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Abstract
We investigate the dispersion of phononic crystal waveguides formed by evanescent coupling
of a chain of defect cavities and supporting slow-wave propagation. These coupled-resonator
acoustic waveguides (CRAWs) are analogous to the coupled-resonator optical waveguides
formed in photonic crystals. CRAW dispersion can be controlled by increasing the distance
between cavities, with the result of decreasing their coupling, and hence flattening the
dispersion relation. Based on the tight-binding model, the dispersion relation is found in the
form of a Fourier series expansion with explicitly given coefficients. This model is tested
against the exact dispersion relation of a two-dimensional solid–solid phononic crystal of
tungsten inclusions in a silicon matrix and only partial agreement is found. An alternative
model of a linear chain of coupled resonators, resting only on the hypotheses of linearity and
periodicity, is then proposed. While the Fourier coefficients in this model are a priori
unspecified, they can be fitted against the exact dispersion relation, resulting in an excellent
agreement with only a few terms in the Fourier series expansion. The Fourier coefficients are
shown to be a direct measure of the coupling of neighbouring resonators.

(Some figures may appear in colour only in the online journal)

1. Introduction

During the last two decades, much effort has been devoted
to the study of phononic crystals—two- or three-dimensional
periodic arrangements of inclusions in a matrix [1–3]—
spurring further interest in the field of acoustic and elastic
wave propagation in periodic materials and structures. The
fundamental interest of controlling the flow of elastic energy by
phononic crystals and its subsequent foreseeable applications
are now well established. Studies of propagation in two- or
three-dimensional phononic crystals include the analysis of
frequency band gaps as well as the confinement and guiding
of elastic energy through the use of defect inclusions in
perfect phononic crystal structures [4–8]. Most phononic
crystal waveguides are formed from line defects [9–11].
Line defects indeed open transmission channels within the
otherwise completely opaque complete band gaps of perfect
crystals. The dispersion of guided waves inside the frequency

band gap is usually multimodal. Dramatic interference effects
can then appear between different guided bands, leading to
phenomena such as mini-band gaps, avoided crossings, and
band repelling [12–14]. Another guiding mechanism, which
is less examined, is the coupling of defect cavities in phononic
crystals [15–17]. These structures, which we refer to as
coupled-resonator acoustic waveguides (CRAWs), provide one
with increased flexibility in the design of their dispersion
relation, by using only the geometrical parameters defining
the cavities and their coupling mechanism [16, 18].

The idea of CRAWs, followed by analogy with
coupled-cavity waveguides (CCWs) or coupled-resonator
optical waveguides (CROWs), formed in photonic crystals
[19–24]. Among the various mechanisms that have been
proposed for the guiding of optical waves in photonic crystals,
wave propagation in a chain of evanescently coupled optical
resonators is both simple and efficient. Independent of the
type of resonator and technology, the concept underlying
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Figure 1. (a) Schematic of a cavity formed by a single point defect
of a square-lattice phononic crystal. The lattice constant is a.
(b) Schematic of a coupled-resonator acoustic waveguide (CRAW)
created in the same phononic crystal, where � is the separation
between point defect cavities. The dashed lines indicate the
boundaries of the super-cells used for band structure computations.

slow light propagation in a CROW is the forced recirculation
of light between resonators [20]. The dispersion relation,
and hence the group velocity, can be tuned by varying the
coupling strength between cavities, for instance by changing
their separation. Propagation in CROWs has been described
either by using the tight-binding approximation (for cavities)
[19, 20, 25, 26] or by means of the transfer-matrix method
(for rings) [23, 27]. In this paper, we discuss the CRAW
relation dispersion in the context of coupled cavities created by
introducing point defects in phononic crystals, based on both
the tight-binding model [20] and via an alternative approach
inspired by models of phonon propagation in linear chains of
atoms. The discussion is illustrated with the case of CRAWs in
a two-dimensional solid–solid square-lattice phononic crystal
composed of tungsten inclusions in a silicon matrix. It is
especially found that the CRAW dispersion relation can be
described with only a few harmonics in a Fourier series
expansion whose Fourier coefficients are a direct measure of
the coupling of neighbouring resonators.

2. Numerical CRAW dispersion

Let us first illustrate in this section the CRAW concept using
the example of a two-dimensional (2D) square-lattice array of
tungsten inclusions embedded in a silicon matrix. Although
the structure is 2D, the results could be extrapolated to 3D
without difficulty. A complete phononic band gap is known to
exist in this crystal [28] for a range of filling fractions. Material
constants for tungsten and silicon are taken from [28]. With
the filling fraction f = πr2/a2 = 0.145, the complete band
gap extends in the range ωa/(2π) = 2234–2664 m s−1, with
a the lattice constant, r the inclusion radius, and ω the angular
frequency. Cavities can be created by locally removing one
inclusion, thus creating a point defect in the crystal as depicted
in figure 1(a). When the number of inclusions separating two
cavities is large enough, they can be thought of as isolated
or uncoupled. When the separation between cavities � is is
not too large, as depicted in figure 1(b), the evanescent fields
extending outside the cavities can couple them, thus creating
a channel for guided waves.

The band structure of the perfect phononic crystal is
shown in figure 2(a). For the particular tungsten–silicon

Figure 2. (a) Band structure of a phononic crystal composed of a
2D square-lattice array of cylindrical tungsten inclusions embedded
in a silicon matrix, with a filling fraction of 0.145. The reduced
frequency ωa/(2π) is plotted as a function of the reduced
wavenumber ka/(2π) varying along the contour of the irreducible
Brillouin zone. Shear waves linearly polarized along the inclusion
axis (red crosses) are completely decoupled from in-plane polarized
waves (blue crosses). The complete band gap (blue area) is
contained within the pure-shear band gap (red area). (b) CRAW
dispersion for cavity separation � = 2a (blue crosses) and for
� = 3a (orange crosses). The red horizontal line at
�a/(2π) = 2448 m s−1 indicates the resonant frequency of the
isolated phononic crystal cavity. The phononic band gap range is
limited by the grey regions.

composition considered here, shear waves that are linearly
polarized along the inclusion axis are completely decoupled
from the in-plane polarized waves. The pure-shear band gap
is larger than the complete band gap and contains it. The
dispersion relation of the CRAW can be adequately calculated
using a super-cell approach with periodic boundary conditions.
The practical implementation was performed with the finite
element method (FEM), following the scheme presented by
Hussein for incorporating the wavevector dependence [29].
For the phononic crystal cavity in figure 1(a), we considered
a square super-cell of size 7a × 7a, i.e. adjacent cavities
are separated by six inclusions, which was found to be
sufficient for removing any noticeable coupling between
cavities. The resonant frequency of the phononic crystal
cavity is �a/(2π) = 2448 m s−1, close to the center of
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Figure 3. (a) Displacement field distribution for the mode of an isolated cavity created by a single defect in a phononic crystal. The
phononic crystal is a 2D square-lattice array of cylindrical tungsten inclusions embedded in a silicon matrix with a filling fraction of 0.145.
(b) Displacement field distributions for mode A (kx� = 0), (c) mode B (kx� = π/2) and (d) mode C (kx� = π ), for a CRAW with cavity
separation � = 2a. Letters A, B and C refer to the labelling in figure 2. The polarization of all modes is pure shear. The real part is
displayed on the first line and the imaginary part on the second. Modes are arbitrarily but consistently normalized.

the complete band gap, and the resonant wave is pure-shear
polarized. For the CRAW, the super-cell has a size � × 7a.
Figure 2(b) shows the computed band structure in the X

direction when � = 2a and � = 3a, i.e. when the coupled
cavities are separated by 1 or 2 inclusions, respectively. In
both cases, guided propagation is not monomodal and a total
of three guided modes are found inside the complete band gap.
CRAW behaviour is clearly observed around the isolated cavity
resonant frequency �a/(2π) = 2448 m s−1: the dispersion
relation oscillates gently. It was further verified that the
polarization is pure shear, as for the isolated cavity mode
shown in figure 3(a). The amplitude of frequency variations
is clearly dependent on the coupling strength, as expected.
There are also two degenerate phononic crystal cavity modes
at resonant frequency �a/(2π) = 2625 m s−1. They give rise
to CRAW behaviour as well, but with dispersion relations that
are strongly influenced by the proximity of the phononic bands
just above the band gap. They will not be considered further
in this paper.

The CRAW dispersion reaches extrema for both kx� = 0
and kx� = π , and crosses the isolated cavity line close
to kx� = π/2. Figure 3 displays modal shapes for these
particular values of the wavenumber, for � = 2a. At
point A, kx� = 0, neighbouring cavities oscillate in phase.
The field distribution in this case, shown in figure 3(b), is
centered on the defects and resembles the isolated cavity field
distribution, shown in figure 3(a), but is spatially compressed
in the propagation direction by cavity coupling; hence the

stored energy in the cavity increases and so does the frequency.
In the case� = 3a, shown in figure 4(a), the converse happens:
the field distribution expands outside the defect, causing the
stored energy and the frequency to decrease. At point C,
kx� = π , the boundary condition between adjacent cavities
is anti-periodic (exp(−ikx�) = −1). The field distributions
shown in figure 3(d) and in figure 4(c), in this case, indicate
that neighbouring cavities oscillate in phase opposition, though
not simply according to the isolated cavity field distribution,
as evidenced by the imaginary part of the displacement field.
Point B, kx� = π/2, is exactly mid-way between symmetry
points A and C. If the dispersion relation were perfectly
symmetric, we would expect the CRAW frequency at point
B to equal the isolated cavity resonant frequency. This is
almost verified for � = 3a, but not for � = 2a. This
deviation from symmetry is discussed in the following section.
Finally, considering the field distributions in figure 3(c) and in
figure 4(b), we remark that the real part and the imaginary part
of the displacement are in quadrature: exp(−ikx�) = −i and
hence real and imaginary parts are continuously exchanged at
the boundaries of the super-cell.

3. CRAW dispersion relation

3.1. Tight-binding model

Yariv et al proposed a direct derivation of the dispersion
relation of a CROW [20] based on the tight-binding model
of quantum mechanics [30, 31]. In this sub-section, we
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Figure 4. (a) Displacement field distributions for mode A
(kx� = 0), (b) mode B (kx� = π/2) and (c) mode C (kx� = π ),
for the CRAW with cavity separation � = 3a. Letters A, B and C
refer to the labelling in figure 2. The polarization of all modes is
pure shear. The real part is displayed on the first line and the
imaginary part on the second. Modes are arbitrarily but consistently
normalized.

extend the method to the phononic crystal CRAW case. The
tight-binding model is used in solid state physics to explain
the electronic band structure of insulators. It applies when
the overlap of atomic wave functions is enough to require a
correction to the picture of isolated atoms, but not so much
as to render the atomic description completely irrelevant. It
follows, therefore, that when an electron is captured by an ion
during its motion through the lattice, the electron remains there
for a long time before leaking, or tunneling, to the next ion.
The probability of tunneling is measured with the overlapping
between the electron wave functions of isolated atoms. The
basic idea for a CROW or a CRAW is then to look for the
guided mode as a weighted superposition of resonant modes
attached to a cavity site, with the weights depending on the
wavenumber. Replacing this ansatz in the wave equation of the
periodic structure, a dispersion relation linking the frequency
and the wavenumber of the guided wave can be obtained
explicitly. The coefficients appearing in the dispersion relation
can be found from overlap integrals involving the cavity mode
distribution, much as in the original tight-binding model.

We consider two different spatial domains explicitly, one
on which the CRAW is defined (i.e. the real spatial structure of
the CRAW shown in figure 1(b)) and one on which the cavity
mode is defined (i.e. the super-cell containing a defect of an
otherwise perfectly periodic crystal shown in figure 1(a)). On
the one hand, the isolated cavity mode u0 at resonant angular

frequency � satisfies the elastodynamic equation

− ∇ · (c0∇u0) = �2ρ0u0, (1)

where c0 and ρ0 are defined on the cavity super-cell. c0 is the
rigidity tensor and ρ0 is the mass density; both quantities are
spatially discontinuous at each interface between an inclusion
and the matrix. ∇u0 is the gradient of the displacement field
and ∇ ·() denotes the divergence operator. Left-multiplying by
the conjugate transpose of u0 and integrating over the domain,
we have in bra-ket notation (scalar product)

− 〈u0|∇ · (c0∇u0)〉 = �2〈u0|ρ0u0〉. (2)

Further integrating this relation by parts, this is just the
statement that potential energy equals kinetic energy for a
mode

〈∇u0|c0∇u0〉 = �2〈u0|ρ0u0〉. (3)

On the other hand, the CRAW mode also satisfies the
elastodynamic equation but on the CRAW domain instead of
the single cavity domain,

− ∇ · (c∇u) = ω2ρu, (4)

c and ρ are defined on the CRAW domain and are again
spatially discontinuous. The tight-binding ansatz is the
assumption that

u =
∑

n

exp(−ikxn)Tnu0, (5)

where xn = n� is the coordinate of the nth resonator and Tn

is the translation operator from the origin to location xn. This
expression means that the guided mode is approximated by a
superposition of translated cavity modes, each having the same
weight in modulus but a relative phase kxn. As we indicated
before, u0 and u are not defined on the same spatial domains
and there is inevitably an implied approximation where both
domains differ. It should be noted that the superposition as
written is so far unnormalized. We impose the normalization
〈u0|ρ0u0〉 = 1, which in turn implies 〈∇u0|c0∇u0〉 = �2 from
(3). Projecting (4) on the resonant mode, we have

〈∇u0|c∇u〉 = ω2〈u0|ρu〉. (6)

Substituting (5) in (6) results in a dispersion relation of the
form ω(k),

ω2 = β0 + �β +
∑

n �=0 exp(−ikn�)βn

1 + �α +
∑

n�=0 exp(−ikn�)αn

, (7)

with the coefficients

β0 = 〈∇u0|c0∇u0〉 = �2, (8)

�β = 〈∇u0|�c∇u0〉, (9)

βn = 〈∇u0|c∇Tnu0〉, (10)

�α = 〈u0|�ρu0〉, (11)

αn = 〈u0|ρTnu0〉. (12)
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Table 1. Coefficients of the tight-binding dispersion relation as computed from the cavity mode of figure 3.

a2β0/(2π)2 a2�β/(2π)2 a2β1/(2π)2

CRAW (m2 s−2) �α (w.u.) (m2 s−2) α1 (w.u.) (m2 s−2)

� = 2a 5993756 −0.00806 −15140 0.0454 566299
� = 3a 5993756 −0.000513 −1937 0.00315 −44451

Figure 5. Comparison of the computed CRAW dispersion relation
(plus and cross signs) with the tight-binding dispersion relation, with
coefficients given in table 1 (solid lines). The phononic crystal is a
2D square-lattice array of cylindrical tungsten inclusions embedded
in a silicon matrix with a filling fraction of 0.145. Blue plus signs
and solid line: � = 2a. Orange cross signs and solid line: � = 3a.

By definition, �c = c−c0 and �ρ = ρ−ρ0 are non-vanishing
only where the CRAW domain and the cavity domain differ.
The coefficients αn and βn are obtained from overlap integrals
involving the cavity mode and its translated copies; they can be
loosely viewed as coupling coefficients between neighbouring
cavities.

The coupling coefficients in equations (8)–(12) were
estimated from the cavity mode shown in figure 3(a) and
are reported in table 1 for � = 2a and � = 3a. These
values are used in figure 5 to compare the estimated dispersion
relation with the one computed in section 2. It can be seen that
the agreement is only partial: although the general trends are
reproduced, the precise frequency dispersion is not recovered.
As a possible explanation, we point out the differences in the
definitions of the CRAW and the cavity domains. The cavity
mode and its translated versions are defined for the cavity
domain but used on the CRAW domain in (9)–(12). As the
material constants of tungsten and silicon are quite different
in magnitude, notable differences must indeed result. Such
differences could already be observed in figure 3, from which
it appears that the field distributions for the guided mode at
points A, B and C clearly differ from the simple superposition
postulated in (5).

3.2. Linear chain of coupled resonators

From the results in the previous sub-section, it is clear that
the tight-binding model contains an assumption that is too
strong in the case of the CRAW defined in a phononic
crystal: the guided wave cannot be trustfully represented as

a linear superposition of resonant modes. We consider here
an alternative model where we describe the coupled cavities
as a linear chain of coupled harmonic oscillators, similar to
the description of phonon propagation in a one-dimensional
lattice of atoms. A quantum treatment of the problem
would require constructing the Hamiltonian of the CRAW
as a sum of the Hamiltonians of isolated resonators plus an
interaction Hamiltonian describing the interaction of coupled
resonators [31]. Here, we alternatively postulate the following
simple classical model

− d2Un

dt2
=

∞∑
m=−∞

γmUn+m. (13)

In this equation, Un is a scalar variable similar to a displacement
from equilibrium position describing the state of the resonator.
γ0 equals the square of the resonant angular frequency �2

in the decoupling limit, and the γm for m �= 0 are coupling
constants with the same units asγ0. The underlying assumption
is that the response to small perturbations of the equilibrium
positions of resonators is linear and translation invariant, hence
the convolution operation on the right-hand side. Note that
these assumptions are much weaker than the tight-binding
assumption (5) that the guided mode is a superposition of
translated cavity modes. Next we consider the discrete Fourier
transform (DFT) of the sequence Un

Ū(k) =
∑

n

Un exp(ikn�) (14)

and its inverse

Un = �

2π

∫ π/�

−π/�

dkŪ(k) exp(−ikn�). (15)

In these relations, the wavenumber k is a real variable defined
in the first Brillouin zone. Making use of the orthonormality
and completeness of the DFT, the following dispersion relation
is obtained upon substituting (15) in (13)

ω2 =
∞∑

m=−∞
γm exp(−ikm�). (16)

For a symmetric CRAW, the dispersion relation simplifies to

ω2 = γ0 +
∞∑

m=1

2γm cos(km�). (17)

We have thus obtained the dispersion relation as a
Fourier series, similarly to the tight-binding result (7). In
contrast, however, the coupling coefficients γm are not
known beforehand, but they can be fitted from the computed
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Table 2. Coefficients of the linear chain of coupled resonators
dispersion relation, as obtained by fitting the computed CRAW
dispersion relation of figure 2.


0a/(2π) 
1a/(2π) 
2a/(2π) 
3a/(2π)

CRAW (m s−1) (m s−1) (m s−1) (m s−1)

� = 2a 2443.16 131.30 8.47 2.08
� = 3a 2448.34 −39.15 1.17 −0.13

Figure 6. Comparison of the computed CRAW dispersion relation
(plus and cross signs) with the linear chain of coupled resonators
dispersion relation, with coefficients given in table 2 (solid lines).
The phononic crystal is a 2D square lattice array of cylindrical
tungsten inclusions embedded in a silicon matrix with a filling
fraction of 0.145. Blue plus signs and solid line: � = 2a. Orange
cross signs and solid line: � = 3a.

dispersion relation. We further remark that we can express
directly the angular frequency as a Fourier series

ω = 
0 +
∞∑

m=1

2
m cos(km�), (18)

where the coefficients 
m are straightforwardly obtained from
the coefficients γm. A similar formula, but with the summation
limited to m = 1 and 
0 = �0, was proposed by Sainidou
et al for fluid–fluid phononic crystals [16]. Our example
computation is for pure-shear waves in a solid–solid phononic
crystal, which can be shown to obey an inhomogeneous scalar
wave equation, as do pressure waves in fluid–fluid phononic
crystals. It is then not surprising that different systems
can be described with similar dispersion relations. We are
furthermore confident that the case of generally polarized
elastic waves can be described similarly. As a further remark,
our linear chain of coupled resonators dispersion relation (18)
does not impose 
0 = �0 and does not limit the Fourier series
to only one harmonic. The former property is necessary to
account for CRAW dispersion relations that are not symmetric
with respect to the isolated cavity frequency, as we exemplified
in section 2. The latter property introduces anharmonicity in
the model, which is necessary to account for cavity coupling
beyond nearest neighbours.

Table 2 gives the numerical values that were obtained by
fitting the computed CRAW dispersion relations to (18). It
can be observed that the Fourier series converges very quickly,

in accordance with the intuition that only neighbouring
cavities have influence on the dispersion of waves guided
by resonator coupling. Figure 6 compares the computed
dispersion relation with the theoretical dispersion relation (18).
An excellent agreement is obtained with only the first 4 Fourier
coefficients included, or with couplings included up to the third
neighbouring resonator. It can be remarked that the property
that dispersion relations can be represented by Fourier series
expansions is implied by periodicity and linearity alone, and
independently of the CRAW concept. As a consequence,
relations (17) or (18) could have been postulated from the
start. The significance of the model (13), however, is that the
Fourier coefficient γm can be directly identified as a measure
of the coupling of a cavity with its m-th neighbour. The fast
decrease of the coupling coefficients then directly dictates the
smoothness of the CRAW dispersion relation and the amplitude
of its frequency variations.

4. Conclusion

We have presented an analysis of the dispersion relation of
CRAWs in phononic crystals. While the dispersion relation
could be computed accurately based on a super-cell technique,
we examined two different analytical models based on the
tight-binding approximation, on the one hand, and on a
1D-lattice of linearly coupled resonators, on the other hand.
Both models predict that angular frequency ω as a function
of the wavenumber k has the form of a Fourier series in
exp(−ik�), with � the separation between resonators. Of
the two models, only the tight-binding approximation gives
an explicit expression for the Fourier coefficients. It was
found, however, not to faithfully reproduce the exact dispersion
relation, which we attributed to the consequent domain
modification that occurs when forming the CRAW from the
isolated cavity. This modification is indeed incompatible with
the tight-binding assumption that the guided mode can be
represented as a linear superposition of isolated cavity modes.
The linear chain of coupled resonators model, in contrast,
has a priori unspecified coefficients that can be fitted against
the computed dispersion relation. It was found that only
a very limited number of Fourier coefficients are necessary
to reproduce the exact dispersion and that the mth Fourier
coefficient can be identified as a direct measure of the coupling
of a cavity with its mth neighbour. The fast decrease in
Fourier coefficients is then simply a consequence of the fast
decrease of the influence of distant resonators. CRAWs are
promising in order to get slow-wave phononic waveguides
whose dispersion can be tuned by changing the coupling
strength between resonators. The design of simultaneous
CRAW-CROW structures could have strong potential for
optomechanics and enhanced light and sound interactions in
phoxonic crystals [32].
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repulsion and evanescent waves in sonic crystals Phys.
Rev. B 84 212302

[12] Wu T-T and Huang Z-G 2004 Level repulsions of bulk acoustic
waves in composite materials Phys. Rev. B 70 214304

[13] Achaoui Y, Khelif A, Benchabane S and Laude V 2010
Polarization state and level repulsion in two-dimensional
phononic crystals and waveguides in the presence of
material anisotropy J. Phys. D: Appl. Phys. 43 185401

[14] Romero-Garcı́a V, Sánchez-Pérez J V and Garcia-Raffi L M
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