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3-D Electrostatic Hybrid Element Model for
SAW Interdigital Transducers

Carlos F. Jerez-Hanckes, Student Member, IEEE, Vincent Laude, Member, IEEE, Jean-Claude Nédélec,
and Raphael Lardat

Abstract—In this work, the singular behavior of charges
at corners and edges on the metallized areas in SAW trans-
ducers are investigated. In particular, it is demonstrated
that a tensor product of the commonly used Tchebychev
bases overestimates the singularities at corners, and, hence,
it cannot be used in a proper boundary element method
formulation. On the other hand, it is shown that a sim-
ple finite element method-like approach is impractical due
to the enormous number of unknowns required to model
the electrode’s large length-to-width ratio. These consider-
ations are then used for defining a hybrid element model,
which combines Tchebychev and linear polynomials over
differently meshed domains. Such an approach is shown to
suitably account for charge singularities while greatly re-
ducing the number of unknowns. Results are obtained for
isotropic and anisotropic substrates for non-periodic con-
figurations.

I. Introduction

From an early stage in their development, interdigital
transducers (IDTs) have been known to suffer from

diffraction losses at the electrodes’ ends and junctions [1],
[2]. The diffraction is provoked by the uneven distribution
of electrical charges at the corners of the structure: a fun-
damental difference to the regularity displayed by the edge
charges. In fact, this edge behavior is responsible for the
generation of the desired surface acoustic waves (SAWs)
[3]. As a result of the charge inhomogeneity, the quests for
ever narrower acoustic beam widths and ever lower energy
consumption are hindered: hence the need for a complete
model of the electric behavior of the transducer.

The electromechanical equations involved are simplified
by the so-called quasi-static approximation [4], which sepa-
rates the electric field from the magnetic one. From it, a di-
rect relation between the potential and the charge distribu-
tion is derived; if either of them is known, an accurate elec-
trostatic model—one that also embodies the anisotropy
of the substrate—can be obtained. More often than not,

Manuscript received January 15, 2007; accepted September 28,
2007.

C. F. Jerez-Hanckes and V. Laude are with the Département
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approaches rely on the knowledge of the applied poten-
tial; the charges are obtained by analytic and/or numerical
schemes, which are specially efficient when the piezoelec-
tric surface is not entirely metallized. Furthermore, the
electrodes-bus system can be electrostatically pictured as
flat surfaces, as the charges at the metal/piezoelectric in-
terface account for the generation of acoustic waves. How-
ever, this does not circumvent the three-dimensional (3-D)
nature of the problem. Lastly, unless specified, we will as-
sume the electrodes and buses to be perfect conductors.

Previous efforts for simulating the surface charge distri-
bution over IDTs can be classified according to their na-
ture: 2-D or 3-D; analytic or numerical; and within the last
category, upon the function bases used. In 2-D models, the
problem is assumed to be invariant along the electrodes’
length. In this case, several analytic solutions were devel-
oped, most of them using complex function theory [5], [6].
Numerically, some of the models comprise expansions in
pulse functions as in [2], [7], the solutions being found by
the method of moments (MoM) for a differential functional
and by point-matching techniques, respectively. However,
the most adequate way to describe the line charge distri-
bution in the electrode/substrate interface is given by [8]

σ(y) =
∑

n

σn
Tn(y/a)√
1 − (y/a)2

, (1)

where a is the electrode’s half-width and Tn(·) is the first-
kind Tchebychev polynomial of order n. Since these poly-
nomials accurately describe the singular behavior of σ(y)
at the edges of 2-D electrodes, very few of them are re-
quired (3 to 5) compared to those required in the step
function approximation. This improvement has been used
in the construction of hybrids of the boundary and finite
element methods (BEM and FEM) as in [9], [10]. Nonethe-
less, 2-D models are not capable of describing the diffrac-
tion phenomena previously mentioned.

In 3-D space, complete analytic solutions are no longer
available except for a small number of simple geometries,
and therefore we rely only on numerical approaches, some-
times simplified by questionable premises. In [11], the
authors assumed that the signal was not distorted by
diffraction, and consequently the actual charge distribu-
tion σ(x, y) was averaged over the aperture, thereby ren-
dering a 2-D model. In [3], pulse function expansions were
solved by the MoM for an artificial boundary problem pe-
riodic in both directions. This was done in order to deal
with the finiteness of the structure along the transversal
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direction. Although not an accurate picture for a single
IDT, singularities were retrieved at the end points of the
electrodes, from where excitation of Rayleigh waves is ex-
pected. Finally, in [12]–[14] vertex charge inhomogeneities
were revealed by means of a pulse basis expansion, where
the generated linear system was solved by a collocation
method. Unfortunately, the implementation of pulse func-
tions demands a large number of variables due to their
inadequacy in representing the singular charge behavior.
Thus, based on the success that the Tchebychev basis pro-
vided for 2-D models, great improvement in SAW modeling
is to be expected if the singular behaviors are embedded
in the basis functions.

This article is organized as follows: in Section II, we
present several results concerning the asymptotic behav-
ior of charges at corners and edges for flat perfect conduc-
tors; in Section III, a hybrid element model is described
which enforces the edge behavior and approximates singu-
larities at vertices by a linear FEM-like basis; and finally,
preliminary results are discussed for different material con-
figurations for non-periodic structures.

II. Charge Distributions at Edges and Corners

In perfect conductors, electrical charges present two dis-
tinct features: they distribute exclusively over the surface,
thereby defining a surface charge density, and they exhibit
singularities at the edges and corners of the material [15].
Nonetheless, these singularities are subject to the so-called
edge condition: the energy density must be integrable over
any finite domain [16], [17]. More accurately, the electro-
magnetic energy density in any finite domain Ω must be
finite, ∫

Ω

(
|E|2 + |H|2

)
dΩ < ∞, (2)

where E and H represent the electric and magnetic fields,
respectively. The surface charge distribution σ is propor-
tional to the normal electric field,

σ ∝ E · n̂ = −∂φ

∂n
. (3)

In what follows, it will be assumed that the analysis is car-
ried out in the neighborhood of the edge or vertex, i.e., in
a region of small radius with respect to all relevant wave-
lengths, so that low frequency techniques may be applied
[18]. Depending on whether the domain and the boundary
conditions are translationally invariant along one axis or
not, the problem can be stated in two or three dimensions.
Furthermore, our analysis will be focused on the case of flat
electrodes, since it is assumed that the electrical interac-
tion between the conductors and the piezoelectric material
occurs only at the substrate surface.

A. Edges

An edge is characterized by local invariance in one coor-
dinate, as shown in Fig. 1, i.e., the edge is locally straight.

Fig. 1. Local coordinate systems used for the asymptotic analysis at
an edge (left) and at a flat sector vertex (right).

Fig. 2. Singularity curve for α ∈ [0, π]. As the angle becomes less
acute, the singularity weakens.

Let z follow the direction of the edge, then the potential
can continuously be expressed in cylindrical coordinates as

φ(r, θ, z)= rν
[
a0(θ, z)+ra1(θ, z)+r2a2(θ, z)+ . . .

]
.
(4)

This equation holds only outside the conductor, as the
potential on the conductor is constant—in our case, equal
to zero. It is well known [16] that, for two faces intersecting
at an angle α ∈ (0, π), the surface charge density has an
asymptotic—lowest order—behavior given by

σ(r, θ, z) ∼ 1
r1−ν

, ν =
π

2π −α
, (5)

where (4) has been replaced in (3).
Fig. 2 shows the decrease in the singular exponent with

α, the most singular case occuring for infinitely thin edges,
α = 0 and ν = 1/2. This result validates the Tchebychev
polynomials (1) approach for describing the electrodes: let
the edges be located at x1 = ±a, and let d be the distance
from either edge to x1; then d = |a − x1| and

σ(d) =
Tn(1 − d/a)√
1 − (1 − d/a)2

=
aTn(1 − d/a)√

2ad − d2
∼ C(d)√

d
,

which reveals the aforementioned behavior.
At this point, we could consider approximating the

charges over a rectangular conductor—a single electrode—
by tensorial products of Tchebychev polynomials:

σ(x, y) ?=
∑
m,n

σmn
Tn(x/a)√
1 − (x/a)2

Tm(y/b)√
1 − (y/b)2

,
(6)
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where a, b are equal to half the dimensions of the rectangle.
At any edge sufficiently far from the vertices, the approxi-
mation is valid, the demonstration being equivalent to the
one shown before. At a corner, however, we must regard
the behavior as the lowest-order approximation. Let us in-
troduce the local polar coordinates (r, θ), measured from
any of the vertices (±a,±b):

x = ±a − r cos θ, y = ±b − r sin θ.

The lowest order occurs for n, m = 0. Hence, for r tending
to zero,

σ(r, θ) =

√
ab

r
√

cos θ sin θ

×
[
4 − 2r

(
cos θ

a
+

sin θ

b

)
+

r2

ab
cos θ sin θ

]−1/2

.

After a Taylor expansion for the term in square brackets,
we find

σ(r, θ) ≈
√

ab

r
√

cos θ sin θ

(
1
2

+ O(r)
)

.

If we fix r, then the singular behavior is as 1/
√

d, where d
is the distance to the edge given by either r sin θ or r cos θ
when θ approaches 0 or π/2, respectively. On the other
hand, for a fixed angle, it shows a 1/r behavior. Such sin-
gularity is non-integrable over the surface, as it yields a
divergent potential in log r, and, therefore, our guess in
(6) turns out to be invalid. This compels us to regard the
entire 3-D local space at corners.

B. Corners

To describe the neighborhood of a flat corner, most au-
thors [18]–[20] use spherical coordinates, as in Fig. 1, al-
though the sphero-conal system has also been used [21].
The potential is locally given by

φ(R, θ, ϕ) = RνV (θ, ϕ). (7)

From (3), the surface charge distributes as

σ ∼ Rν−1. (8)

By separation of variables, an eigenfunction problem
is formulated for the angular function: V (θ, ϕ) satisfies
Laplace’s equation on the conducting sector S, of angle β,
with an homogeneous Dirichlet condition over the bound-
aries C. Mathematically,

∆SV (θ, ϕ) + ν(ν + 1)V (θ, ϕ) = 0 over S,

V (θ, ϕ) = 0 over C,

where

∆S u =
1

sin2 θ

∂2u

∂ϕ2 +
1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)

is the Laplace-Beltrami operator. When β = π, the an-
gular sector is a half-plane given by ϕ = 0, which is also
ϕ = 2π, and V (θ, ϕ) is given by spherical harmonics that
vanish at ϕ = 0, 2π. This case is equivalent to the local
behavior at an edge, as the smallest eigenvalue is ν = 1/2.
For other angular sectors, solutions can only be found nu-
merically through variational techniques [22] or via the
Wentzel-Kramers-Brillouin (WKB) method [21]. From the
cited works, the asymptotic behavior for corner angles π/2
and 3π/2 are approximately

ν90 ≈ 0.296 584 ⇒ σ90 ∼ 1
R0.703416 ,

(9a)

ν270 ≈ 0.814 655 ⇒ σ270 ∼ 1
R0.185345 .

(9b)

More generally, the singularity exponent in modulus is
smaller or larger than 1/2, depending on the reentrant or
salient nature of the corner, respectively. No analytical so-
lution can be found for these values; separation of cartesian
variables cannot be employed for modeling charge distri-
butions at corners.

From a SAW modeling perspective, two possible ap-
proaches are at hand: (i) define local polar coordinates
for every corner and establish the appropriate angular
functions; or (ii) approximate charges by interpolating
functions over small elements surrounding the vertex. Al-
though more rigorous than (ii), solution (i) requires the
solving of complex issues such as function definition, deter-
mination of valid domains, and computation of solutions
at intersecting domains, all of which have to be dealt with
for every geometry considered. On the other hand, (ii) re-
quires only the choice of interpolating functions, avoiding
all other problems, for which reason it will be the approach
taken.

Singular interpolating functions were used in [23],
where the authors model the surface charge density via
a Galerkin formalism that uses continuous second-order
basis for smooth areas, and defines special singular ele-
ments according to the different angles encountered. This
approach requires fewer elements than in a zero-order or
first-order approximation but the element integral calcula-
tions become more complicated; the integrals are hypersin-
gular for self-terms. For a wisely refined mesh, the vertex
areas can still be approximated by simpler functions such
as first-order polynomials, as in common FEM formula-
tions. Unluckily for the case of SAW IDTs, this alternative
on its own demands a number of degrees of freedom (DOF)
beyond any practical use, as discussed further below.

III. Hybrid Elements Model

From the above analysis, and always assuming flat per-
fect conductors, we propose the following model:

• The metallized area Ω is divided in two subdomains:
ΩT , which takes most of the electrodes’ areas, and
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Fig. 3. Parameters and regions used in the hybrid element model for a single IDT period. Dark gray areas are triangularly meshed, whereas
light gray regions correspond to Tchebychev-pulse solution subdomains.

ΩF , which corresponds to the remaining domain, i.e.,
ΩF = Ω \ ΩT . These areas are depicted in Fig. 3.

• Each of the rectangular areas, corresponding to the
number of electrodes Nc, in ΩT is divided into K
stripes of width ∆k, where the charges are modeled
by Tchebychev polynomials Tn, 0 ≤ n ≤ NTch, multi-
plied by their weight function. NTch is the maximum
polynomial order to be used. The solution at the stripe
k, on the c-th electrode, is given by

σck(x, y) =
NTch∑
n=0

σckn
Tn(yc)√
1 − y2

c

	 (xc
k) 	 (2yc),

(10)

where xc
k = (x − Xc

k)/∆k and yc = (y − Yc)/ac. Yc is
the y-coordinate of the c-electrode’s center, ac is its
half-width, and Xc

k is the central x-coordinate of the
k-th stripe at that same electrode. The function 	(x)
is defined as

	(x) =

{
1 |x| ≤ 1

2

0 |x| > 1
2

.

Using the above, the solution over ΩT can be writ-
ten as

σT (x, y) =
Nc∑
c=1

K∑
k=1

σck(x, y). (11)

The choice of pulse functions along the electrodes’
length is justified by the fact that the edge charges dis-
tribute in a regular fashion. Nonetheless, other bases
could be equally implemented such as Fourier-basis or
higher-order polynomials.

• ΩF is triangularly meshed so as to approximate the
solution by classic FEM-type first-order (P1) polyno-
mials [24], i.e.,

σF (x, y) =
NF∑
e=1

3∑
j=1

σe
jN

e
j (x, y), (12)

where NF is the total number of elements in ΩF and
Ne

j (x, y) is the j-th linear interpolating function of the
e-th element.

With these approximations, the complete charge distribu-
tion σ(x, y) over Ω is obtained by solving the Fredholm
integral equation of the first kind:

φ(x, y) =
∫

Ω
G(x, y;x′, y′)σ(x′, y′) dx′dy′, (13)

where σ(x, y) is the unknown, φ(x, y) is the known applied
potential, and G(x, y;x′, y′) is the electrostatic Green’s
function. This function may represent an isotropic or
anisotropic material, a nonperiodic [25] or periodic struc-
ture [13], without changing the formulation of the problem.
It is numerically solved by a variational scheme: multiply-
ing (13) by a test function σt and integrating over Ω yields∫

Ω
φ(x, y)σt(x, y)dxdy =∫

Ω

∫
Ω

G(x, y;x′, y′)σ(x′, y′)σt(x, y) dx′dy′.

By replacing the test function for the different approxi-
mations, we calculate self-terms and cross terms. When in
ΩT , the test function chosen is

σt
T (x, y) =

Tn(yc)√
1 − y2

c

	 [xc
k] 	 [2yc] (14)

for all n = 0, . . . , NTch, k = 1, . . . ,K, and c = 1, . . . , Nc.
For ΩF , the tests functions σt

F are

σt
F (x, y) = Ne

j (x, y)

for all j ∈ {1, 2, 3} and 1 ≤ e ≤ NF . Notice that a global
node numbering system is necessary afterwards. Through
this formulation, a discrete system is built of the form(

MFF MFT

M t
FT MTT

)(
σF

σT

)
=

(
φF

φT

)
, (15)

where the resulting matrix M is symmetric, due to the
form of the kernel—Green’s function—and, consequently,
the number of terms to be found is reduced by half. Fur-
thermore, this formulation does not require the imposition
of matching conditions at the boundaries of the different el-
ements; they occur naturally. Opposingly, collocation tech-
niques require the enforcement of matching conditions.

IV. Results and Discussion

A. Model Validation

To validate our model, we first compare analytic results
to those obtained by first-order approximations. Once we
have established the accuracy of the P1 approximation, we
assess the proposed hybrid elements model.
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Fig. 4. First-order approximation and exact solution for the normal-
ized charge distribution over a disk of radius a. A highly refined mesh
made of 2997 nodes has been used. (a) Normalized charge distribu-
tions. (b) Used mesh.

1. First-Order Approximations: Let us consider the
charge distribution over a perfectly conducting disk of
radius a and zero thickness, surrounded by an isotropic
medium. The system is governed by the classic 3-D Pois-
son’s equation whose Green’s function is

G(ρ, z, z′) =
1

4πε
√

ρ2 + (z − z′)2
, (16)

where ρ =
√

(x − x′)2 + (y − y′)2. For a constant applied
potential, we know that the charge density is given by [26]

σ = σ0/
√

1 − (ρ/a)2,

where σ0 is a dimensional quantity proportional to the po-
tential. For a numerical approximation, we mesh the disk
following the method in [27], where it was shown that,
for edge and corner singularities, optimal meshes can be
achieved when refinement is given by a h1/(1−ν) rule, h
being obtained from the diameter of the circle inscribed
in each triangle. If the domain is meshed as described,
the convergence rate of the first-order approximation is
proportional to h. Adaptive meshing can be implemented
with commercial meshers or free ones such as FreeFem++
[28], our choice for this work. Fig. 4 shows the mesh used,
for which ν = 1/2, and the close agreement between our
results and the analytic behavior up to 99.95% of the ra-
dius. Closer to the edge, the calculations lose accuracy as
a consequence of the discrete nature of the approximation.

2. Hybrid Element Method vs. First-Order Approxima-
tions: In Fig. 5, we obtain the normalized charge distri-

Fig. 5. Contour plots for (a) P1 and (b) hybrid bases approximation
of the normalized charge distribution over a flat rectangle with length
to width ratio 3:1; (a) required 4939 variables, whereas (b) required
only 3191 nodes in the triangular mesh and 90 degrees of freedom in
the Tchebychev region, for a total of 3281 degrees of freedom. (a) P1
approximation solution. (b) Mixed element solution.

bution contours for a perfectly conducting flat rectangle.
Since no analytic solution is available, we compare solu-
tions given by solely P1 approximations [Fig. 5(a)] and
the hybrid elements model [Fig. 5(b)], where the center
of the rectangle is modeled by Tchebychev polynomials.
Overall, both solutions behave equally, but the number
of variables required for the hybrid approach is already
60% that of the P1 approximation, proving the validity
of the proposed model. Further on, it will be shown that
the economy in degrees of freedom increases proportionally
with the electrode length. On the other hand, the number
of Tchebychev quadrature points required for matrix term
computations is inversely proportional to the mesh param-
eter h, in order to compensate for the large size of the
stripes compared to the triangular elements. Hence, there
is a need for optimal meshing strategies such as those de-
scribed below.

B. Mesh Design

The mesh used for representing ΩF directly influences
the calculation time and the accuracy of the solution. On
the one hand, the number of nodes in ΩF must be suffi-
cient to smoothly describe the singularities and also al-
low for a correct matching between the FEM solution
and the Tchebychev profiles at the boundary with ΩT .
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Fig. 6. Section of ΩF meshed. Refinement toward the edges and
corners is necessary for accuracy. Striped areas define the electrodes’
belonging to ΩT .

On the other hand, the number of matrix term computa-
tions increases as N2

F and as N3
F for solving the linear sys-

tem if classic algorithms are applied. A balanced meshing
strategy consists of defining an interior region, Ωi 
⊆ ΩF ,
coarsely meshed, and refining the remaining areas closer
to the borders of ΩF . This approach proved to reduce the
number of unknowns while keeping an adequate degree of
freedom for accounting for singularities. An example of the
resulting mesh is presented in Fig. 6.

For a suitable match between P1 and Tchebychev ele-
ments, a certain distance from a corner singularity is nec-
essary. Consider the neighborhood of a reentrant corner
given by an electrode-bus intersection. Let EF denote the
electrode region in ΩF containing the angle, i.e., EF ⊂ ΩF ,
of dimensions a × LF . The mesh surrounding the corner
is given by the interplay between the length of EF , and
the width and position of the first stripes in ΩT . This is
explained as follows: as we move away from the reentrant
corner, a transition occurs from the lower-order singularity
toward the ubiquitous [1 − y2

c ]−1/2 edge singularity. Since
the last behavior is imposed in ΩT , mesh and stripe re-
finement are needed to smoothly describe the change. In
this regard, two approaches are at hand, depending on the
length of EF , LF :

1) if large compared to the electrode width a, as seen
in Fig. 6, the transition occurs almost solely in ΩF ,
and all stripes can be much wider than the closest
triangular mesh elements;

2) if smaller than a, stripes near ΩF must have widths
comparable to the neighboring triangular elements in
ΩF so as to continue the transition.

In either case, mesh refinement is necessary around the
vertex, as previously discussed. Notice that a singularity
transition region is always required, and, therefore, we can-
not place ΩT just after the bus. For salient corners, these
issues also apply.

C. Isotropic Electrostatic Green’s Function

As a first test for our model, we consider a single pair of
opposing electrodes, placed over the surface of an isotropic
half-infinite substrate in contact with vacuum. For this, we
use a non-periodic, isotropic Green’s function, found as the

solution for Laplace’s equation at the interface between
two materials at z = z′ = 0:

Giso(x̄, ȳ) =
1

2πε0(1 + εr)
1√

x̄2 + ȳ2
, (17)

where x̄ = x − x′, ȳ = y − y′, and ε0 is the vacuum per-
mittivity.

Fig. 7(a) shows the surface charge distribution for a
single electrode-bus cell placed over a GaAs substrate
(εr = 9.735). The electrodes are 60λ long, the metalliza-
tion ratio is 0.7, the bus widths are equal to 15λ, the bus-
electrode gap is equal to 1.5λ, and the applied voltages are
±1 V. Fig. 7(b) and (c) display the singularities presented
by reentrant corners as seen in (9b), and by salient vertices
as observed in (9a), respectively. Moreover, they reveal the
accurate matching between the different approximations
at the common boundaries of ΩF and ΩT . The solutions
found at the nodes must be interpreted as average val-
ues over surface elements, and, hence, do not reflect the
infinities that should be found if their values were taken
exactly at the boundaries. From the solutions obtained,
capacitances due to charge build-up at the borders of the
conductors can be estimated.

For equal electrode-bus dimensions and applied po-
tential modulus, a positively (negatively) charged bus-
electrode system is observed to be the inverse reflection of
the negative (positive) one. Notwithstanding, inside each
electrode, charges are more concentrated at the facing sides
of the electrode pair than at the outer ones. This asymme-
try is caused by the non-periodic nature of the kernel and
should disappear for the periodic case [13].

As expected, great economy is made by approximating
the electrodes by Tchebychev bases over stripes instead of
using P1 bases over a meshed domain. Let us denote by Ne

v

the number of nodes at any of the borders between ΩF and
ΩT , and α the ratio between the length of the electrode L
and the central wavelength λ. Assuming a uniform mesh, a
lower limit for the number of nodes that would be required
to model a single electrode in ΩT is approximately given by

Ne
v × L

a
Ne

v = (Ne
v )2

2α

MR
,

where MR is the metallization ratio a/p = 2a/λ for a sin-
gle electrode period. As an example, for the simulation pre-
sented in Fig. 7(a), where Ne

v = 10, if we had meshed ΩT ,
the number of variables would have been proportional to

Nc(Ne
v )2

2α

MR
= 2 × (10)2 × 2 · 60

0.7
≈ 4 × 104,

whereas the number of Tchebychev variables accounts for
only Nc × K × (NT + 1) = 800, where NT is the max-
imum Tchebychev polynomial order and Nc is the total
number of electrodes. This yields a reduction in number
of unknowns of 50 times, which translates into a saving of
2500 times less matrix elements to compute.
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TABLE I
Computation Times for the Isotropic Case for Different Parameter Values (λ = 2 µm, a/p = 70%) at Similar Accuracies.

Run Electrode length (λ) Bus width (λ) NFEM K NTch NGT NGL Total DOF Time (min.)

A 60 15 959 100 3 16 5 1759 7.29
B 60 15 959 60 3 14 7 1439 5.01
C 60 15 959 40 3 14 7 1279 3.27
D 100 20 1341 200 3 16 5 2941 27.58
E 100 20 1341 300 1 16 5 1841 18.13

M2 80 15 940 200 3 14 4 2540 16.28
M2-O 80 15 940 30 3 14 7 1180 2.49

Fig. 7. Surface charge distribution for an isotropic Green’s func-
tion corresponding to a GaAs substrate. Charges are scaled in ε0.
(a) Overall charge distribution. (b) Charge density at the positive
electrode-bus junction. At the reentrant corner, the singularity is
small in comparison to the one at the edges, as theoretically ex-
pected. (c) Positive electrode tip. Charge density increases at the
side facing the opposite electrode, and large peaks are observed at
salient vertices.

Fig. 8. Comparison of surface charge distributions for cuts YX
(square markers) and YZ (circle markers) for LNO. Equal simulation
parameters were used: K = 200, NF = 1075, NTch = 3, NGL = 4,
and NGT = 18.

In the present case, the kernel-test function integrals are
solved by semi-analytic expressions in order to accelerate
the calculation. The resulting expressions are then solved
by either Gauss-Tchebychev or Gauss-Legendre quadra-
tures, the choice depending on the weight function in the
integral. Due to small differences found between the ma-
trix elements, mij and mji, we have chosen to calculate all
elements, and symmetrize the resulting matrix. This cer-
tainly slows computation times but assures the best con-
vergence, and further improvement is to be expected. With
this in mind, several calculation times are shown in Table I,
where variations for electrode length, polynomial order,
bus width, stripe number K, and number of terms used
in Gauss-Tchebychev (NGT ) and Gauss-Legendre quadra-
tures (NGL) are exposed. Although for a purely electro-
static case the wavelength has no influence over the solu-
tions, we have parametrized dimensions in λ in order to
reflect dimensions usually found in SAW transducers.

The simulations presented were selected upon agree-
ment with fundamental electrostatics as well as interface
matching. For instance, when there is poor meshing, pos-
itive values at nodes can be found at the negative elec-
trode and vice versa. This incongruency is due to the lack
of nodes, as linear interpolation will not properly model
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singularity curves. Matching was analyzed by defining a
threshold for the differences between different approxima-
tions at the interface.

From Table I, consistency with common 2-D simulations
is retrieved by the small values of NTch used for obtain-
ing acceptable solutions. For simulations A-E, all stripes
are equidistant, i.e., ∆k = ∆ = L/K, the bus-electrode
spacing is equal to 1.5λ, and the meshes used are of the
type shown in Fig. 6. For runs A-C, the exact same mesh
was used but with different values for K and NGT . It is
observed that, as K diminishes, the variable NGL, asso-
ciated with width quadrature along the stripe, must be
increased in order to account for wider stripes, so as to
provide sensible results. Simulation A corresponds to the
solution shown in Fig. 7. For simulations D and E, elec-
trode length and bus width were increased, thereby re-
quiring more unknowns, K and NF , and thus accounting
for large computation times. The factor of two increase
in processing time between simulations D and E reveals
the impact that NTch has on computation time. Thus, ac-
curate solutions can be obtained by refining stripe width
and reducing NTch, and, consequently, diminishing com-
putation time as well. Hence, further time reduction can
be expected by adaptively defining stripe widths and poly-
nomial order.

In runs M2 and M2-O, the mesh was changed so that
ΩT is closer to the buses, and the bus-electrode spacing
is equal to λ. As previously discussed, the proximity of
the stripes in such a case is crucial for convergence. In
M2, 200 equidistant stripes were required for solving the
80λ electrode, whereas in M2-O an uneven stripe spacing
following Tchebychev zeros yielded better matching results
for only 30 stripes and reduced computation time by a
factor of 6.5.

D. Anisotropic Electrostatic Green’s Function

Although the isotropic case allows us to validate and
analyze several issues concerning the proposed hybrid
element method, the model’s utility relies on the abil-
ity to portray anisotropic media. In this case, the vac-
uum/anisotropic substrate Green’s function is given by

Gani(x̄, ȳ) =
1

2πε0

[√
x̄2 + ȳ2

+
√

εnx̄2 + 2εpx̄ȳ + εmȳ2
]−1

, (18)

where the following parameters are defined in terms of the
relative permittivities of the substrate:

εm = ε11ε33 − ε213 > 0,

εn = ε22ε33 − ε223 > 0,

εp = ε12ε33 − ε13ε23.

Notice that, in the isotropic case, we recover (17).
In Fig. 8 we present positive electrode-bus charge dis-

tributions for two different cuts of lithium niobate (LNO):
YZ (ε11 = 23.25, ε22 = ε33 = 40.32), and YX (ε11 = ε33 =

40.32, ε22 = 23.25) [29], which correspond to two cases
for εp = 0: anisotropic, εm < εn, and isotropic, εm = εn,
respectively. Physically speaking, the second case is equiv-
alent to placing the electrodes at an angle of 90◦ with
respect to their position in the first scenario, the YZ-cut.
The electrode considered has a length of 80 µm, a width of
.7 µm, a bus width of 20 µm, and an electrode-bus spacing
of 2 µm. It is clear that the anisotropy modifies the charge
profiles: for the YZ-cut, the overall charge concentration
is greater than for the YX case. Moreover, values at the
edges have relative increases larger than those at the cor-
ners. This is explained by the smaller dielectric constant
along the y direction, accounting for profiles different from
those found in isotropic cases.

From a computational point of view, the same consid-
erations given for the isotropic case hold. However, the
anisotropy in the kernel function requires special attention
along those axes where the dielectric constant is smaller.
This is due to the weight the dielectric terms have on
the integral equation, and, thus, mesh optimization should
take into account this preference.

V. Conclusions

We have discussed the singular behavior at the edges
and corners of flat conductors. While Tchebychev approx-
imations at edges prove to be adequate, analytic solutions
at the corners are discarded. A hybrid element approach is
proposed, using Tchebychev and linear interpolating poly-
nomials, where the integral equation is solved variation-
ally, and results for isotropic and anisotropic non-periodic
Green’s function validate the model. The method shows to
be in accordance with theoretical results as well as with
previous models, while greatly reducing the number of un-
knowns. Future work comprises enhanced optimization to
reduce computation time and the implementation of the
full piezoelectric Green’s function.
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From 1995 to 1999, he was a researcher
at Thomson-CSF Corporate Research Labo-
ratory (now Thales TRT) in Orsay, France,
where he worked on various aspects of optical

signal processing, wavefront sensing, and ultrashort laser pulses.
In 2000, he joined Thomson-CSF Microsonics in Sophia-Antipolis,

France, to work on surface acoustic wave propagation. At the end of
the same year, he joined the Centre National de la Recherche Scien-
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