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We study theoretically the simultaneous existence of phononic and photonic band gaps in a periodic array of
silicon pillars deposited on a homogeneous thin silica plate. Several lattices, namely, square, triangular, and
honeycomb are investigated for a wide range of geometrical parameters. We discuss the most suitable cases for
dual phononic-photonic band gaps, especially in comparison to the more conventional structures constituted by
a periodic array of holes in a membrane.
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I. INTRODUCTION

Phononic crystals are a class of materials that exhibit pe-
riodic variations in their density and elastic properties.1–3

Such crystals modify the propagation of acoustic waves and
prohibit the propagation of sound for frequencies within the
band gap. They have enabled exciting new ways to control
sound, in particular, in the field of wave guiding and
filtering,4 using point and linear defects introduced in the
crystal, as well as in the field of sound isolation.5 Recently,
an issue of interest is based on the study of phononic crystal
slabs for potential applications as platforms for integrated
technological circuits. Most of the studies have been devoted
to periodic arrays of holes drilled in a homogeneous plate6–10

whereas only a few recent works have been dealt with pillar
structures deposited on a plate.11–14 In the latter structure,
only the square-lattice geometry has been investigated where
we have shown the importance and range of geometrical pa-
rameters to display absolute band gaps.

In the photonic counterpart, the medium is made up with
a periodically modulation of the refractive index between
their constituents also producing band gaps in which the
propagation of electromagnetic waves is forbidden.15 The ex-
istence of photonic band gaps for guided modes in periodic
crystal slabs offers new possibility to control the light in
integrated photonic devices. Two types of photonic crystal
slabs, namely, lattice of holes16,17 and lattice of pillars,18,19

have been considered. However, the case of pillars deposited
on a finite thickness low-index layer, which is the only tech-
nically feasible, has not been yet reported to our knowledge.

The simultaneous existence of photonic and phononic
band gaps and the confined phonon-photon interaction has
been investigated in one-dimensional multilayer structures.20

In infinite two-dimensional �2D� structures, relatively few
works have been devoted to simultaneous control of phonons
and photons. Maldovan and Thomas21,22 have shown theo-
retically that phononic and photonic band gaps can be ob-
tained in 2D square or hexagonal lattice crystals made up of
air holes in a silicon matrix. Sadat-Saleh et al.23 have dem-
onstrated the possibility to open phononic and photonic band

gaps in complex arrays like multiple cylinders per unit cell in
lithium-niobate 2D structures. Experimental evidence of
such a band-gap phenomenon has been reported in three-
dimensional phononic and photonic crystal of amorphous
silica spheres.24 Some recent papers are also dealing with the
optomechanical crystal slabs that sustain both the optical and
mechanical excitations.25–27 In two very recent papers, we
and another group26,27 demonstrated the existence of dual
phononic and photonic band gaps in 2.5D crystal plates com-
posed of arrays of void cylindrical holes in silicon slabs with
a finite thickness. It has been shown that dual complete band
gaps can be obtained in honeycomb and boron-nitride lat-
tices, although in a narrow range of geometrical parameters
only. However, there are several possibilities in square, hon-
eycomb, and boron-nitride lattices to display a complete
phononic gap together with a photonic gap of odd or even
symmetry with respect to the plane symmetry of the mem-
brane. The triangular lattice is not very suitable for exhibit-
ing a complete phononic gap except at very high filling frac-
tion. Also, in all the suitable cases, a relatively high filling
factor has been demonstrated as a necessity.

The main goal of this paper is to give a comprehensive
study about the existence of dual phononic-photonic band
gaps in the type of structure constituted by a periodic array
of pillars deposited on a layer of finite thickness. As men-
tioned above, in the phononic side, the study of this structure
has been done only in the square-lattice geometry. In this
paper, we extend this investigation to other lattices, such as
triangular and honeycomb and show new unexpected possi-
bilities. On the other hand, we study, for each geometry of
the lattice, the range of parameters for which this structure
can display absolute photonic band gaps for guided modes
parallel to the slab.

We concentrate our calculations on a structure where the
pillars and the supporting plate are, respectively, made of
silicon and silica �SiO2�. Besides the technological interest
on silicon structures, the selection of the materials is moti-
vated by the following. The possibility of opening phononic
gaps is not much affected by the choice of the materials
although the frequency and width of the gaps are material
dependent. In photonic, Johnson et al.16 have studied the
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band structure of a periodic array of silicon rods in air and
shown the existence of a gap for odd symmetric modes only
�magnetic field in plane�. However, in this work, the height
of the rods is taken equal to two times the lattice parameter
and the result displays similarity with the case of an infinite
2D structure where only a TM gap can be obtained.16,21 We
have noticed that decreasing the height of the rods to values
lower than the lattice parameter allows the opening of a com-
plete photonic gap for the guided modes. Therefore, one can
expect that the low refractive index of SiO2 may enable us to
keep such a property even in presence of the thin plate.

We investigate both the phononic and photonic band
structures in three types of lattices, namely, square, triangu-
lar, and honeycomb and for a wide range of the geometrical
parameters. In general, the phononic and photonic band
structures are, respectively, calculated by finite-element �FE�
and plane-wave expansion �PWE� methods. However, finite
difference time domain �FDTD� method has also been used
to check the correctness and convergence of the results.

Section II describes the geometries considered in this pa-
per as well as the methods of calculation. Sections III and IV
contain the trends of the band gaps as a function of the lattice
and the geometrical parameters for phononics and photonics,
respectively. Section V presents some selected illustrations
of the band structures for the most appropriate geometries
exhibiting dual band gaps. Conclusions are given in Sec. VI.

II. GEOMETRY AND METHOD OF CALCULATION

Figure 1�a� represents the general schematic view of the
periodical structure of cylindrical silicon pillars deposited on
a thin SiO2 plate. The elastic constants and mass densities of
the materials are given in Table I. The z axis is chosen to be
perpendicular to the plate and parallel to the cylinder axis.
By considering the lattice period a as the unit of length, there
are several geometrical parameters involved in the problem,
namely, the height hSi of the pillars, the thickness eSiO2

of the
slab and the filling fraction f .

The phononic band structures are calculated by using the
FE method with the COMSOL MULTIPHYSICS finite-element
software. Only the solid materials are meshed �Fig. 1�b��
since elastic waves obviously cannot propagate in vacuum.
Periodic boundary conditions, using the Bloch-Floquet equa-
tions, are applied at each side of the plate, assuming an infi-
nite and periodic structure in the �x ,y� plane.

On the photonic side, the calculations of the dispersion
curves are performed by using the developed PWE code with
periodic conditions applied on each boundary of the unit cell
�see Fig. 1�c��. In this case, the thickness of the air slab
separating neighboring photonic crystals in the z direction
has been chosen such that to decouple them. Let us also
mention that in the slab geometry, the photonic gaps have to
be searched only below the light cone in vacuum. The air
thickness has been chosen equal to hair /a=4.0 to ensure the
stability of the whole branches under the light cone and the
calculations have been performed with a number of plane
waves equal to 2499. Calculations and convergences have
also been checked using the FDTD with a good agreement.

In both phononic and photonic cases, the wave vector is
chosen along the high-symmetry axis of the first Brillouin
zone and the eigenfrequencies are obtained by solving the
eigenvalue equation. In all the band structures presented in
the paper, the frequencies are given in the dimensionless unit
�=�a /2�c, where c is the velocity of light in vacuum for
electromagnetic waves and the transverse velocity of sound
in silicon for elastic waves.

As illustrated in Fig. 2�a�, we have investigated several
lattices, namely, square, triangular, and honeycomb where
the corresponding Brillouin zones are represented in Fig.
2�b�. The filling fractions of the cylindrical pillars are, re-
spectively, given by f = �r2

a2 , f = 2�r2

a2�3
, and f = 4�r2

a2�3
for the
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FIG. 1. �a� Schematic view of the periodic
crystal made up of cylindrical Si pillars on a SiO2

plate. Representation of the unit cell used for: �b�
the FE �phononic� and �c� the PWE �photonic�
calculations.

TABLE I. Physical characteristics of the used materials: � is the
density, C11, C12, and C44 are the three elastic moduli, and n is the
refractive index.

Constant Silicon �Si� Silica �SiO2�

� �kg /m3� 2331 2275

C11 �N /m2� 16.57�1010 7.50�1010

C12 �N /m2� 6.39�1010 2.25�1010

C44 �N /m2� 7.962�1010 3.0�1010

n 3.5 1.5

FIG. 2. �a� Square, triangular, and honeycomb arrangements of
the lattice crystal made up of silicon cylinders deposited onto a
SiO2 homogeneous substrate. �b� Representation of the Brillouin
zone for the square �left� and for the triangular and honeycomb
arrays �right�.
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square, triangular, and honeycomb array, where r is the ra-
dius of the cylinder.

In a previous paper,11 we have demonstrated the existence
of absolute phononic band gaps in a square lattice of steel
cylindrical pillars on a silicon plate. It has been shown that
such structure can provide acoustic band gaps when the geo-
metrical parameters, in particular, the thickness e of the ho-
mogeneous plate and the height h of the pillars, are chosen
appropriately; more especially e should not exceed a small
fraction of the period a. Moreover, these gaps persist for
various combinations of the materials constituting the plate
and the pillars. In photonic, most of the papers in the litera-
ture have been dealt with pillars of finite thickness embedded
in air. We propose here a geometry where the silicon pillars
are deposited on a thin plate which, contrary to the case of
isolated silicon pillars, allows also the propagation of the
acoustic waves via the plate. As mentioned above, the pho-
tonic gaps have to be searched only below the light cone in
vacuum. Then, the choice of the material constituting the
plate has to be made in such a way as to avoid too many
branches under the light cone which is unfavorable for the
opening of band gaps. This explains the choice of a low
refractive index material such as SiO2 which, in addition, is a
basic material in silicon technology.

The purpose of our study is then to find dual phononic
and photonic band gaps in the three most basic lattices. The
choice of the filling factors has been done considering the
behavior of the photonic absolute band gaps for a thin plate
�eSiO2

/a=0.1�. It appears from the calculations �not shown
here� that a decrease in the filling factor shifts the photonic
band gaps of the guided modes to the high frequencies, to-
ward the bottom of the light cone over a small domain of the
Brillouin zone, which is not useful for practical applications.
On the other hand, high filling factor introduces new
branches in the photonic dispersion curves that close the

band gap. Therefore, contrary to the case of hollow cylinders
in a Si membrane26,27 where a relatively high filling fraction
is required to obtain the dual band gaps, here the filling fac-
tor can be limited to a moderate range which is interesting in
view of the technological realization of the structures. We
use the values of f =0.4, f =0.5, and f =0.3, respectively, for
the square, triangular, and honeycomb lattices, corresponding
to the reduced radii values of r /a=0.357, r /a=0.371, and
r /a=0.203 for the pillars. We present in the following sec-
tions the evolution of the band gaps as a function of the most
relevant parameters of the structure, namely, the thickness of
the plate eSiO2

and the height of the pillars hSi.

III. PHONONIC BAND GAPS

Figure 3�a� displays the map of the phononic band gaps
for the three lattices as a function of the normalized height
hSi /a of the pillars, assuming a constant and relatively small
value of the thickness of the plate eSiO2

/a=0.1 �as discussed
in the previous section�. In all three cases, one can observe
the opening of gaps �gray areas� as far as the height of the
pillars exceeds 0.3a. In the frequency range of the Bragg
diffraction, around �0.3, 0.5�, we note the existence of two
band gaps in all configurations. In the square and triangular
lattices, these band gaps fall around nearly constant frequen-
cies of �=0.35 and �=0.45, independently of the height of
the pillars. These gaps are separated by a narrow pass band.
The latter is essentially constituted by nearly flat branches
associated to modes which are mainly localized at the cor-
ners of the unit cell inside the thin plate without too much
penetration into the pillars �let us notice that such situation of
a narrow pass band separating two band gaps has already
been found in several early calculations on 2D phononic
crystals28�. When increasing the thickness of the plate �see
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FIG. 3. �Color online� Evolution for the
square, triangular, and honeycomb arrays of the
phononic band gaps: �a� as a function of the
height of the pillars hSi /a, for eSiO2

/a=0.1 and
�b� as a function of the thickness of the plate
eSiO2

/a, for hSi /a=0.8 �square and triangular� or
hSi /a=0.7 �honeycomb�. The filling factors of the
pillars are kept at moderate values of f =0.4
�square�, f =0.5 �triangular�, and f =0.3
�honeycomb�.
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also Fig. 3�b� and discussion below�, the flat branches
broaden and simultaneously higher branches move down-
ward and, as a consequence, the higher gap closes. However,
the lower gap is more robust in the triangular lattice and
remains open for much higher thicknesses of the plate. In
addition, for the square and triangular lattices, a narrow gap
can also exist at lower frequencies ���0.2�, much below
the Bragg regime, where the wavelength in all constituting
materials is at least ten times larger than the period of the
lattice. The origin and existence condition of this gap, which
presents some similarity with the behavior in locally reso-
nant sonic material,5 was discussed in detail in Ref. 11 for
the square-lattice geometry. In particular, it was shown that
the existence of this gap requires a very thin plate �e /a
�0.1� and also the height of the pillars should be a moderate
fraction of a as can be seen in Fig. 3�a�.

In Fig. 3�b� we present the variation in the gaps as a
function of the thickness of the plate, for a fixed value of the
height of the pillars �hSi /a=0.8 for the square and triangular
arrays and hSi /a=0.7 for the honeycomb lattice as indicated
by the red vertical dashed lines in Fig. 3�a��. In the square-
lattice geometry, the band gaps close quickly with the in-
crease in the plate thickness �eSiO2

/a�0.25� while for the
triangular lattice the Bragg gap persists over a wide range of
the thickness �eSiO2

/a	0.7�. For the honeycomb lattice, the
gap also remains as far as eSiO2

/a	0.5, although it is nar-
rower than in the case of the triangular lattice. Overall the
central frequency of the Bragg gap does not change too
much when varying eSiO2

. On the other hand, the low-
frequency gap in both the triangular and square lattices
closes quickly when increasing eSiO2

. In contrast to our pre-
vious study about the square-lattice geometry,11 the triangu-
lar and honeycomb lattices can exhibit a Bragg gap for much
thicker plates, which is a desirable condition for the techno-

logical fabrication of such samples. Moreover, the triangular
lattice is the one that exhibits the largest gap over a wider
range of the geometrical parameters. Let us remember26,27

that in a structure constituted by periodic holes in a Si mem-
brane, the triangular lattice is not at all suitable to exhibit
phononic band gaps.

IV. PHOTONIC BAND GAPS

In this section, we present the trends of the photonic band
gaps as a function of the geometrical parameters. Figure 4�a�
presents the photonic band gap maps as a function of the
height hSi /a of the pillars, for a constant value of the thick-
ness of the plate eSiO2

/a=0.1. In all investigated lattices, one
can see clearly the existence of a complete photonic gap
�gray areas� which, however, closes faster than in the
phononic case when increasing the height of the pillars.
More precisely, for eSiO2

/a=0.1, the gap exists when the
height of the pillars hSi /a is chosen in the range �0.4, 0.9� for
the square and triangular arrays and in the narrower range of
�0.6, 0.8� for the honeycomb lattice. Actually, it would be
desirable to have the frequency of the photonic gap as lowest
as possible, which means choosing the highest possible val-
ues of hSi /a around 0.7–0.8. Otherwise the gap covers only a
very small area of the Brillouin zone just below the light
cone and therefore becomes not very useful for practical ap-
plications �see Sec. V and Fig. 5�.

In Fig. 4�b�, we give the photonic band gap maps when
varying the thickness of the plate from 0.1 to 1.0 with a
constant value of the pillar height �hSi /a=0.8 for the square
and triangular arrays and hSi /a=0.7 for the honeycomb one
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FIG. 4. �Color online� Evolution for the
square, triangular, and honeycomb arrays of the
photonic band gap: �a� as a function of the height
of the pillars hSi /a, for eSiO2

/a=0.1 and �b� as a
function of the thickness of the plate eSiO2

/a, for
hSi /a=0.8 �square and triangular� or hSi /a=0.7
�honeycomb�. The filling factor of the pillars is
chosen to be f =0.4 �square�, f =0.5 �triangular�,
and f =0.3 �honeycomb�.
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as indicated by the red vertical dashed lines in Fig. 4�a��. In
all cases, the gaps progressively close as far as the thickness
of the plate increases while the central frequency of the gap
changes very smoothly. Here also, the triangular lattice al-
lows the highest value of the thickness to keep the gap open.

V. DUAL PHOTONIC/PHONONIC BAND GAPS

We have clearly demonstrated the existence of complete
phononic and photonic band gaps for the three investigated
arrays of silicon pillars on a SiO2 plate. The conditions on
the geometrical parameters to obtain dual band gaps can be
expressed as follows. For the square array, the existence of a
phononic gap requires a very thin plate �eSiO2

/a�0.1–0.2�
whereas the existence of a photonic gap imposes to choose
the height of the pillars as a fraction of the period �hSi /a
�0.4–0.9�. In practice, to avoid the photonic gap to occur
only in a very restricted domain of the Brillouin zone just
below the light cone, it would be suitable to decrease its
frequency and therefore to choose the highest possible value
of hSi /a, around 0.8 �see Fig. 4�a��. In comparison to the
square lattice, the triangular array permits more flexibility in
the choice of the parameters, especially as concerns the
thickness of the plate which may become now a fraction of
the period �up to eSiO2

/a�0.7 in the above calculation with
hSi /a=0.8�. This is an interesting point to stress in view of
the technological fabrication of such samples as will be
shown below. Finally, the honeycomb lattice can also exhibit
a dual band gap for a relatively broad range of value of
eSiO2

/a�0.1–0.5 but for a narrow range of hSi /a�0.6–0.9.

Table II gives a summary of the results presented in Secs. III
and IV.

Based on the above calculations, we give in Fig. 5 an
illustration of both phononic and photonic dispersion curves
for each of the three lattices. The geometrical parameters are
those indicated by the red and blue vertical dashed lines in
Figs. 3 and 4. From this figure, it can be seen that it is more
suitable to find the photonic gap around or below the dimen-
sionless frequency 0.4, otherwise it will be restricted only to
a small part of the Brillouin zone below the light cone.

Of course the actual frequencies in Figs. 3–5 scale in-
versely with the real dimensions of the structures. As an
example, we can assume that the photonic midgap should
occur at the telecommunication wavelength region around
1550 nm. Then all the geometrical parameters become totally
determined and are given in Table III. With these parameters,
the photonic gap occurs in the range of 1500–1600 nm as
required and the corresponding phononic gap falls in the
range of a few gigahertz. As mentioned above, let us notice
that, unlike the square lattice, the triangular and honeycomb
lattices do not require a very thin plate.
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FIG. 5. �Color online� Photonic �left� and
phononic �right� dispersions curves calculated for
�a� the square array with the set of parameters
eSiO2

/a=0.2, hSi /a=0.8, and f =0.4, �b� the trian-
gular array with the set of parameters eSiO2

/a
=0.5, hSi /a=0.8, and f =0.5, and �c� the honey-
comb array with the set of parameters eSiO2

/a
=0.4, hSi /a=0.7, and f =0.3.

TABLE II. Range of parameters allowing dual photonic-
phononic band gaps for a fixed value of the plate thickness
�eSiO2

/a=0.1� or a fixed value of the pillar height hSi /a.

Array r /a hSi /a eSiO2
/a

Square 0.357 �0.4, 0.9� 0.8 0.1 �0.1, 0.25�
Triangular 0.371 �0.4, 0.9� 0.8 0.1 �0.1, 0.7�
Honeycomb 0.203 �0.6, 0.8� 0.7 0.1 �0.1, 0.5�
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VI. CONCLUSION

We have theoretically demonstrated that a periodic array
of silicon pillars deposited on a thin homogeneous SiO2 layer
exhibits dual phononic/photonic complete band gaps in the
three most common lattices, namely, square, triangular, and
honeycomb. The geometrical parameters appear to be quite
compatible with the technological fabrication facilities. In
addition, the triangular lattice provides the best flexibility in
the choice of the geometrical parameters which is an inter-
esting point in view of the creation of defects such as
waveguides and cavities similarly to the case of usual pho-
tonic crystals. These properties will be investigated in subse-
quent works.

Phononic and photonic crystal slabs hold promises for the
simultaneous confinement and tailoring of sound and light
waves with potential applications to acousto-optical devices
and highly controllable photon-phonon interactions. The new
structure studied in this paper presents an alternative with
respect to the more common structure constituted by a peri-

odic array of air holes in a silicon membrane. In the latter
case, it has been shown26,27 that a complete photonic gap
occurs only for a restricted range of the geometrical param-
eters in the honeycomb and boron-nitride lattices while for a
wide range of parameters the phononic gap is accompanied
only by a photonic gap with a given polarization �odd or
even�. Instead, in the case of pillars, the complete gaps can
exist over a wide range of parameters. In addition, it is not
required to choose a relatively high filling fraction, in con-
trast to the case of air holes in silicon.
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