
Material anisotropy unveiled by random scattering of surface acoustic
waves

Vincent Laude,1,a� Kimmo Kokkonen,2 Sarah Benchabane,1 and Matti Kaivola2

1Institut FEMTO-ST, Université de Franche-Comté and CNRS, 32 Avenue de l’Observatoire, F-25044
Besançon, France
2Department of Applied Physics, Aalto University, Tietotie 3, 02150 Espoo, Finland

�Received 10 December 2010; accepted 21 January 2011; published online 11 February 2011�

We consider launching a monochromatic surface acoustic wave packet on a large set of random
scatterers. The interference of the multiple scattered waves creates a random pattern of ripples on the
crystal surface that is recorded by optical interferometry. The Fourier transform of the amplitude and
phase data of the measured wave field unveils the complete slowness curve, i.e., the wave-vector as
a function of the propagation angle. A simple acoustic speckle model is proposed to explain this
observation. © 2011 American Institute of Physics. �doi:10.1063/1.3554424�

The structural anisotropy of crystalline solids directly
influences the velocity of acoustic waves or phonons. Con-
versely, the measurement of the velocity as a function of the
angle of propagation allows one to evaluate the elasticity
tensor of the material. The observation of waves propagating
at the surface of solids has been performed by various
means. Matsuda et al. performed pump-probe experiments in
which they could observe the ripples originating from a
punctual excitation of surface acoustic waves �SAWs�.1 In
these time-domain experiments, they demonstrated that a
few wavelengths away from the source, the phase front fol-
lows the shape of the surface wave, i.e., the locus of the
group velocity as a function of the propagation angle, vg���.
Alternatively, frequency-domain experiments can be con-
ducted at a fixed wavelength to evaluate the slowness curve,
i.e., the inverse of the phase velocity of a plane wave as a
function of the phase angle, s���. There is a simple and
direct relation between the slowness curve and the wave sur-
face, vg���= �s���cos����−1, with � as the beam-steering
angle and �=�+�.2,3 Accurate knowledge of the slowness
curve is needed in the design of SAW devices, as illustrated
by tailored interdigital transducers �IDTs� that can focus a
SAW beam4 or even create a subwavelength acoustic
source.5 Wickramasinghe and Ash6 showed that SAW slow-
ness curves can be measured using a phase sensitive laser
probe. Indeed, given the wave field distribution obtained
from a SAW transducer emitting within some angular range,
they obtained the corresponding portion of the slowness
curve by a one-dimensional Fourier transform �FT� of two
line scans separated by a given distance. Robbins and Rudd7

performed a similar experiment by using a scanning laser
acoustic microscope. They observed that the waves scattered
from the edges of their sample contribute to the measure-
ment, although very faintly. Later on, a scanning acoustic
force microscope was also used to observe the phase velocity
of surface waves.8

In this letter, we consider obtaining the full slowness
curve without prior knowledge of the elastic constants.
Whereas the previously described methods resolve an angu-
lar range limited by the emission of the transducer, we con-
sider the random interference of surface waves coming from

all possible angles of incidence. This interference forms an
acoustic speckle field that contains all the necessary informa-
tion for extracting the slowness curve via a Fourier transform
if the coherence of the surface waves is properly captured. To
this end, we use a scanning heterodyne optical probe9 that
records both the phase and absolute amplitude of the acoustic
speckle field.

In our experiment, we selected the Y-cut of lithium nio-
bate �LiNbO3� as the anisotropic substrate material. The ex-
periment is depicted in Fig. 1. The IDTs have 50 finger pairs,
a pitch of 8 �m, and an aperture of 500 �m. The surface of
the scan area is metallized with 150 nm of aluminum. Note
that the same design would operate on any piezoelectric sub-
strate whatever the crystalline orientation and with or with-
out the central metallization. The frequency of the mono-
chromatic SAW is tuned to 223 MHz �near the IDT
resonance� using a signal generator. The collimated SAW
beams are directed toward regions containing many random
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FIG. 1. �Color online� Schematic presentation of the experiment proposed to
obtain the slowness curve from random SAW scattering �not to scale�. �a�
Two identical IDTs generate SAWs at angular frequency �, which propagate
toward regions containing a large number of random scatterers �S�. The
scattered SAWs generate a random wave field, or speckle, that is captured in
the central area �c� using a scanning heterodyne optical probe. The ampli-
tude of one such scan is shown in the central area for illustration. The set of
axes with capital letters is for the crystallographic directions while the other
set of axes is for the measurement coordinate-system. �b� A scanning elec-
tron microscope view inside one of the regions with random scatterers �S� is
shown.
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scatterers. These regions are created by repetitively scanning
a femtosecond laser beam over the crystal surface along
many different directions. The complex interplay of material
ablation and redeposition then creates scattering structures
that are irregular in shape, with lateral dimensions much
smaller than the incident acoustic wavelength. Each scatterer
is expected to convert part of the incoming SAW beam to
annular SAWs.10 The scattered surface waves travel on the
surface and interfere, creating an acoustic speckle similar to
the laser speckle observed on a screen where a continuous-
wave laser beam is diffused. The coherence time of the sig-
nal delivered by the frequency generator is much longer than
1 s and even though some phase noise is introduced by the
experimental set-up, we infer that the coherence time of the
SAW is larger than 1 s. Considering an average velocity of
3500 m/s, the scattered SAW can then propagate over dis-
tances larger than 3500 m and still interfere with subsequent
incoming SAWs. Given that the sample size is a few centi-
meters, the acoustic speckle remains perfectly coherent even
after many scattering events.

The intensity and the phase of the acoustic speckle are
random quantities originating from the interference of the
scattered waves. In the experiment depicted in Fig. 1, the
acoustic speckle field is sampled over a certain area away
from all sources, i.e., both away from the IDTs and the scat-
terers. The scanning heterodyne optical probe is sensitive to
the vertical displacement of the surface.9,11 The amplitude
and phase of the measured speckle field are shown in Fig. 2,
together with the FT result. It can be seen that the FT is also
a random quantity but that its distribution concentrates
mostly along a closed curve in Fourier �wave-vector� space.
This closed curve is the slowness curve for SAWs propagat-
ing on the crystal surface. This observation is confirmed by
comparing the measured closed curve, Fig. 2�c�, with the
slowness curve computed10 using the material constants in
Ref. 12, Fig. 2�d�.

It can also be observed that the interior of the measured
slowness curve is filled with a random background, while its
exterior shows no wave contributions. We attribute this to the
waves that are scattered to the bulk of the substrate. Since
these are trapped between the two surfaces of the crystal
plate, they can propagate at any angle. Their wave-vector in
the surface plane is, however, limited to that of the slowest
bulk acoustic wave as they are constrained to the sound cone.
The calculated projection of the sound cone is depicted in
Fig. 2�d� as a gray area for comparison with the experimental
result. Furthermore, it can be noted that the experiment also
reproduces the ‘forbidden’ regions between the SAW slow-
ness curve and the projected sound cone. This is seen in the
experiment as the blue area between the filled interior and
the slowness curve.

We now formulate a simple model for the formation of
the SAW speckle and of its Fourier transform. Bulk contri-
butions are neglected in this analysis, which is limited to
SAWs in the far-field of the sources. At any observation
point r, a large number of scattered waves are received. We
assume that the scatterers can be regarded as point sources,
or equivalently, that their size is much smaller than the SAW
wavelength at frequency �. We formally write this superpo-
sition as

u�r� = �
n

AnG��r − rn� . �1�

In this equation, u is the vertical displacement, An is a ran-
dom variable �the oscillation amplitude of the nth scatterer�,
and G� is a Green’s function giving the field scattered by a
point scatterer.10 It is important to note that we assume that
the Green’s function is independent of the particular scatterer
considered. The statistical properties of An need not to be
precisely known. However, it can be assumed for simplicity
that they correspond to white noise with the properties �An�
=0 and �An

�Am�=	In
	Im�mn, where the scatterers can have

unequal amplitude variance. It is useful to consider the fol-
lowing spectral representation of the Green’s function

G��r,�� = 

0

+� kdk

4	2

0

2	

d�G̃��k,��e−ıkr cos��−��. �2�

In the far-field of a scatterer, the Green’s function is domi-
nated by the SAW contribution, which possesses a singular
kernel lying on the slowness curve so that the spectral
Green’s function can be approximated by the single-pole
formula10

G̃��k,�� =
a���

k − �s���
. �3�

The �unbounded� Fourier transform of Eq. �1� is

FIG. 2. �Color� Experimental measurement of the SAW speckle at 223 MHz
and comparison to the simulated slowness curve. The measured absolute
amplitude and phase �in degrees� of the surface vibration field are shown in
�a� and �b�, respectively. The Fourier transform of the measured wave field
in �c� shows the wave content as a function of slowness �or inverse phase
velocity�. The SAW slowness curve is seen as the continuous outer bound-
ary and waves scattered into the bulk as the filled interior disk. The calcu-
lated dispersion relation is displayed in �d�, with the computed SAW slow-
ness curve shown as a solid red line and the projection of the sound cone for
bulk waves shown as a gray region. Bulk waves propagating in the plane of
the surface are identified and labeled as S1, S2, and L for the two shear and
the longitudinal waves, respectively.
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ũ�k� = ��
n

Aneık·rn�G̃��k� . �4�

From this expression, we observe that the FT of the vertical
displacement field is the product of a random function and of
the singular spectral Green’s function. Since the FT of white
noise is also white noise, the FT of the speckle appears as an
image of random bright and dark spots. The singularity of
the spectral Green’s function enhances very locally the FT of
the speckle and hence makes the slowness curve visible.

The previous analysis would result in speckle grains
having a vanishing size. This idealization is a consequence of
our assumption of an infinite number of random sources in
Eq. �1� and their pointlike extent. There are at least two
limiting dimensions in our experiment. First, the step size of
the scan limits the maximum spatial frequency. In practice, it
is sufficient to have a few samples per wavelength to satisfy
the Nyquist criterion. Second, the lateral size of the scan, 
x,
limits the spatial frequency resolution. The speckle grain size
can roughly be estimated to be inversely proportional to the
size of the scanning window. Denoting this window W�r�,
Eq. �1� can be rewritten as

uW�r� = �
n

AnG��r − rn�W�r� . �5�

The spatial Fourier transform of this expression is

ũW�k� =
 dk�

4	2 ũ�k��W̃�k − k�� . �6�

In the experiment, the scanning area is bounded and the Fou-
rier transform of the scanned amplitude and phase field is
thus the convolution of a speckle grain function times the FT
of the unbounded acoustic speckle field. The speckle grain
function is the Fourier transform of the window function.
The relative spatial frequency resolution can be roughly es-
timated as � /
x. In the experiment presented here, this rela-
tive resolution is around 2%. This number can be improved
by using a larger scan area, of course, at the expense of a

longer scan time. Furthermore, a priori knowledge of the
properties of the SAW slowness curve �for instance, that it is
a continuous and periodic function of the angle� could be
incorporated in the estimation algorithm.

As a conclusion, we have shown that the slowness curve
for surface acoustic waves, a direct measure of the aniso-
tropy of a solid material, can be recovered by recording the
acoustic speckle originating from random scattering. The
measurement of the phase of the acoustic speckle field, in
addition to its amplitude, is essential in this process. We have
proposed a simple model for the formation of the acoustic
speckle, stressing the importance of the singularity of the
spectral Green’s function along the slowness curve. The
method could be used, for example, to estimate the elastic
constants of anisotropic media.
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