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An architecture for the implementation of optical pattern recognition is proposed that makes use of
convolution-kernel-based optimal trade-off filters to allow for an increased speed of operation and filter
storage capability. The derivation of these new convolution-kernel-based optimal trade-off filters is
presented, and their noise robustness and discrimination capabilities are discussed.
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In recent years there has been a resurgence of
interest in optical pattern recognition implemented
by both coherent and incoherent correlators. The
impetus has been that optical correlation is particu-
larly well suited to the tasks of locating, identifying,
and tracking objects in a large field of view that
contains both noise and clutter, tasks at which the
correlators excel even in comparison with the latest
specialized electronic signal processors or supercom-
puters 1see, e.g., Ref. 12. One area in particular that
has seen important developments is the design of
correlation filters. From early on it was clear that
the classical spatially matched filter performed sub-
optimally when it came to copingwith object discrimi-
nation, input-image distortions, and image deteriora-
tion caused by noise. As a result, numerous
alternative filter designs have been proposed.2,3
When a filter is designed for optical correlation
systems, three separate criteria are often considered4:
the noise robustness, the sharpness of the correla-
tion peak, and the optical efficiency. By the adop-
tion of a method of multicriteria optimization, it has
been possible to obtain filters that represent the
optimal trade-off 1OT2 between these criteria.5–7
In this paper we concern ourselves only with

optical correlators that make use of direct-space
correlation filters. In contrast to Fourier filters, the
direct-space filters can be displayed by an amplitude-
modulating spatial light modulator 1SLM2. This
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display significantly reduces the demands on the
dynamic range and coding domain of the SLM, a
demand that has plagued the realization of efficient
Fourier correlation filters.8
The working principle behind most optical correla-

tors is that an image of a scene is acquired, after
which the image is correlated with numerous precal-
culated filters representing separate reference ob-
jects or training images that are sufficiently descrip-
tive of object distortions such as changes in size,
scale, or viewing angle. It has recently been noted,
however, that for the optimum performance to be
obtained in terms of adaptive discrimination in
pattern recognition and tolerance to variations of the
objects, it is necessary for nonlinear filtering tech-
niques to be employed.7–10 Unfortunately, the cost
of this improved performance is that the filters must
incorporate the spectral density of the image scene.
Although the nonlinear joint-transform correlator
inherently accounts for the power spectrum of the
input image, it does not allow for adjustment of the
trade-off between the discrimination capabilities and
the noise robustness. Because this freedom may be
desirable in many practical applications, we concen-
trate here on such correlators as the linear joint-
transform correlator11 and the shadow-casting corre-
lator.12 Thus, in general, the incorporation of the
spectral density of the image scene means that it
becomes necessary to recalculate all the filters prior
to each correlation, a prohibitively expensive compu-
tational task that would seem to negate the inherent
advantages of using optical instead of electronic
correlators.
The alternative to repeated recalculation of the

filters would be to precalculate a series of filters that
estimate the possible variation in the spectral densi-



ties of the image scene. It would then be possible
from a single measurement of the spectral density of
the image to recall the best approximation filters
from memory. In practice, this is an impractical
approach because a single filter of size 1024 3 1024
pixels with 256 gray levels requires 1uncompressed2 1
Mbyte of memory, making the storage of a large
number of such filters untenable. It is with this
problem in mind that we here suggest an alternative
architecture for the implementation of optical pat-
tern recognition that solves the problem of storage
space without the need for a direct and computation-
ally expensive recalculation of the filters. Our com-
promise solution is outlined in Fig. 1 and consists of
the calculation and storage of a small kernel, say of
size 5 3 5, which when convolved with the original
reference object yields an approximation to an OT
filter. In this way we reduce the problem of storing
numerous large filters to the problem of storing a
series of small kernels, from which the approximate
OT filters may then be calculated markedly faster
than by the complete recalculation of the filters.
In this paper we develop a theoretical solution to the
calculation of these convolution-kernel-based OT
filters and discuss their performance in comparison
with conventional OT filters.
By way of introduction we start by recalling briefly

the theory underlying the derivation of OT filters, as
presented originally in Ref. 5. The main principle
consists of identifying analytical expressions that
describe certain aspects of filter performance. Thus,

Fig. 1. Schematic of the working principle behind a correlation
system that uses convolution-kernel-based OT filters. The power
spectrum of the input image, x, is used to select from a set of
precalculated kernels, a, those elements that best account for the
input image noise spectrum. The convolution-kernel-based OT
filters, h, are subsequently calculated electronically when the
small kernels are convolved with the reference objects. The
input image can now be correlated with the series of convolution-
kernel-based OT filters that use an optical correlator.
a good measure of the noise robustness of a filter is
the signal-to-noise ratio 1SNR2, defined as5

SNR 5
h

MSE
, h 5 0h†r 02, MSE 5 h†Sh, 112

where h is the optical efficiency defined as the
modulus squared of the central value of the correla-
tion between the filter h and the reference r, the
superscript dagger denotes the complex-conjugate
transposition, and MSE denotes the mean-square
error or output variance of the correlation peak in
the presence of a noise with a covariance matrix S.
Note that for clarity all images are represented as
one-dimensional vectors.
Another important characteristic in optical corre-

lation is the sharpness of the correlation peak. This
may be quantified in terms of the peak-to-correlation-
plane energy 1PCE2, defined as4,7

PCE 5
h

CPE
, CPE 5 h†Dh, 122

where CPE is the correlation-plane energy and D is
the covariance matrix of the reference image.
Having defined these three criteria 1SNR, PCE,

and h2 as important for optical correlation, we must
now find the class of filters that represents the
optimal trade-off between the criteria. We may
accomplish this by adopting a Lagrange multiplier
method and by simplifying the problem to one of
finding the filter that minimizes the following cost
function8:

E1h2 5 h†Bµh 2 2lh1h2, Bµ 5 11 2 µ2S 1 µD, 132

where µ [ 30, 14 and l $ 0. This function leads to
the following simple solution5:

ĥk
OT 5

r̂k

3B̂µ4k
5

r̂k

11 2 µ2Ŝk 1 µD̂k

, 142

where the caret denotes the Fourier transform of a
variable. Note that Ŝ and D̂ 1D̂k 5 0 r̂k 022 are the
power spectrums of the noise and the reference
images, respectively. In the limits of no trade-off,
Eq. 142 reduces, for µ 5 0, to the well-known matched
filter 1ĥk 5 r̂k@Ŝk2 and, for µ 5 1, to the inverse filter
1ĥk 5 r̂k@ 0 r̂k 022. One aspect of OT filters that is worth
noting is that they are real valued in direct space.
We use this fact to good effect in the following
derivation of a convolution-kernel-based OT filter.
Having outlined the theory of OT filters, we now

digress slightly to clarify what we mean by the noise
contained in Eq. 142. A more rigorous derivation of
optimal filters9 has shown that, although OT filters
are optimal linear filters, their performance may be
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improved by the use of nonlinear filtering techniques.
More specifically, it has been shown that for the
discrimination capabilities and the noise robustness
of a filter to be optimized, the power spectrum of the
noise must be equal to that of the input-image
background, where the background is defined as
everything that is not the object of search.9,10
However, because we assume that there is no a priori
knowledge of where and how many objects are
contained in the image scene, it has been suggested
that the best alternative is to estimate the spectral
density of the background from the whole image.
In other words, for 1sub2optimal performance one
may, for example, set Ŝk 5 0 x̂k 02, see Ref. 9, or use
other estimations suggested in Ref. 9 or 10. The
drawback to nonlinear filtering is clearly that it
requires that the filter be recalculated prior to each
correlation.
Proceeding now to the derivation of the convolution-

kernel-based OT filter, we were inspired by the close
visual resemblance between the filter and the refer-
ence object in direct space to attempt to write the
filter as a convolution of the reference object r and a
small kernel, a:

hm 5 o
p[V

aprp1m, 152

where elements ap are real numbers. With this
equation we have imposed the constraint that the
value of a point in a filter hm should depend only on
the weighted average of the neighboring points rm
located within a proximity region V. This region
may, for example, be a grid of size 5 3 5 pixels.
Thus, the objective now becomes to deduce the
values of the weight elements a that best approxi-
mate the OT filters. We may accomplish this in a
straightforwardmanner by inserting Eq. 152 into Eqs.
132. After a few simple algebraic manipulations this
leads to

E1a2 5 o
p

o
q
apaq f 1p 2 q2 2 2l o

p
apg1p2, 162

where

f 5 IFT3D̂B̂µ4, g 5 IFT3D̂4. 172

Here IFT denotes taking the inverse Fourier trans-
form. Thus g102 is, for example, the central autocor-
relation peak of the reference. Minimizing Eq. 162
with respect to ensemble a yields the optimal solu-
tion:

a 5 1G1F21G221F21G, 182

where the superscript 1212 denotes inversion. F
andG are, respectively, the matrix and vector repre-
sentations of the above functions f and g. Further-
more, the scalar l has been identified by the require-
ment that a†G 5 1, yielding l 5 1G1F21G221. It is
worthwhile to note that the analytical solution of Eq.
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182 is similar in form to the synthetic discriminant-
function solutions derived, for example, in Ref. 13.
To examine the performance of the convolution-

kernel-based OT filter, we calculate the PCE versus
the SNR curves for filters derived from the trial
reference object depicted in Fig. 21a2. We have opted
to normalize the PCE and SNR to their maximum
possible values attained for the matched and inverse
filters, respectively, to better illustrate the filter

1a2

1b2

Fig. 2. 1a2 Trial reference object, i.e., a 256 gray-scale 256 3 256
image of an airplane. 1b2 Input image scene, consisting of the
object of search 1i.e., the airplane2 and a complex background.



performance. To start with, we investigate in Fig.
31a2 a case in which the noise is modeled as being
white Gaussian. This case is representative of the
wideband thermal noise that is inevitably encoun-
tered on acquiring a picture electronically. Compar-
ing the optimal characteristics curve 1OCC2 of the OT
filter with those of the convolution-kernel-based
filter for kernel sizes of 3 3 1, 3 3 3, 5 3 5, and 7 3 7
pixels, we clearly see that the convolution-kernel-
based filters rapidly approach the limiting perfor-
mance of the OT–OCC as the size of the kernel is
increased. In fact, already on going from 5 3 5 to
7 3 7 pixels the return appears almost negligible.
We note furthermore that a convolution-kernel-
based OT filter derived from a 5 3 5 kernel repre-
sents a marked improvement in object discrimina-
tion over that of the matched filter 1the lowest point
on the OT–OCC curve2. At this stage it is worth
noting that the calculation of a from Eq. 182 can be
sensitive to numerical errors, so it is important to
use at least double precision.
In most practical situations the noise is of course

not merely white Gaussian but should in addition
comprise the spectral density of the input image, as
1a2 1c2

1b2 1d2

Fig. 3. Normalized PCE as a function of SNR, showing the OCC’s of the OT filter 1thick solid curve2 and of the convolution-kernel-based
filter for kernel sizes of 3 3 1 1thin solid curve2, 3 3 3 1dashed curve2, 5 3 5 1large dotted curve2, and 7 3 7 1small dotted curve2. The noise
power spectrum is 1a2white, 1b2 1@f 2, 1c2 1@f 4, and 1d2 calculated from the input image in Fig. 21b2.
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mentioned above. One option could then be to
attempt to estimate this noise power spectrum.
Experience has shown that colored noise of the form
f a may often be used as a good model, where f is the
spectral frequency of the image. Thus, for instance,
a spectral density of 1@f 2 is a relatively good approxi-
mation of an airplane against a clear sky, while 1@f 4
describes quite well the case of an airplane above a
cloudy background.7 In Figs. 31b2 and 31c2 we com-
pare the performances of the filters for these two
functions. Again the filter calculated from a 5 3 5
pixel kernel is seen to be a relatively good approxima-
tion of the OT filter. However, we note that in Fig.
31b2 the dynamic range of all the curves is quite
small. This is because the spectral density of the
noise is quite close to that of the reference object.
In fact, when they are identical one cannot talk
about a trade-off, because the adjustment of the
trade-off parameter µ in Eq. 142 would have no effect.
For situations in which the background is highly

structured and in which the power spectrum of the
input-image scene changes in an unpredictable man-
ner, it becomes necessary to calculate the power
spectrum directly. This would, for example, apply
to the case of an airplane flying across a structured
landscape, as shown in Fig. 21b2. The comparison of
the resulting filters, as illustrated in Fig. 31d2, shows
that the convolution-kernel-based filters have a
smaller range of trade-off values. However, we
should gauge their real performance by comparing
themwith the classical matched filter 1ĥk 5 r̂k2, which
for this case has a SNR and PCE of approximately
251 dB and 229 dB, respectively, showing that the
convolution-kernel-based filters offer a significant
improvement and are comparatively close to the
optimum performance. We should add that when
calculating the power spectrum from Fig. 21b2 we
have included a small contribution of white noise for
two reasons: it represents a good model of the
additional recording noise, and it serves to stabilize
the filter.7
Before continuing let us state that the filters

described by Eqs. 142, 152, and 182 are valued from
321, 14 and therefore cannot be realized directly in
incoherent correlators for which the filter may have
only positive real values. In effect, it means that
the correlation has to be performed twice, once with
a filter composed of the positive values, and once
with a filter of negative values. We then obtain the
final correlation by taking the square of the differ-
ence of the individual correlations. This so-called
bipolar approach yields exactly the same result as a
single correlation with the original filter 1see, e.g.,
Ref. 122.
Having seen how convolution-kernel-based OT

filters may offer good performance in terms of noise
robustness and object discrimination, let us now
turn to the advantages of using them in real optical
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correlation systems. A p 3 q pixel kernel of a
convolution-kernel-based filter consists of only
1pq 1 12@2 independent elements because of the cen-
tral symmetry of a. This effectively eliminates any
problems associated with storing a large number of
trade-off filters. However, before the correlation is
possible, it is necessary to convolve the reference
object with the convolution-kernel-based OT filter
kernel. To carry out a rough estimation of how this
approach compares with the direct recalculation of
the OT filter, we note that an OT filter needs
approximately nm11 1 3 log2 nm2 operations to per-
form a fast Fourier transform, filter calculation, and
inverse fast Fourier transform for a n 3 m pixel
filter. In contrast, a convolution-kernel-based OT
filter needs roughly an nmpq operation to perform
the convolution of a p 3 q pixel kernel with an n 3 m
reference image. For the example from Fig. 1 this
translates to a speed increase of a factor 8 for the 5 3
5 pixel kernel. In practice, however, the increase
may be many times higher because the convolution
of the reference with such a small kernel can be
performed by a specialized electronic processing card
when the filter SLM is directly addressed.
In summary, we have presented the derivation of

convolution-kernel-based OT filters and have sug-
gested how their use in an optical correlation archi-
tecture may solve many of the practical problems
that have arisen in terms of speed of correlation and
storage of filters. The primary advantage of the
proposed solution is that it makes it possible to
approximate the performances of both linear and
nonlinear correlation filters while much less storage
space is used and a shorter recalculation time for the
filter is required.
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kernel-based OT filters was suggested to the authors
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tation of optimal trade-off bipolar filters for shadow-casting
incoherent correlator,’’ in Optical Implementation of Informa-
tion Processing, B. Javidi and J. L. Horner, eds., Proc. SPIE
2565, 85–95 119952.

13. D. Casasent, ‘‘Unified synthetic discriminant function compu-
tation formulation,’’Appl. Opt. 23, 1620–1627 119842.
10 July 1996 @ Vol. 35, No. 20 @ APPLIED OPTICS 3879


