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Phononic crystals with triangular and honeycomb lattices are investigated experimentally and
theoretically. They are composed of arrays of steel cylinders immersed in water. The measured
transmission spectra reveal the existence of complete band gaps but also of deaf bands. Band gaps
and deaf bands are identified by comparing band structure computations, obtained by a
periodic-boundary finite element method, with transmission simulations, obtained using the finite
difference time domain method. The appearance of flat bands and the polarization of the associated
eigenmodes is also discussed. Triangular and honeycomb phononic crystals with equal cylinder
diameter and smallest spacing are compared. As previously obtained with air-solid phononic
crystals, it is found that the first complete band gap opens for the honeycomb lattice but not for the
triangular lattice, thanks to symmetry reduction. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2472650�

INTRODUCTION

The study of acoustic and elastic wave propagation in
phononic crystals has been receiving great interest recently.
Phononic crystals are inhomogeneous elastic media com-
posed of one-, two-, or three-dimensional periodic arrays of
inclusions embedded in a matrix. Several classes of phononic
crystals exist that differ mainly by the physical nature of the
inclusion and of the matrix. The solid/solid, fluid/fluid, and
the mixed solid/fluid composite systems have attracted atten-
tion. These composite media can exhibit stop bands in their
transmission spectra for which the propagation of waves is
strictly forbidden in all directions.1–8 Such complete acoustic
band gaps result from a large contrast in the value of the
elastic constants and/or the mass density of the constitutive
materials. By adding a line defect in the periodic media, it is
possible to create highly confined guides for acoustic and
elastic waves.9–11 Such phononic waveguides can confine
and efficiently guide acoustic waves around sharp corners.

One of the goals of the study of phononic crystals is the
search for material combinations or structures producing
large gaps at some desired frequency range. It has been
shown that complete band gaps can be enlarged by decreas-
ing the lattice symmetry.5,12–14 We consider in this work the
triangular lattice with one or two scatterers in the unit cell,
the latter case being referred to as the honeycomb lattice, and
compare these two structures. Specifically, we investigate ex-
perimentally the transmission of ultrasonic acoustic waves

through two-dimensional phononic crystals consisting of
steel cylinders immersed in water, and compare it to the
acoustic band structure obtained by numerical analysis. The
choice of steel and water as the composite materials is based
on the strong contrast in their densities and elastic constants
and has proven useful for the fabrication of square-lattice
phononic crystals.13,15 It is observed that, for both the trian-
gular and the honeycomb case, deaf bands appear in addition
to band gaps, in accordance with the results of Sanchez-
Perez et al. for air/solid triangular sonic crystals.5 Deaf bands
are acoustic branches of modes that cannot be excited de-
pending on the symmetry of the mode with respect to the
source, hence they do not transport acoustic energy through
the crystal. In the usual case that a plane wave is normally
incident on the phononic crystal, a mode that is antisymmet-
ric with respect to the propagation direction will be deaf. We
show that band gaps and deaf bands can be identified by
comparing band structure computations for the infinite struc-
ture, obtained by a periodic-boundary finite element method,
with transmission simulations for the finite structure, ob-
tained using the finite difference time domain method.

METHODS

Figure 1 displays the experimental setup used in our ex-
periments. Triangular-lattice phononic crystals were con-
structed using steel cylinders with a diameter d=1.2 mm and
a length of 150 mm. The nearest distance between the cen-
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ters of two steel cylinders is a=1.5 mm. Alignment of the
cylinders is obtained by using two supporting plates in which
a periodic array of holes has been machined. The honeycomb
lattice is simply formed from the triangular one by removing
a steel cylinder of the central hexagonal unit cell. Because of
the isotropy of elastic wave propagation in the materials con-
sidered, complete band gaps can in principle be identified
experimentally from the transmission spectrum measured
along the two highest symmetry directions. These two direc-
tions correspond to the �K and the �M directions of the first
irreducible Brillouin zone, respectively. The experimental ar-
rangement for measuring the transmission along these two
directions is depicted in Fig. 1. The measurement procedure
is based on the well-known ultrasonic immersion transmis-
sion technique and was described in Ref. 13. Two sets of
transducers are used in order to cover a wide spectrum. Their
central frequencies are around 450 and 900 kHz, respec-
tively. By overlapping transmissions, the whole measured
spectrum runs from 100 to 1200 kHz.

The finite difference time domain �FDTD� method is
used to compute the transmission through the finite-thickness
phononic crystal samples, following the procedure described
in detail in Ref. 15. The output of the FDTD method can thus
be compared directly with transmission measurements. It is
worth noting that both the experimental set up and the FDTD
computation only measure the transmission of waves that are
normally incident on the samples. Therefore, Bragg scatter-
ing to diffraction orders larger than zero in the water sur-
rounding the phononic crystals is not taken into account in
our analysis. In addition, the band structure of the �infinite�
phononic crystals is computed using a finite element method
�FEM� with periodic boundary conditions.16,17 The FEM
computation also provides us with the eigenmodes associated
with each frequency-wave vector point in the band structure.
Thus, it is possible to check whether a given band in the
band structure is deaf or not, as explained below. In addition,

in the case of flat bands, the localization of elastic energy
within the scatterers or the matrix can be checked.

TRIANGULAR PHONONIC CRYSTAL

Before turning to the experimental results, we display in
Fig. 2 the complete band structure for the triangular lattice.
This plot shows the frequency versus the reduced wave vec-
tor along the first irreducible Brillouin zone. We observe the
existence of two complete bandgaps inside which neither
vibration nor propagation are allowed for all directions. The
first and the second complete band gaps extend from 884 to
1029 kHz, and from 1761 to 1963 kHz, respectively. Only
the first one is observable in our experiments. We also note
the existence of two flat bands. Modes associated with a flat
band should have a group velocity equal or close to zero and
exhibit strong spatial localization. In practice, such localized
modes are often created by inserting a defect in a periodic
structure, which constitutes a cavity. However, this is not the
case of our purely periodic structure. In order to check the
localization of these modes, the eigenmodes associated with
the frequency-wave vector points labeled A and B in the
band structure of Fig. 2 are displayed in Figs. 3 and 4, re-
spectively. It can be seen from Fig. 3 that the first flat band is

FIG. 1. �Color online� Definition of the propagation directions for �a� trian-
gular and �b� honeycomb phononic crystals, and �c� experimental setup used
to measure transmission spectra using acoustic transducers immersed in
water.

FIG. 2. �Color online� Band structure of the infinite triangular-lattice
phononic crystal composed of steel cylinders in water, plotted along the �
−K−M −� path of the first irreducible Brillouin zone.

FIG. 3. �Color online� Real part of the pressure field in water for the eigen-
mode labeled A in the band structure of Fig. 2.
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associated with a pressure mode that is localized in the water
matrix and that degenerates with the fourth band at the �
point. Displacements inside the steel rods are zero to numeri-
cal errors. However, as illustrated by Fig. 4, the flat band
above the second complete band gap is associated with a
mode localized inside each individual steel rod. This mode
has in-plane elastic displacement in the steel rod, but the
pressure field in the water matrix vanishes to numerical er-
rors. The rods do not interact with each other through the
water matrix and hence cannot be excited by a wave incident
from water. The resonance frequency scales with the inverse
of the radius of the rod.

The transmission properties of the triangular-lattice were
first evaluated experimentally by performing two transmis-
sion measurements through the phononic crystal arranged
such that the entrance surface of the phononic crystal is ei-
ther perpendicular to the �M direction or the �K direction,
as depicted in Figs. 5 and 6, respectively. In Fig. 5, a strong
attenuation is observed from 461 to 612 kHz and from 914 to
1078 kHz in the �M direction, in good agreement with the
FDTD computation. Two band gaps are also clearly apparent
in the band structure. The FDTD computation predicts a
transmission that is larger than the measured one in between
the two band gaps �transmission due to the second acoustic
branch� and above the second gap �transmission due to the
third and the fourth branches�. However, these branches are
not found to be deaf with the FEM computation. For in-
stance, Fig. 5�c� displays the pressure field associated with
the point labeled C on the second branch of the band struc-
ture. This mode is symmetrical with respect to the �M
propagation direction.

In Fig. 6, a strong attenuation is found to extend from
555 to 1097 kHz in the �K direction, both in the measure-
ments and in the FDTD computation. However, the band

structure suggests that the band gap is responsible for the
attenuation only in the frequency range from 950 to 1097
kHz. In the frequency range 550 to 950 kHz, the second
acoustic branch is in principle present but is actually deaf. A
similar observation for triangular lattice air-solid sonic crys-
tals was made in Ref. 5 and confirmed in Ref. 18 by using a
phase-shift analysis. The pressure field associated with the
point labeled D on the second branch of the band structure is
displayed in Fig. 6�c�. This eigenmode is antisymmetric with
respect to the propagation direction. Then a line integral
taken along the direction perpendicular to the propagation
direction vanishes, and the coupling with the incident plane
wave is zero. A similar computation shows that the fourth
branch is also deaf. However, the third flat branch is not, and
a retransmission at its frequency is observed in the transmis-
sion spectrum.

Overlapping the transmission spectra in Figs. 5 and 6,
and without consideration of the band structure, it would be
tempting to conclude that two complete band gaps exist be-
tween 555 and 612 kHz and between 914 and 1078 kHz.
However, the former is actually a combination of a band gap
in one direction and of a deaf band in the other, and hence is
not a true complete band gap. For instance, a defect-based
waveguide managed in the triangular-lattice phononic crystal
would only operate in the upper band gap, and would be
leaky in the first.

The band structures in Figs. 5 and 6 appear to be rather

FIG. 4. �Color online� Real part of the �a� x and �b� y displacement field in
the steel rods for the eigenmode labeled B in the band structure of Fig. 2.

FIG. 5. �Color online� �a� Experimental �thick red solid line� and theoretical
�thin blue solid line� transmission through a triangular-lattice phononic crys-
tal of steel cylinders in water, along the �M direction. �b� Band structure of
the infinite phononic crystal. �c� Real part of the pressure field in water for
the eigenmode labeled C in the band structure. The arrow shows the direc-
tion of incidence of waves launched by the transducer.
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similar. One striking difference, however, is that the first
branch folding does not open a band gap along the �K di-
rection. The first and the second branch yield eigenmodes
that are not interacting. As a consequence, the first complete
band gap does not open with the triangular lattice.

HONEYCOMB PHONONIC CRYSTAL

The transmission properties of the honeycomb phononic
crystal were then evaluated following the same procedure as
for the triangular phononic crystal. Figures 7 and 8 display
the results for propagation along the �K and the �M direc-
tion, respectively. Again, the combination of the transmission
and the band structure gives insight in the band gap proper-
ties. For the �K direction, Fig. 7, there are three band gaps
between the first and the second band, from 258 to 466 kHz,
between the third and the fourth band, from 538 to 674 kHz,
and between the seventh and the eighth bands, from 1050 to
1100 kHz. In addition, the fifth band is deaf, which causes an
attenuation in the transmission between 724 and 776 kHz.
The pressure field associated with the point labeled E on the
fifth band is displayed in Fig. 7�c�. This eigenmode is anti-
symmetric with respect to the propagation direction. It can
be noted that the folding of the fifth to the sixth band does
not create a band gap.

For the �M direction, Fig. 8, there are four band gaps
between the first and the second band, from 244 to 440 kHz,

between the third and the fourth band, from 573 to 626 kHz,
between the fifth and the sixth band, from 760 to 830 kHz,
and between the seventh and the eighth bands, from 980 to
1000 kHz. Again, the fifth band is deaf, which causes a
strong attenuation from 660 to 760 kHz. The pressure field
associated with the point labeled F on the fifth band is dis-
played in Fig. 8�c�. This eigenmode is antisymmetric with
respect to the propagation direction. The ninth band is also
deaf. Overlapping the results for the �K and the �M direc-
tions, we find there are two complete band gaps between 258
and 440 kHz, and between 573 kHz and 626 kHz. The
widths of these complete band gaps are 182 kHz and 53 kHz,
respectively.

DISCUSSION AND CONCLUSION

Comparing the triangular and the honeycomb phononic
crystal, we note that the complete band gaps in the honey-
comb case appear at lower frequencies than in the triangular
case. To be more specific, we consider reduced band gap
frequencies by multiplying the frequency with the lattice
constant and dividing with the velocity of longitudinal waves
in water. The lattice constant in the triangular case is the
distance between the centers of two nearest steel cylinders.
In the honeycomb case, the lattice constant is the distance
between the centers of two nearest hexagonal cells. This
means that the lattice constant of the honeycomb case is �3

FIG. 6. �Color online� �a� Experimental �thick red solid line� and theoretical
�thin blue solid line� transmission through a triangular-lattice phononic crys-
tal of steel cylinders in water, along the �K direction. �b� Band structure of
the infinite phononic crystal. �c� Real part of the pressure field in water for
the eigenmode labeled D in the band structure. The arrow shows the direc-
tion of incidence of waves launched by the transducer. This mode belongs to
a deaf band and is not excited by a plane-wave transducer.

FIG. 7. �Color online� �a� Experimental �thick red solid line� and theoretical
�thin blue solid line� transmission through a honeycomb phononic crystal of
steel cylinders in water, along the �K direction. �b� Band structure of the
infinite phononic crystal. �c� Real part of the pressure field in water for the
eigenmode labeled E in the band structure. The arrow shows the direction of
incidence of waves launched by the transducer. This mode belongs to a deaf
band.
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times the lattice constant of the triangular case. The complete
band gaps of the honeycomb structure show up in the re-
duced frequency range from 0.45 to 0.77 �fractional band-
width 52%�, and from 1 to 1.09 �fractional bandwidth 9%�,
while that of the triangular case show up from 0.92 to 1.08
�fractional bandwidth 17%�. We have already noted that the
first complete band gap in the triangular case �between the
first and the second band in Figs. 5 and 6� does not open
because the second band is deaf in the �K direction. When
steel cylinders are removed from the triangular lattice to
form the honeycomb lattice, the symmetry reduces and the
first complete band gap opens, as mentioned in Ref. 14 in the
case of the air/solid composition.

In summary, we have investigated experimentally and
theoretically the band gap properties of triangular and hon-
eycomb two-dimensional phononic crystals made of steel
cylinders immersed in water. The same geometric parameters
have been used to allow for a fair comparison of the two
lattices. Using a combination of transmission measurements
and band structure calculations, we have identified the lowest
complete band gaps in both kind of lattice, but also the ap-
pearance of deaf bands that lead to a reduced attenuation in
transmission without implying a band gap. As previously ob-
tained with air-steel phononic crystals, it is found that the
first complete band gap opens for the honeycomb lattice but
not for the triangular lattice thanks to symmetry reduction.
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FIG. 8. �Color online� �a� Experimental �thick red solid line� and theoretical
�thin blue solid line� transmission through a honeycomb phononic crystal of
steel cylinders in water, along the �M direction. �b� Band structure of the
infinite phononic crystal. �c� Real part of the pressure field in water for the
eigenmode labeled F in the band structure. The arrow shows the direction of
incidence of waves launched by the transducer. This mode belongs to a deaf
band.
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