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Superluminal asymptotic tunneling times through
one-dimensional photonic bandgaps

in quarter-wave-stack dielectric mirrors
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It is shown that the time needed for light to pass through the optical barrier associated with an antiresonant
quarter-wave-stack dielectric mirror, as measured by the group-delay, or phase time, asymptotically reaches
a limit that is independent of the barrier thickness and hence of the number of layers. This limit, which scales
as the inverse of the refractive-index difference between successive layers, is equal to the mean value
of the asymptotic group delays needed for light to reflect off each side of the barrier. This superluminal
transmission does not violate causality, as the transmitted intensity is always lower than the intensity that
would have been transmitted in vacuum in the absence of the barrier. © 1999 Optical Society of America
[S0740-3224(99)00701-8]
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1. INTRODUCTION
It has been shown first theoretically1,2 and
experimentally3,4 that the time needed for a particle to
pass through an opaque barrier by the tunnel effect as-
ymptotically reaches a limit that is independent of the
barrier thickness. It has also been shown
experimentally3,4 that the time measure that best de-
scribes the arrival time of a wave packet peak is the
phase time, or group delay, rather than the semiclassical
time of Büttiker and Landauer5 or the Larmor time.6

Furthermore, the quantum approach that involves the
time-independent Schrödinger equation and the wave ap-
proach that involves the Helmholtz monochromatic wave
equation are formally equivalent.7 Based on this equiva-
lence, the electronic tunnel effect and the frustrated opti-
cal transmission phenomena were shown to be related.7,8

Indeed, two kind of barrier must be distinguished: bar-
riers that involve frustration phenomena and result in
evanescent waves and barriers that involve anti-resonant
phenomena and result in periodic sinusoidal waves. For
the first kind of barrier the superluminal group delay is
dispersive, usually weakly positive, and remains constant
for thick barriers7–9; however, weakly negative group de-
lays have been shown to occur in certain instances.10 For
the second kind the group delay is stationary and hence
nondispersive, and it reaches a finite asymptotic limit for
thick barriers.11

In this paper we consider the tunneling of optical
pulses through the photonic bandgaps associated with
quarter-wave-stack dielectric mirrors as studied experi-
mentally by Steinberg et al.3 and then by Spielmann
et al.4 We obtain simple analytical expressions for the
asymptotic group delay on transmission and reflection.
The theoretical predictions are shown to be supported by
the experimental results of Spielmann et al.4
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2. THEORY
We consider a stack of alternate layers with refractive in-
dices n1 and n2 , with respective thicknesses d1 and d2 ,
deposited upon a substrate with refractive index ns (Fig.
1). The incident medium has refractive index n0 . Ac-
cording to the matrix formulation of Abelès,12,13 the re-
flection and transmission of plane waves by the stack are
characterized by a 2 3 2 matrix M such that

F E0
1 1 E0

2

h0~E0
1 2 E0

2!G 5 MF Es

hs Es
G , (1)

where E0
1 and E0

2 are, respectively, the incident and the
reflected electric fields in the incident medium and Es is
the transmitted electric field in the substrate. The fol-
lowing notation has been used following Abelès: h de-
notes the effective index of refraction for a plane wave
propagating with an angle u in a medium with refractive
index n and is given by

h 5 H n cos u, s polarization

n/cos u, p polarization
. (2)

Whatever the stack, matrix M assumes the form

M 5 F A iB

iC D G , (3)

and the amplitude transmission and reflection coefficients
are given, respectively, by

t 5
Es

E0
1

5
2h0

~h0 A 1 hs D ! 1 i~h0hs B 1 C !
, (4)

r 5
E0

2

E0
1

5
~h0 A 2 hs D ! 1 i~h0hsB 2 C !

~h0 A 1 hs D ! 1 i~h0hs B 1 C !
. (5)
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From these amplitude coefficients the group delay on
reflection and on transmission can be obtained directly
once the matrix M is known. The influence of a single
layer in the stack, with refractive index n and thickness
d, is characterized by the matrix

M 5 F cos b
i
h

sin b

ih sin b cos b
G , (6)

with

b 5 v~d/c !n cos u 5 vt, (7)

where v is the optical frequency and u is the refraction
angle inside the layer. When the optical thicknesses of
the layers in the stack are close to quarter-waves, i.e.,
nd cos u ' (2q 1 1)l 0 /4, where l0 is the wavelength in
vacuum at optical frequency v0 and q is the order of the
quarter-wave stack, the matrix M for each single layer ex-
panded to first order with respect to Dv 5 v 2 v0 be-
comes

M 5 ~21 !qF 2Dvt
i
h

ih2 Dvt
G . (8)

In Eq. (8), t is independent of frequency and is the tra-
versal time for a single quarter-wave layer at frequency
v0 . Furthermore, the order of the quarter-wave-stack,
q, is assumed to be the same for all layers. The influence
of two successive layers with respective indices of refrac-
tion n1 and n2 is given by the product of their matrices:

M 5 M1M2 5 2F h2 /h1 iS 1
h1

1
1
h2

DDvt

i~h1 1 h2!Dvt h1 /h2

G .

(9)

This calculation can be repeated easily for the subse-
quent layers, and the result is given in Appendix A. We
are interested in the asymptotic values of the group delay
as the number of layers becomes large. As is detailed in
Appendix A, two different cases must be considered: h1
. h2 and h2 . h1 . When h1 . h2 , the following
asymptotic group delays are obtained:

Fig. 1. Stack of alternate layers with refractive indices n1 and
n2 and with respective thicknesses d1 and d2 .
~tD
T!even 5

h0hs 1 h1h2

hs~h1 2 h2!
t, (10)

~tD
T!odd 5

h0 1 hs

h1 2 h2
t, (11)

~tD
R!even 5 ~tD

R!odd 5
2h0

h1 2 h2
t. (12)

When h2 . h1 , the same asymptotic group delays now
become

~tD
T!even 5

h0hs 1 h1h2

h0~h2 2 h1!
t, (13)

~tD
T!odd 5

~h0 1 hs!h1h2

h0hs~h2 2 h1!
t, (14)

~tD
R!even 5 ~tD

R!odd 5
2h1h2

h0~h2 2 h1!
t. (15)

Here the subscripts even and odd refer to (2p) and (2p
1 1) alternated quarter-wave layers, respectively.

3. DISCUSSION
On examination of the relations obtained in Section 2, we
can make the following remarks: First, the asymptotic
group delays on reflection are identical for even and odd
numbers of layers and do not depend on the refractive in-
dex of the substrate. This result is logical because the re-
flected photons can never see the rear part of the stack.
Second, in the general case, the group delay on transmis-
sion is equal to the mean value of the group delay on re-
flection for light coming from the left side of the barrier in
a material of index n0 and of the group delay on reflection
for light coming from the right side of the barrier in a ma-
terial of index ns . The stack can then be replaced sche-
matically by two reflecting planes that are distances d0
5 (ctD

R)0 /(2n0 cos u0) and ds 5 (ctD
R)s /(2ns cos us), re-

spectively, from each side of the stack; reflection then oc-
curs on each of these reflecting planes, and transmission
is instantaneous between the two reflecting planes (Fig.

Fig. 2. Equivalent reflection planes describing the reflection
from and transmission through the quarter-wave-stack.
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2). The relation between reflection and transmission
times was derived for an arbitrary stack by Steinberg
et al. in Ref. 14, where the case of absorption was also
considered.

For example, for a central wavelength l0 5 800 nm
and q 5 0, for normal incidence and when the stack con-
sists of an odd number of alternating layers of fused silica
(SiO2; n 5 1.45) and titanium dioxide (TiO2; n 5 2.315)
surrounded by air (n0 5 ns 5 1), the asymptotic tunnel-
ing time (tD

T 5 tD
R) is 1.54 fs if the first layer is TiO2 and

5.18 fs if the first layer is SiO2. In the same conditions,
except with an even number of layers, the asymptotic tun-
nel time tD

T is 3.36 fs, i.e., the mean value of the two pre-
vious group delays.

It is useful to compare the group delay of the tunneling
optical pulse tD

T with that of the incident pulse that
would have propagated in the incident medium for a dis-
tance given by the physical thickness of the barrier d, i.e.,
in the absence of the barrier. This group delay, t0

T,
which is simply given by n0 cos u0d / c, is the vacuum time
when n0 5 1. Note that t0

T is proportional to the barrier
thickness and hence becomes infinite as this thickness in-
creases.

Figure 3 shows the evolution of the tunneling times tD
T

and tD
R, obtained by numerical simulation, as a function

of the number of layers for even and odd numbers of al-
ternating layers of SiO2 and TiO2 deposited upon a fused-
silica substrate (ns 5 1.45) for normal incidence and q
5 0. The asymptotic values of these group delays as
given by relations (10)–(15) are also shown. It can be
seen that the asymptotic limits are almost reached after
only 10 quarter-wave layers. Figure 4 specifies the evo-
lution of the asymptotic tunneling time tD

T as a function
of the angle of incidence u in air for s and p polarizations
and for the quarter-wave-stack of Fig. 3(a). The
asymptotic tunneling time depends only slightly on the
angle of incidence below 40°, but the variation becomes
dramatic for s polarization above that value. Note that
for this computation the optical thicknesses of the layers
are kept equal to a quarter-wave for all angles of inci-
dence. This critical dependence of the tunneling time on
polarization and angle of incidence was studied experi-
mentally by Steinberg et al.15 Their results cannot, how-
ever, be compared directly with our Fig. 4 because obvi-
ously the thicknesses of the layers were constant in their
experiments, whereas our asymptotic expressions require
that the layers remain quarter-waves and hence their
thicknesses depend explicitly on the angle of incidence.

The experimental data obtained by Spielmann et al.4

offer a direct test of the theoretical results presented
above. Spielmann et al. used quarter-wave-stack dielec-
tric mirrors of increasing thickness with a structure of
(substrate) (HL)p(air), where H and L represent, respec-
tively, a TiO2 and a SiO2 quarter-wave (l0 5 800 nm and
q 5 0), and with p 5 3, 5, 7, 9, 11. These five different
samples were illuminated with p-polarized 28-THz-
bandwidth femtosecond pulses centered on l0 5 800 nm
with an angle of incidence of 20° from air. Using a time-
of-flight measurement apparatus, Spielmann et al. were
able to measure directly the delay difference Dt 5 tD

T

2 t0
T between the tunneling pulse and the pulse trans-

mitted in the absence of the barrier with a temporal reso-
lution better than 0.3 fs. Figure 5 reproduces these ex-
perimental results (Fig. 3 of Ref. 4). From these results
it is apparent that the tunneling becomes superluminal
starting from sample (HL)7 and that the predicted delay
differences were globally overestimated. Our predicted

Fig. 3. Group delays as a function of the number of layers for (a)
(2p) and (b) (2p 1 1) quarter-wave layers, assuming normal in-
cidence, l0 5 800 nm, and q 5 0. Horizontal lines, the
asymptotic limits of Eqs. (10)–(15). Transmission is superlumi-
nal as soon as tD

T is smaller than t0
T .

Fig. 4. Dependence of the asymptotic tunneling time on the
angle of incidence for the quarter-wave stack of Fig. 3(a), l0
5 800 nm, and q 5 0.
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delay differences, also shown in Fig. 5, are consistent with
the first four measurements. As discussed qualitatively
by Spielmann et al.,4 the fact that the group velocity is su-
perluminal does not imply that causality is violated.
This point is illustrated by the numerical simulation of
Fig. 6, which shows that the instantaneous power of a
Gaussian pulse transmitted through sample (HL)11

never precedes that of the pulse that would have been
transmitted in the absence of the barrier (note that a
magnification factor of 1000 was applied to the tunneling
pulse). Such an argument can obviously be valid only
with classic wave packets. From a quantum point of
view, there remains a non-nil probability that a single
photon would have crossed the point of the barrier faster
than it would have in the absence of the barrier although
the use of the phase time has been questioned for such a
tunneling process (see, e.g., Refs. 16–19 for a discussion of
this topic and more references). It can also be observed
that the tunneling pulse is shorter than the incident
pulse; here an incident 15.8-fs FWHM pulse gives rise to
a 11.9-fs FWHM pulse. This effect was observed experi-
mentally by Spielmann et al.4 and was explained simply
by the spectral reshaping of the pulse by the spectral
transmission of the barrier.

Fig. 5. Measured and calculated (* ) delay difference Dt (20°
incidence, p polarization, l0 5 800 nm and q 5 0) in the experi-
ment of Spielmann et al.4 Calculated (†) Dt with the present
theory.

Fig. 6. Numerical simulation of the transmission of a 28-THz-
bandwidth Gaussian pulse through barrier (HL)11 of Fig. 5 (20°
incidence, p polarization, l0 5 800 nm, and q 5 0).
4. CONCLUSION
We have obtained simple explicit relations that give the
asymptotic group delays on reflection and transmission
introduced by an optical barrier consisting of a stack of al-
ternating quarter-wave layers, which constitutes a one-
dimensional photonic bandgap. These expressions are
consistent with tunneling times on transmission previ-
ously measured experimentally. We have also observed
that the traversal time of such a barrier is the mean
group delay needed for light to reflect from the left and
right sides of the barrier. This observation should make
the measurement of tunneling times much easier because
the reflection factors are always close to unity, whereas
transmission drops dramatically with barrier thickness.

APPENDIX A
From the reflection and transmission amplitude coeffi-
cients of Eqs. (4) and (5) it is easy to obtain that the phase
retardation on transmission is given by

tan FT 5
h0hs B 1 C
h0 A 1 hs D

, (A1)

whereas the phase retardation on reflection is given by

tan~FR 2 FT! 5 2
h0hs B 2 C
h0 A 2 hsD

. (A2)

Furthermore, it can be shown that the influence of (2p)
alternating quarter-wave layers with respective indices of
refraction n1 and n2 is given by

M 5 ~M1M2! p

5 ~21 ! pF ~h2 /h1! p i
ap

h1 2 h2
Dvt

i
h1h2ap

h1 2 h2
Dvt ~h1 /h2! p G ,

(A3)

with

ap 5 ~h1 /h2! p 2 ~h2 /h1! p, (A4)

whereas the influence of (2p 1 1) alternating quarter-
wave layers is given by

M 5 ~M1M2! pM1

5 ~21 ! p1q11F bpDvt 2
i

h1
~h2 /h1! p

2 ih1~h1 /h2! p bp Dvt
G ,

(A5)

with

bp 5
~h1 /h2! p11/2 2 ~h2 /h1! p21/2

~h1 /h2!1/2 2 ~h2 /h1!21/2 . (A6)

Using matrices (A3) and (A5) and expressions (A1) and
(A2), we can compute the phases FT and FR as a function
of the frequency difference Dv 5 v 2 v0 , and then ob-
tain and the group delays on transmission @tD

T
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5 (]FT)/]v# and reflection @tD
R 5 (] FR)/]v#. We are

interested in the asymptotic values as the number of lay-
ers becomes large, i.e., as p tends to infinity. Two differ-
ent cases must be considered: h1 . h2 and h2 . h1 .
When h1 . h2 and p is large, (h2 /h1) p can be neglected
against (h1 /h2) p, and the different group delays of Eqs.
(10)–(12) follow. When h2 . h1 and p is large, (h1 /h2) p

can be neglected against (h2 /h1) p, and the group delays
of Eqs. (13)–(15) follow.

V. Laude’s e-mail address is laude@thomson-lcr.fr.
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