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The characteristics of surface acoustic waves (SAW) propagating obliquely in electrode gratings are
investigated, with the mass-loading effect taken into account. The velocity of the surface waves, as well as the
attenuation, piezoelectric coupling and beam-steering are obtained as a function of the propagation angle
with respect to the grating axis. The slowness curves for SAW propagating under periodic electrode gratings
are compared with slowness curves for the same SAW propagating on free or shorted homogeneous surfaces
as well as under a thick homogeneous metallic layer. Examples are presented for the SAW of 42.75°YX
quartz and the leaky-SAW of 36°YX lithium tantalate

Introduction

During the last decade, much work has been devoted to
the modeling and the numerical simulation of surface
acoustic waves (SAW) propagating under interdigital
transducers (IDT), including the mass-loading effect that is
due to acoustic propagation inside the aluminum electrodes.
These tools are especially useful to understand the wave
propagation characteristics in actual SAW filters, and hence
are used routinely to obtain the basic parameters required
for filter design. They are generally based on a mixed finite
element analysis (FEA) / boundary integral method (BIM)
[1-4], in which the wave solution in the electrodes and in
the substrate are respectively obtained by FEA and a
Green’s function, and the two domains are related using a
BIM to obtain the harmonic admittance.

One limitation of the FEA/BIM method is that for
computation reasons the problem is restricted to two
dimensions, with the electrodes assumed infinite in the
transverse direction. However, real SAW devices are of
finite width, and transverse effects occur that can not be
taken into account using a 2D model. Though an exact 3D
model is probably still beyond reach, useful information can
be gained by examining the propagation of slanted acoustic
waves in periodic gratings. Indeed, diffraction effects
caused by the finite transverse dimension of the electrodes
can in principle be addressed by developing the transverse
wave structure as a sum over slanted acoustic waves.

In this paper, we address the problem of obtaining the
slowness curves for surface acoustic waves propagating in
periodic electrode gratings [5], i.e. defining the phase angle
θ as the angle of propagation with respect to the electrodes
axis, we show how the phase velocity can be obtained as a
function of θ, including the mass-loading effect. Along with
the phase velocity, we also discuss how other useful
information regarding the propagating waves can be
obtained as a function of angle θ, e.g. the attenuation, the
electro-mechanical coupling and the beam-steering angle.

In order to achieve this goal, we have extended some

standard concepts and methods of SAW propagation
analysis so that they apply to slanted waves, including
Green’s functions analysis, the P-matrix model and the
FEA/BIM method. In particular, we will discuss a finite
element model suited to our purposes.

Numerical simulation results are presented for some
standard piezoelectric substrates widely used for the
fabrication of SAW devices, such as ST quartz (true SAW)
and Y+36 lithium tantalate (pseudo or leaky SAW). The
slowness curves for SAW propagating under periodic
electrode gratings are compared with slowness curves for
the same SAW propagating under a thick homogeneous
metallic layer.

Slowness Curves

We first discuss here how the slowness curves can be
exploited to obtain the beam-steering and the diffraction
parameter in a periodic electrode grating. In the case of a
free or shorted surface, and also in the case of a uniform
metallic layer deposited on the piezoelectric substrate, the
beam-steering is best obtained via the Poynting vector,
which is known to be normal to the slowness curve and can
be obtained rather simply. In the case of a periodic
electrode grating however, though a Poynting vector can
still be defined, it will depend on an infinite number of
harmonics of the grating period. Alternatively, the beam-
steering can be obtained by numerical differentiation of the
slowness curve. Let us assume that we can compute the
slowness as a function of the phase angle, i.e. the function
s(θ) in polar coordinates is known, with the angle θ
expressed in radians. The coordinates of a running point on
the slowness curve is then
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The beam steering angle Ì is defined as the angle
between the normal to the slowness curve and the phase
direction. Expressing this condition and after some simple
algebra, we arrive at
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with the definitions
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and

d �Ï�= 1Ag2�Ï� (5)

From Eqs. (3-5), the beam-steering angle can be computed
by evaluating the first derivative of the slowness curve.

By definition, the diffraction parameter is
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Since the beam-steering angle is obtained as a first
derivative, the diffraction parameter is obtained as a second
derivative of the slowness curve, and can be expressed as
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Bg’�Ï�
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(7)

SAW Parameters Estimation

In the process of computing slowness curves for
surface waves, it is necessary to locate the slowness as a
function of the propagation angle θ in the surface plane.
Fig. 1 illustrates the notations employed. The actual
algorithm employed will depend on the nature of the
propagation problem. On a free or shorted surface, the wave
characteristics are functions of the material constants only,
and are not dispersive. Under a metallic grating however,
the wave characteristics are dispersive, i.e. they depend on
the frequency period product fp, but in addition they also
depend on the electrodes shape, which for a rectangular
electrode is scaled by the form factor h/2p, where h is the
electrode height. For propagation under a thick metallic
layer deposited upon the piezoelectric substrate, the wave
characteristics are also dispersive, and depend on the
frequency thickness product fh, where h is now to be
understood as the layer thickness.

In the case of an homogeneous surface with either free
or shorted boundary conditions, it is well-known that the
slowness is given respectively by a pole or a zero of the so-
called effective permittivity. Such an approach has been
used routinely to obtain maps of surface waves parameters
[6]. The effective permittivity is a restriction of the Green’s
function of the semi-infinite substrate to its electrical
components [7]. The computation of the surface Green’s
function in the spectral domain has for instance been
described in Ref. [8].
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Fig. 1: Geometry for slanted SAW propagation in a periodic
metallic grating.

In the case of periodic electrode gratings, two
additional phenomena have to be accounted for, namely the
frequency dependence arising from the periodic
perturbation of the surface and the periodic electrical
excitation of waves, and the so-called mass-loading effect of
the electrodes. The first phenomenon is adequately
described (at least as regards the electrical part of the
problem) using the notion of the strip admittance [9],
extended to the notion of harmonic admittance (HA) in Ref.
[7]. The occurrence of a piezoelectrically coupled surface
wave is then given by a pole of the HA. There have been
many approaches to the computation of the mass-loading
effect, with most of them relying on a finite element analysis
(FEA) of the acoustical propagation in the electrodes [1-4].
In this work, we have used the approach described in [3],
which is a combination of a FEA for the electrodes with a
BIM relying upon the Green’s function of the semi-infinite
substrate. We describe in Appendix A how the classical
finite element approach can be modified to accommodate
for slanted propagation.

It has been shown [7] that the contribution of a SAW to
the HA takes the following approximate form

Y s �¸�=
j Y 0

tan �Ê s�/2
1Bcos�2Å¸�

cos�Ê s�Bcos�2Å¸�
(8)

where ¸ is the driving parameter of the harmonic
excitation potential

V �¸�=exp�2 j Å¸� (9)

In Eq. (8), Ê sc is the phase delay per grating period, from
which the slowness is obtained as

s=
Ê s

2Å f p
(10)

from which the attenuation is obtained if the phase delay is
considered complex. The static capacitance contribution to
the HA is of the form

Y c �¸�=C sin �Å¸� (11)

and the total HA is modelled as
Y �¸�=Y s �¸�AY c �¸� (12)

Thereby the contribution of bulk waves is neglected. The



unknown parameters Ê sc , Y 0 and C are estimated
via a fit of the model (12) to the numerical simulation of the
HA obtained using the FEA/BIM method. Most quantities
plotted in the next section are rather well defined, i.e. the
velocity at resonance (the inverse of the slowness), the
attenuation, the beam-steering angle and the diffraction
parameter, but this is not true for the coupling strength. It is
customary to employ the K 2=2¬ v/v for this purpose,
however this is defined solely for propagation on either a
free or a shorted surface, and is moreover adequate only for
a lossless SAW, i.e. does not apply to a leaky SAW. The
coupling strength used to plot Figs. (5) and (10) is the ratio

Y 0/C , and should be considered only to have a relative
significance.

Simulation Examples

All results presented in this section are obtained for an
infinite periodic electrode grating on a semi-infinite
piezoelectric substrate. The zero phase angle refers to
propagation along the grating axis. All parameters given are
those obtained for a pole or pseudo-pole of the harmonic
admittance, i.e. for the resonance condition, with the
frequency period product fp set to 1000 m/s, i.e. far
from the stop-band in all cases.

The denomination for the considered ST cut of quartz
is (YXl)/42.75 in the IEEE 1949 piezoelectric standard. The
dependence of the slowness, beam-steering, diffraction
parameter and piezoelectric coupling for the SAW of ST
quartz are depicted in Figs. 2, 3, 4 and 5 respectively, for
three values of the electrode aspect ratio h /2p (0, 5 and
10 %). The slowness is seen to be rather strongly affected
by the mass loading effect, as is well-known for ST quartz,
and to assume a symmetrical and mostly parabolic shape.
The beam-steering remains limited, while the coupling
increases with the phase angle. It should be noted that no
attenuation was found to occur at any angle.

The denomination for the considered cut of lithium
tantalate is (YXl)/36 in the IEEE 1949 piezoelectric
standard. This cut is famous for its leaky SAW, or pseudo
SAW (PSAW). The dependence of the slowness,
attenuation, beam-steering and piezoelectric coupling for
the PSAW are depicted in Figs. 6, 7, 8 and 9 respectively,
for three values of the electrode aspect ratio h /2p (0, 5
and 10 %). The slowness is seen to be much less affected by
the mass loading effect than is that of the SAW of ST
quartz, and to assume a parabolic shape. The beam-steering
varies rather largely with the phase angle. The coupling is
maximum along the grating axis, while at the same time the
attenuation is at a minimum.

Fig. 2: Velocity of the SAW of ST quartz under an
aluminum layer and in a periodic grating (fp=1000 m/s).

Fig. 3: Beam-steering of the SAW of ST quartz under an
aluminum layer and in a periodic grating (fp=1000 m/s).



Fig. 4: Diffraction parameter γ of the SAW of ST quartz
under an aluminum layer and in a periodic grating (fp=1000

m/s).

Fig. 5: Coupling strength of the SAW of ST quartz in a
periodic grating (fp=1000 m/s); see text for comments about

the definition of the coupling strength.

Fig. 6: Velocity of the leaky-SAW of 36°YX lithium
tantalate under an aluminum layer and in a periodic grating

(fp=1000 m/s).

Fig. 7: Attenuation of the leaky-SAW of 36°YX lithium
tantalate under an aluminum layer and in a periodic grating

(fp=1000 m/s).



Fig. 8: Beam-steering of the leaky-SAW of 36°YX lithium
tantalate under an aluminum layer and in a periodic grating

(fp=1000 m/s).

Fig. 9: Coupling strength of the leaky-SAW of 36°YX
lithium tantalate in a periodic grating (fp=1000 m/s); see
text for comments about the definition of the coupling

strength.

Conclusion

The characteristics of surface acoustic waves
propagating obliquely in electrode gratings have been
investigated, with the mass-loading effect taken into
account. The slowness of the surface waves, as well as the
attenuation, piezoelectric coupling and beam-steering have
been obtained as a function of the propagation angle with
respect to the grating axis. The method is based on the
monitoring of poles in the harmonic admittance, which is
computed using a FEA/BIM approach. A modification of
classical finite element analysis was derived to account for
slanted propagation. Examples were presented for
42.75°YX quartz and 36°YX lithium tantalate.

The authors acknowledge fruitful discussions with J.
Desbois, M. Solal and P. Ventura of Thales Microsonics,
France.
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Appendix A: Finite Element

The finite element that we use was derived from a
classical two-dimensional triangle with 3 degrees of
freedom, originally intended for isotropic acoustic
problems. More precisely, for an infinitely long electrode,
the displacements and constraints are usually assumed not
to depend on the transverse coordinate x3 (hence the two-
dimensional element), but the 3 components of the



displacement must be taken into account (hence the 3
degrees of freedom). Another possible representation of the
finite element is an infinitely long volume with a triangular
section. To take into account slanted propagation inside the
electrodes, we assume in addition a sinusoidal dependence
of the displacements in the transverse coordinate with a
given wave-vector k3 according to

u=sin �k3 x3AÓ��P �x1, x2���u�T (A1)

where ϕ is an arbitrary phase. T stands for the finite element
considered, P is the polynomial interpolation inside the
element, and �u�T is the vector of coordinates of the
nodes. Following the usual procedure of FEA, a variational
problem is constructed, which can be cast in a linear form���

K ����� 2 � M �	��
 u ��
�
 B � (A2)

where �K � is the stiffness matrix, �M � is the mass
matrix, ω is the angular frequency and �B� represents the
excitation forces applied to the electrode. Using the
notations �P � for the polynomial interpolation matrix,
�DP � for the matrix of the polynomial derivatives,
�C � for the stiffness tensor in contracted notation, ρ for

the mass density,  and the constant matrices

�D �=�
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

� (A3)

and

�D3 �=�
0 0 0
0 0 0
0 0 1
0 0 0
0 1 0
1 0 0

� (A4)

the elementary stiffness and mass matrices can be written
respectively as

�M T �=þT
�P �t Æ�P �d x (A5)

and
�K T �=þT

��D ��DP ��t �C ���D ��DP ��d x

AþT
k3

2 ��D3 ��P ��
t �C ���D3 ��P ��d x

(A6)

In the derivation, the sinusoidal dependence has dropped by
integration along the x3 axis. By comparison with the
usual case of normal propagation �k3=0� it is seen that
only the stiffness matrix is affected, and that a positive
matrix has to be added to it, weighted by the square of the
transverse wave-vector.


