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We investigate theoretically the propagation of acoustic waves in a two-dimensional array of cylindrical
pillars on the surface of a semi-infinite substrate. Through the computation of the band structure of the periodic
array and of the transmission of waves through a finite length array, we show that the phononic crystal can
support a number of surface propagating modes in the nonradiative region of the substrate, or sound cone, as
limited by the slowest bulk acoustic wave. The modal shape and the polarization of these guided modes are
more complex than those of classical surface waves propagating on a homogeneous surface. Significantly, an
in-plane polarized wave and a transverse wave with sagittal polarization appear that are not supported by the
free surface. In the band structure, guided modes define band gaps that appear at frequencies markedly lower
than those expected from the Bragg interference condition. We identify them as originating from local reso-
nances of the individual cylindrical pillars and show their dependence on the geometrical parameters, in
particular with the height of the pillars. The transmission of surface acoustic waves across a finite array of
pillars shows the signature of the locally resonant band gaps for surface modes and their dependence on the
symmetry of the source and its polarization. Numerical simulations are performed by using the finite element
method and considering silicon pillars on a silicon substrate.
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I. INTRODUCTION

Recently, a great deal of work has been devoted to the
study of phononic crystals constituted by a periodic repeti-
tion of inclusions in a matrix background. Phononic
crystals1–5 are for acoustic waves in fluids or elastic waves in
solids the analogs of photonic crystals for optical or electro-
magnetic waves.6,7 Several classes of phononic crystals exist
and differ mainly by the physical nature of the inclusions and
of the matrix. Among them, solid/solid, fluid/fluid, and
mixed solid/fluid composite systems have received attention.
These composite media typically exhibit stop bands in their
transmission spectra, for which the propagation of sound or
vibration can be strictly forbidden in all directions. The lo-
cation and the width of acoustic band-gaps result from the
choice of the lattice, of the shape of the inclusions, and of the
constitutive materials. Using the band gap principle, the
phononic crystals allow the propagation of elastic or acoustic
waves to be regulated. In other words, they play the role of
perfect mirrors for elastic or acoustic waves in the frequency
range of the band gap. The fundamental interest of control-
ling the elastic energy and the potential applications of
phononic crystal is well established. Indeed, the phononic
band gaps can be used to filter, confine, or guide acoustic
energy, and hence can be used in a variety of applications
including wireless communications and sensing. Acoustic
and elastic wave propagation in various phononic crystals
have been studied, including bulk waves in finite

structures,8,9 surface wave on semi-infinite media,10–14 and
guided waves in slabs.15–21 More recently, low-frequency
gaps and waveguiding in a phononic crystal constituted of
cylindrical dots deposited on homogeneous slab were
demonstrated.22,23 However, the effect of the rods as local
resonators interacting with the slab modes did not appear
clearly. In fact, when the thickness of the slab is same order
of the period of the structure the presence of the antisymmet-
ric mode at low frequency reduces significantly the nonradi-
ative zone in the dispersion diagram of the phononic slab, as
compared to the semi-infinite case.

Band gaps can originate from the Bragg reflections result-
ing from the periodicity of the structure. In this case, the
spatial period of the crystal is of the same order of magnitude
as the acoustic wavelength at the central frequency of the
gap. Most of the works in the literature were based on Bragg
reflection and as a consequence the lattice constant has gen-
erally been the key parameter to scale band gaps. A short-
coming of this principle was identified early in the context of
acoustic sound shielding. Here, a phononic crystal would
have to be several meters in size in order to shield environ-
mental noise in the audible frequency range. To overcome
this limitation several authors24,25 proposed a class of sonic
crystals that exhibit spectral band gaps with the lattice con-
stant is several order of magnitude smaller than the relevant
sonic wavelength. The key idea is to introduce local reso-
nances in each unit cell by playing with the material compo-
sition. The interaction of a locally resonant mode and the
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bulk modes of the matrix can then open a low-frequency
band gap.

In this paper, we add local acoustic resonances to a semi-
infinite medium by considering a doubly periodic array of
pillars on a surface.26 The main effect observed is the possi-
bility of finding a low-frequency gap for acoustic waves
guided by the surface. The band gap can exist below the
sound cone for the substrate and overcomes the acoustic loss
issue usually observed with Bragg-based phononic crystals.
Surface acoustic waves within Bragg regime can be obtained
by drilling holes in a matrix12,14 and the dispersion of the
guided waves remains close to the upper part of the sound
cone. We specifically consider in this paper a structure con-
stituted by a square array of cylindrical silicon pillars on the
surface of a semi-infinite silicon substrate. The numerical
results presented here are thus related to the case of silicon,
but the main conclusions should remain valid for other ma-
terials and compositions as well.

II. MODEL AND METHOD OF CALCULATION

As illustrated in Fig. 1, we consider a square lattice array
of cylindrical pillars on the surface of semi-infinite substrate.
The z axis is chosen to be perpendicular to the surface and
parallel to the cylinder axis. The lattice parameter of the
phononic crystal is a. The filling fraction is defined as F
=�r2 /a2, where r is the radius of the cylinder. The height of
the cylinders is h. Dispersion curves are calculated for the
infinite system by using a finite element method, in which
only the unit cell is meshed and Bloch-Floquet conditions are
implemented via periodic boundary conditions.15 A three-
dimensional mesh is used and the structure is assumed to be
infinite and periodic in both the x and y directions �Fig. 1�a��.
A phase relation is applied on the lateral sides of the mesh,
defining boundary conditions between adjacent cells. This
phase relation is related to the Bloch wave number of the

modes of the periodic structure. By varying the wave vector
in the first Brillouin zone and solving an eigenvalue problem,
the eigenfrequencies are obtained. The eigenvectors repre-
sent the modal displacement fields.

For transmission calculations, the model depicted in Fig.
1�b� is used. An incident surface acoustic wave with a spe-
cific polarization �ux ,uz ,uy� is modeled by applying a line
source vibrating on the surface. We apply in the y direction a
periodic boundary condition that renders the line source in-
finitely long. The line source thus generates waves propagat-
ing in the �x ,z� plane with uniform phase fronts along the y
direction. In the far field of the source, the generated waves
can be either bulk waves propagating away inside the sub-
strate or surface waves propagating along the surface in the x
direction. We assume that few wavelength from the source,
displacements at the surface are only caused by surface
waves and not by bulk waves. To prevent reflections caused
by the scattering of waves from the domain boundaries, per-
fectly matched layers �PMLs�27 are applied as illustrated in
Fig. 1�b�. PMLs have the property that the mechanical dis-
turbances are gradually absorbed in the layers before they
can reach the outer boundaries.28 Indeed, we can write the
governing equation as

1

� j

�Tij

�xj
= − ��2ui, �1�

where � is the mass density of the material and � is the
angular frequency. Summation over repeated indices is im-
plicitly assumed. Tij is the stress tensor, the ui are the dis-
placements, and the xj are the coordinates �x1=x , x2
=y , x3=z�. Function � j�r� is the artificial damping along
axis xj at an arbitrary position r inside the PML. As PMLs
are added to attenuate acoustic waves propagating in the
�x ,z� plane, only �1 and �3 are different from 1. �x is for
instance given by

�1�x1� = 1 − i�1�x1 − xl�2, �2�

where xl is the coordinate of the interface between the regu-
lar domain and the PML and �1 is a suitable constant. There
is no damping outside the PMLs and here � j =1 is assumed.
A suitable thickness of the PML as well as the value of � j
must be found by trial calculations such that mechanical dis-
turbances are absorbed before reaching the outer boundaries.
However, the absorption variation must also be sufficiently
slow so that reflections occurring at the interface between the
regular domain and the PML are kept minimal. The mechani-
cal stresses Tij further depend on the strains as

Tij = CijklSkl, �3�

where the Cijkl are the elastic stiffness constants. Strains are
related to the displacements according to

Sij =
1

2
� 1

� j

�ui

�xj
+

1

�i

�uj

�xi
� . �4�

III. RESULTS AND DISCUSSION

Before starting to discuss the results, we wish to outline
that the geometry we consider has a strong relation to asym-

�

��� ����

�
�
�
�
��
�

�
�
�
�
��
�

��	
�����

����� �

�

��� �	�

FIG. 1. �Color online� Phononic crystals composed of a square
lattice array of cylindrical pillars on a substrate are considered. The
lattice parameter is a and the pillars have height h and radius r. �a�
The unit cell domain used for band structure calculations is meshed
in three dimensions and Bloch-Floquet periodic boundary condi-
tions are applied in both the x and the y direction. �b� The domain
used for transmission computations has periodic boundary condi-
tions along the y direction and a finite extent along the x direction.
Perfectly matched layers are used to prevent reflexions from the
domain boundaries. A line S generates waves propagation in the
�x ,y� plane, including surface acoustic waves.
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metric photonic crystal slabs but is conversely quite different
from phononic crystal slabs, which may not be obvious at
first sight. Phononic crystals slabs surrounded by vacuum
provide naturally a perfect confinement of waves in the ver-
tical direction and their in-plane band gaps are similar to
those of three-dimensional phononic crystals,24 but those
band gaps are very sensitive to the existence of additional

branches originating from the finite thickness of the slab.15

Conversely, as discussed e.g., by Johnson et al.,29 there exists
in photonic crystal slabs a continuum of radiation states that
are extended infinitely in the region outside the slab. Guided
modes, which are states localized to the plane of the slab, can
only exist in the regions of the band diagram that are outside
the light cone. Similarly, since the array of pillars we con-
sider sits on top of a semi-infinite medium, the continuum of
radiation states in this medium forms a sound cone. Guided
acoustic waves localized to the pillar array and the immedi-
ate vicinity of the substrate surface can only exist in the
regions of the band diagram that are outside the sound cone.
The reason why we speak of a phononic crystal for periodic
arrays of pillars on a surface is that they possess band gaps
for guided waves. In the following, we consequently restrict
our definition of band gaps to a range of frequencies, in
which no guided modes exist.

Obviously, the first parameter which can play an impor-
tant role is the height of the pillars. In order to investigate its
influence, we have calculated band structures for the guided
modes of the phononic crystal depicted in Fig. 1�a�. Propa-
gation is in the �x ,y� plane, and band structures are generated
along the high symmetry axes of the first Brillouin zone.
Both the substrate and the pillars are made of �100� silicon.
A low filling fraction F=0.28 �r /a=0.3� and different rela-
tive heights of the cylinders �h /a=0.3, 0.4 and 0.5� were
considered in Fig. 2. These particular choices for h /a ensure
the existence of several absolute band gaps for guided
modes. For h /a=0.3, one band gap appears for fa
=2200–2400 m /s. The gray region on the band structure is
the sound cone representing the radiative zone of the silicon
substrate. The sound line limiting the sound cone is com-
puted from the smallest phase velocity in the substrate as a
function of the propagation direction. Due to the anisotropy
of bulk acoustic phonon propagation in silicon, the sound
line varies continuously along the XM direction of the first
Brillouin zone. In practice, we have applied a linear variation

(a)

(b)

(c)

FIG. 2. Band structure of a phononic crystal composed of cy-
lindrical silicon pillars on a silicon substrate, calculated along high
symmetry directions of the first irreducible Brillouin zone. The lat-
tice parameter is a and the filling fraction F=0.28. the relative
height of the cylinders h /a equals �a� 0.3, �b� 0.4, and �c� 0.5. The
gray region represents the sound cone of the substrate. The sound
line limiting the sound cone is given by the smallest phase velocity
in the substrate for every propagation direction.

FIG. 3. Band structure of a phononic crystal composed of cy-
lindrical silicon pillars on a silicon substrate, calculated along high
symmetry directions of the first irreducible Brillouin zone. The lat-
tice parameter is a and the relative height of the cylinders h /a
=0.5. Two values of the filling fraction are compared, F=0.35 �dot-
ted line� and F=0.5 �solid line�.
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from point X, where the sound line is limited by the shear

horizontal wave with velocity �C44

� , to point M, where the
sound line is limited by the quasishear horizontal wave with

velocity �C11−C12

2� . This approximation is very close the exact
dispersion of the sound line in silicon when varying the
propagation direction from the �100� to the �110� crystallo-
graphic axes.

When the height of the pillars is increased, the bands shift
down toward low frequencies and band gaps show up. For
h /a=0.4, we find two band gaps extending, respectively,
from fa=1700 to 1970 m/s and a very narrow band gap
appearing around fa=2800 m /s. For h /a=0.5, the first band
gap shifts down to a central frequency fa=1450 m /s and a
relative bandwidth of 22%. A wider second band gap appears
around fa=2550 m /s with a 10% relative bandwidth. In
Fig. 2, the period and the filling fraction are kept fixed,
which clearly shows that the origin of the band gaps is not
related to Bragg interference, as with classic phononic crys-
tals, but is rather the result of resonant modes of the struc-
ture. Indeed, if h /a is smaller than 0.3, the discrete acoustic
vibration modes of the pillars appear at frequencies within
the sound cone and thus radiate into the bulk. However,
when h /a is increased, the acoustic modes of the pillars shift
down in frequency. They are then in a position to interact and

form collective propagating surface modes, whereby acoustic
energy can be guided along the surface of the substrate. Con-
currently, this interaction opens band gaps inside which
guided surface acoustic waves are forbidden to propagate.
The band gaps shown in Fig. 2 are complete and omnidirec-
tional for guided modes at the surface of the substrate. Such
guided waves exist only under the sound cone such as, for
instance, the Rayleigh surface wave of the homogeneous sur-
face. This means that when a standard Rayleigh surface wave
propagating on the free surface of the substrate is incident on
the pillar array, it will be either converted to the existing
surface-pillar modes at the same frequency, or reflected from
the array if the frequency is within a band gap for guided
waves. Naturally, a fraction of the surface wave energy can
be converted to radiation modes of the substrate at the
phononic crystal boundary in both cases, but this does not
preclude that no energy is propagated along the surface
within a band gap for guided waves.

Usually, the filling fraction F of a phononic crystal is an
important parameter in the process of opening band gaps and
controlling their bandwidths. We plot in Fig. 3 the band
structure for the two values F=0.38 and 0.5. The relative
height h /a is fixed to 0.5. We observe a relative widening of
the two band gaps for guided waves for both values of F, as
compared to F=0.28 in Fig. 2. Indeed, when the filling frac-
tion is increased, or the space between adjacent pillars is
reduced, the interaction between locally resonant modes can
be enhanced through surface coupling and can lead to wider
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FIG. 4. Transmission of surface waves through 7 rows of a
square-lattice phononic crystal composed of cylindrical silicon pil-
lars on a silicon substrate. The filling fraction F=0.28 and the rela-
tive height is h /a=0.4. �a� Band structure for surface guided waves
propagating along the �X direction. The first and the third bands are
shown with solid lines, while the second and the fourth bands are
shown with dotted lines. �b� Computed transmission spectrum with
a sagittally polarized excitation line source. �c� Computed transmis-
sion spectrum with a shear horizontally polarized excitation line
source. Transmissions represent an average of all displacement
components, �ux�+uz �+�uy�, as a function of frequency. The average
is collected along a line located after the seventh period of pillars.
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FIG. 5. Transmission of surface waves through 7 rows of a
square-lattice phononic crystal composed of cylindrical silicon pil-
lars on a silicon substrate. The filling fraction F=0.28 and the rela-
tive height is h /a=0.5. �a� Band structure for surface guided waves
propagating along the �X direction. �b� Computed transmission
spectrum with a sagittally polarized excitation line source. �c� Com-
puted transmission spectrum with a shear horizontally polarized ex-
citation line source.
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band gaps. The central frequency and the relative bandwidth
of the first band gap are, respectively, fa=1667 m /s and
28.7% for F=0.38, and fa=1630 m /s and 33.8% for F
=0.5. The second band gap is bound up by the sound line and
has the same central frequency and relative bandwidth for
both values of F, namely fa=2611 m /s and 16%. We ob-
serve that the second and the fourth bands are more sensitive
to the filling fraction and present a negative slope indicating
negative group velocity along the XM direction. This could
lead to unusual wave phenomena such as negative refraction
or the superlens effect observed in phononic metamaterial
structures.30,31 These effects are however outside the scope
of the present paper.

Transmission spectra were next computed for propagation
along the x direction, using the three dimensional domain
depicted in Fig. 1�b�. The domain is finite along x with seven

rows of pillars sandwiched between the incoming and outgo-
ing media. As discussed in Sec. II, the structure is infinite
and periodic along y. A line source is applied on the surface
of the silicon substrate just in front of the phononic crystal.
The line source vibrates at a monochromatic frequency and
can have two different polarizations: either �i� �ux ,uz� sagittal
displacements, which can excite the Rayleigh surface wave
of the homogeneous surface or �ii� uy transverse displace-
ments which can be considered as a shear horizontal wave
source. It is well known that for most elastic materials the
free surface �i.e., without phononic crystal� does not support
the propagation of the shear horizontal surface wave; this is
in particular the case of silicon. Nevertheless, the periodic
array of pillars can support surface modes with such a polar-
ization, as discussed in the following.

(a)

(b)

FIG. 6. �Color� Eigenmode of mode 1 and mode 3 analysis close to the point X of the Brillouin zone. This represent the displacement
field of the three component ux and uz and uy. these modes have mostly in-plane polarization

(a)

(b)

FIG. 7. �Color� Same as Fig. 6 for mode 2 and mode 4, these modes have mostly sagittal polarization with transverse propagation.
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Figures 4 and 5 display the computed transmissions for
the sagittal and the shear horizontal line sources. The filling
fraction is fixed to F=0.28 and the relative height of the
pillars is h /a=0.4 and 0.5, respectively. Transmissions are
computed for the �X direction of the band structures which
are added to Figs. 4 and 5 to help with the interpretation of
the results. In Fig. 4�a�, the band structure shows two band
gaps extending from fa=1700 to 2000 m/s, and from fa
=2350 to 2700 m/s, respectively. The transmission in Fig.
4�b� is for the total displacement, but is however related to
the sagittal �ux ,uz� excitation. Two attenuation frequency
ranges are apparent, corresponding to the first and the third
band limits in the band structure. The transmission in Fig.
4�c� is related to the transverse uy excitation and shows a
resonance around fa=1600 m /s and a damped resonance
around fa=2700 m /s, that are related to the second and
fourth bands of the band structure, respectively.

This effect is even more pronounced when h /a=0.5 as
apparent in Fig. 5. The band structure of Fig. 5�a� has five
bands delimiting the stop bands and pass bands. The com-
puted transmission for the sagittal excitation line source in
Fig. 5�b� shows two attenuation regions limited by the first,
the third and the fifth bands. The computed transmission for
the shear horizontal line source in Fig. 5�c� displays two
small pass bands around fa=1300 and 2375 m/s. The second
and the fourth branches are deaf to the sagittal source while
first, third and fifth bands are deaf to the shear horizontal
source. We can observe also that the shape of the transmis-
sion for the shear horizontal source around the frequencies
where the second and fourth bands reach the X point is typi-
cal of a linear response function proportional to 1 / �f0

2− f2�,
when a wave with frequency f interacts with a medium sup-
porting a localized excitation with frequency f0. Such an
effect is manifested for instance in the electromagnetic fre-
quency response of materials with optical resonances.

In order to corroborate the previous observations, we plot
in Figs. 6 and 7 the modal displacements of the first and the
third bands, and on the second and fourth bands, respec-
tively. The wave vector kx selected for these illustrations is
close to the X point of the first Brillouin zone. We emphasize
that the acoustic energy is mostly distributed between ux and
uz for the eigenmodes in Fig. 6. Those modes have mostly
sagittal polarization. The displacement uy is not equal to zero
but is very small in comparison. Note that the same scale has
been used for all displacements. This observation explains

the significant transmission magnitude for the first and the
third bands for the sagittal source.

As Fig. 7 shows, the acoustic energy is mostly distributed
between uz and uy for the second band and between ux and uy
for the fourth band. We observe that the uz displacement for
the second band and the ux displacement for the fourth band
have an antisymmetric character with respect to the sagittal
mid plane �x ,z� of the structure. When a sagittal excitation is
applied that is symmetric with respect to the same midplane,
it is obvious that energy cannot be transferred to the
second and the fourth bands. This explains the absence of
signature of those modes in the transmission spectra with the
sagittally polarized source. Conversely, the uy displacement
is symmetric with respect to the sagittal mid plane and can
thus be excited by the shear horizontally polarized source.

IV. CONCLUSION

In this paper, we have studied theoretically the behavior
of locally acoustic resonances of a periodic array of cylindri-
cal pillars deposited on a semi-infinite substrate. We have
calculated the band structure of the periodic medium and the
transmission through a finite length array of pillars by using
finite element method. With an appropriate choice of the geo-
metrical parameters, we have shown that this structure sup-
ports surface propagating modes in the nonradiative region
of the substrate, outside the sound cone. Especially, an in-
plane polarized surface wave and a transverse surface wave
that do not exist on the homogeneous surface are found. In
addition, the band structure of the guided modes defines
band gaps that appear at frequencies markedly lower than
those expected from the Bragg condition. Those band gaps
refer to a range of frequencies, in which no guided modes
exist. We identify them as originating from local resonances
of the individual cylindrical pillars and show their depen-
dence with the geometrical parameters of the array, and in
particular with the height of the pillars. The transmission of
surface acoustic waves across a finite array of pillars shows
the signature of the locally resonant band gaps for surface
modes and their dependence on the symmetry of the source
and its polarization.

ACKNOWLEDGMENTS

Financial support by the CNRS/JST joint project and the
Agence Nationale de la Recherche under Grant No. ANR-
09-BLAN-0167-07 are gratefully acknowledged.

1 M. M. Sigalas and E. N. Economou, Solid State Commun. 86,
141 �1993�.

2 M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-
Rouhani, Phys. Rev. Lett. 71, 2022 �1993�.

3 T. Miyashita, Meas. Sci. Technol. 16, R47 �2005�.
4 I. E. Psarobas, Z. Kristallogr. 220, IV �2005�.
5 An exhaustive list of references on phononic crystals

can be found at http://www.phys.uoa.gr/phononics/
PhononicDatabase.html.

6 E. Yablonovitch, Phys. Rev. Lett. 58, 2059 �1987�.

7 S. John, Phys. Rev. Lett. 58, 2486 �1987�.
8 J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L.

Dobrzynski, and D. Prevost, Phys. Rev. Lett. 86, 3012 �2001�.
9 A. Khelif, B. Djafari-Rouhani, J.-O. Vasseur, and P. A. Deymier,

Phys. Rev. B 68, 024302 �2003�.
10 Y. Tanaka and S. I. Tamura, Phys. Rev. B 58, 7958 �1998�.
11 T.-T. Wu, Z.-G. Huang, and S. Lin, Phys. Rev. B 69, 094301

�2004�.
12 T.-T. Wu, L.-C. Wu, and Z.-G. Huang, J. Appl. Phys. 97, 094916

�2005�.

KHELIF et al. PHYSICAL REVIEW B 81, 214303 �2010�

214303-6

http://dx.doi.org/10.1016/0038-1098(93)90888-T
http://dx.doi.org/10.1016/0038-1098(93)90888-T
http://dx.doi.org/10.1103/PhysRevLett.71.2022
http://dx.doi.org/10.1088/0957-0233/16/5/R01
http://dx.doi.org/10.1524/zkri.2005.220.9-10.IV
http://www.phys.uoa.gr/phononics/PhononicDatabase.html
http://www.phys.uoa.gr/phononics/PhononicDatabase.html
http://dx.doi.org/10.1103/PhysRevLett.58.2059
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://dx.doi.org/10.1103/PhysRevLett.86.3012
http://dx.doi.org/10.1103/PhysRevB.68.024302
http://dx.doi.org/10.1103/PhysRevB.58.7958
http://dx.doi.org/10.1103/PhysRevB.69.094301
http://dx.doi.org/10.1103/PhysRevB.69.094301
http://dx.doi.org/10.1063/1.1893209
http://dx.doi.org/10.1063/1.1893209


13 V. Laude, M. Wilm, S. Benchabane, and A. Khelif, Phys. Rev. E
71, 036607 �2005�.

14 S. Benchabane, A. Khelif, J.-Y. Rauch, L. Robert, and V. Laude,
Phys. Rev. E 73, 065601�R� �2006�.

15 A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude,
Phys. Rev. E 74, 046610 �2006�.

16 F.-L. Hsiao, A. Khelif, H. Moubchir, A. Choujaa, C.-C. Chen,
and V. Laude, Phys. Rev. E 76, 056601 �2007�.

17 S. Mohammadi, A. Eftekhar, A. Khelif, H. Moubchir, R. We-
stafer, W. Hunt, and A. Adibi, Electron. Lett. 43, 898 �2007�.

18 S. Mohammadi, A. A. Eftekhar, A. Khelif, W. Hunt, and A.
Adibi, Appl. Phys. Lett. 92, 221905 �2008�.

19 S. Mohammadi, A. A. Eftekhar, W. Hunt, and A. Adibi, Appl.
Phys. Lett. 94, 051906 �2009�.

20 B. Bonello, C. Charles, and F. Ganot, Appl. Phys. Lett. 90,
021909 �2007�.

21 I. El-Kady, R. H. Olsson, and J. G. Fleming, Appl. Phys. Lett.
92, 233504 �2008�.

22 Y. Pennec, B. Djafari-Rouhani, H. Larabi, J. O. Vasseur, and A.
C. Hladky-Hennion, Phys. Rev. B 78, 104105 �2008�.

23 T.-C. Wu, T.-T. Wu, and J.-C. Hsu, Phys. Rev. B 79, 104306
�2009�.

24 Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P.
Sheng, Science 289, 1734 �2000�.

25 C. Goffaux, J. Sánchez-Dehesa, A. Levy Yeyati, P. Lambin, A.
Khelif, J. O. Vasseur, and B. Djafari-Rouhani, Phys. Rev. Lett.
88, 225502 �2002�.

26 J. F. Robillard, A. Devos, I. Roch-Jeune, and P. A. Mante, Phys.
Rev. B 78, 064302 �2008�.

27 J.-P. Berenger, J. Comput. Phys. 114, 185 �1994�.
28 Maria B. Dühring, V. Laude, and A. Khelif, J. Appl. Phys. 105,

093504 �2009�.
29 S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and

L. A. Kolodziejski, Phys. Rev. B 60, 5751 �1999�.
30 M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan, Phys.

Rev. Lett. 101, 134501 �2008�.
31 A. Sukhovich, B. Merheb, K. Muralidharan, J. O. Vasseur, Y.

Pennec, P. A. Deymier, and J. H. Page, Phys. Rev. Lett. 102,
154301 �2009�.

LOCALLY RESONANT SURFACE ACOUSTIC WAVE BAND… PHYSICAL REVIEW B 81, 214303 �2010�

214303-7

http://dx.doi.org/10.1103/PhysRevE.71.036607
http://dx.doi.org/10.1103/PhysRevE.71.036607
http://dx.doi.org/10.1103/PhysRevE.73.065601
http://dx.doi.org/10.1103/PhysRevE.74.046610
http://dx.doi.org/10.1103/PhysRevE.76.056601
http://dx.doi.org/10.1049/el:20071159
http://dx.doi.org/10.1063/1.2939097
http://dx.doi.org/10.1063/1.3078284
http://dx.doi.org/10.1063/1.3078284
http://dx.doi.org/10.1063/1.2431569
http://dx.doi.org/10.1063/1.2431569
http://dx.doi.org/10.1063/1.2938863
http://dx.doi.org/10.1063/1.2938863
http://dx.doi.org/10.1103/PhysRevB.78.104105
http://dx.doi.org/10.1103/PhysRevB.79.104306
http://dx.doi.org/10.1103/PhysRevB.79.104306
http://dx.doi.org/10.1126/science.289.5485.1734
http://dx.doi.org/10.1103/PhysRevLett.88.225502
http://dx.doi.org/10.1103/PhysRevLett.88.225502
http://dx.doi.org/10.1103/PhysRevB.78.064302
http://dx.doi.org/10.1103/PhysRevB.78.064302
http://dx.doi.org/10.1006/jcph.1994.1159
http://dx.doi.org/10.1063/1.3114543
http://dx.doi.org/10.1063/1.3114543
http://dx.doi.org/10.1103/PhysRevB.60.5751
http://dx.doi.org/10.1103/PhysRevLett.101.134501
http://dx.doi.org/10.1103/PhysRevLett.101.134501
http://dx.doi.org/10.1103/PhysRevLett.102.154301
http://dx.doi.org/10.1103/PhysRevLett.102.154301

