be acoustically multimode
for such small acoustic wavelengths, but if a central addi-
tional nanostructure is added in the PCF core region to open
an out-of-plane phononic band gap for the phonon couple

FIG. 6. sad Photonic crystal fiber cross section
showing a combined microstructure and nano-
structure designed for simultaneous core optical
guidance and the inhibition of stimulated-
Brillouin-scattering phonon propagation.sbd De-
tail of the core region.scd and sdd Numerical
simulations of the fundamental TE and TM opti-
cal modes at 1.55mm, respectively.
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sv ,kd, the coherent amplification of SBS phonons will be
inhibited at these frequencies.

To illustrate this more explicitly, the straight line in Fig.
2sad passing through the origin shows the SBS phonon dis-
persion relation. Point C in Fig. 2sad corresponds to
va/ s2pd=1911 m/s andka/ s2pd=0.32. Although it appears
from the figure that the nanostructure opens up only a partial
out-of-plane band gap, the band-gap width is in fact signifi-
cantly larger than the SBS linewidth. In particular, we con-
sider the mixed microstructure-nanostructure PCF structure
in Figs. 6sad and 6sbd. Here, the hole diameter and pitch are
2.59 and 2.76mm, respectively, for the exterior microstruc-
ture stypical solid core PCF dimensionsd and 145 and
207 nm, respectively, for the internal honeycomb nanostruc-
ture stechnologically feasible sizes3d. The exterior PCF mi-
crostructure is designed such that highly confined optical
guidance in the core is obtained. The nanostructure dimen-
sions in the core are chosen such that SBS phonons fall
within a phononic band gap. Optical guidance in such a
structure was verified using standard beam propagation
method vector simulations, and Figs. 6scd and 6sdd show the
guided mode solutions for the TEshorizontald and TM sver-
ticald electric field components. Efficient optical guidance at
1.55mm is obtained in the presence of the phononic nano-
structure. Calculation of the associated effective indices
sn=1.2046 andn=1.1557, respectivelyd allows us to verify
that the phononic band-gap is opened about a mean SBS
frequency of 9.3 GHz for both polarizations.

We note that, contrary to current modulation techniques
used to suppress SBS in optical fibers that often impair the

overall transmission performance, the proposed nanostructu-
ration of a PCF is totally passive. However, a precise predic-
tion of the increase in the SBS threshold that can be achieved
using such a nanostructured core requires a more complete
model of SBS than used in this work. In particular, the effect
of electrostriction on the coupling between phonons and pho-
tons, considered as an elementary coupling mechanism for
SBS, should be considered. However, electrostriction will
have little or no effect on photonic and phononic spectra
sband diagramsd as presented in the present work, and these
can be used as the basis of a coupled-mode theory of SBS.

IV. CONCLUSION

In summary, we have used a waveguide finite element
method to obtain the elastic modes guided by a photonic
crystal fiber consisting of microscopic or nanoscopic air
holes in silica. The method yields modes of any polarization
and applies for arbitrary cross sections. We have demon-
strated that out-of-plane phononic band gaps exist in a pho-
tonic crystal fiber with a honeycomb lattice, raising the pos-
sibility of guiding elastic modes confined along the external
boundary of the PCF as well as inside a defect of the
phononic crystal. Based on these features, the hybrid guid-
ance of acoustic and optical guided modes has been demon-
strated. These observations yield insights into the possibility
of enhancing acousto-optical interactions as well as inhibit-
ing phonons induced by the stimulated Brillouin scattering
effect.
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