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Electrostriction and guidance of acoustic phonons in optical fibers

Jean-Charles Beugnot and Vincent Laude*
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We investigate the generation of acoustic phonons in optical fibers via electrostriction from coherent optical
waves. Solving the elastodynamic equation subject to the electrostrictive force, we are able to reproduce the
experimental spectra found in standard and photonic crystal fibers. We discuss the two important practical cases
of forward interaction, dominated by elastic resonances of the fiber, and backward interaction, for which an
efficient mechanism of phonon guidance is found. The last result describes the formation of the coherent phonon
beam involved in stimulated Brillouin scattering.
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Electrostriction (ES) describes the coherent generation of
acoustic phonons from the interference of two frequency-
detuned optical waves. The effect is closely related to Brillouin
light scattering (BLS), or the scattering of an incident photon
by an acoustic phonon of a solid material, accompanied by
a frequency shift of the scattered photon. The combination
of BLS and ES explains stimulated Brillouin scattering (SBS),
an efficient three-wave interaction involving two optical waves
and an acoustic wave satisfying both energy and momentum
conservation. SBS is a fundamental limiting phenomenon for
signal transport over optical fibers.1 Interactions of photons
and acoustic resonances of photonic crystal fibers (PCF)2

and optical waveguides3 have received much attention, for in-
stance, in view of obtaining strong opto-acoustic interactions4

or of reducing noise in quantum optics experiments.5 ES in
optical fibers is not easily observed since, while the incident
and the scattered optical waves are directly accessible to
the experiment, the intervening acoustic phonons are only
witnessed via their induced effects on light. As a result, most
theories eliminate phonon dynamics to concentrate on the
evolution of the amplitudes of optical waves. This process,
however, can only be performed under strong assumptions
on the nature of the phonons generated by ES. Guided
acoustic wave Brillouin scattering (GAWBS) theories, for
instance, assume the acoustic modal shapes and resonant
frequencies to be known beforehand, so that scattering cross
sections can be computed from overlap integrals.6–8 Modal
approaches, however, give no insight into the mechanism
of selection of particular phonons from the electrostrictive
force.

In this paper, we propose a direct calculation of acous-
tic phonons induced by electrostriction in optical fibers,
based only on knowledge of the fiber geometry and of
the particular incident guided optical waves. Specifically, an
elastodynamic equation is solved for a fiber with an arbitrary
cross section subject to an optical force. By comparing
with the experimental spectra obtained with the standard
optical fiber and photonic crystal fiber with a solid core,
we show that the computed phonons as a function of the
detuning frequency explain both backward and forward ES
and provide an estimation of the efficiency of the process.
Under the phase-matching conditions of SBS, furthermore,
our results imply that the phonon beam generated by elec-
trostriction is actually guided and confined to the core of the
fiber.

Standard SBS models for optical fibers are based on a rather
strong plane-wave approximation9,10 and on the picture of ES-
generated pressure or density fluctuation waves.1 In contrast
to this simple picture, theory and experiment have shown
the relevance of including both shear and longitudinal elastic
waves together with a precise description of the structure.2,6,7,11

Let us consider an optical fiber with an arbitrary cross section.
We assume the total incident optical field results from the
superposition of two frequency-detuned guided modes

E(r,z; t) = E(1)(r)ei(ω1t−k1z) + E(2)(r)ei(ω2t−k2z), (1)

with angular frequencies ω1(2) and axial wave vectors k1(2).
This optical distribution induces an optical force given
by divergence of the symmetric ES stress tensor T es

ij =
−ε0χklijEkE

∗
l , with the rank-4 susceptibility tensor χklij =

εkmεlnpmnij and pmnij the elasto-optic tensor. ε0 is the permi-
tivity of a vacuum. The force term with detuning frequency
ω = ω1 − ω2 is proportional to E

(1)
k E

(2)∗
l exp[i(ωt − kz)] with

k = k1 − k2. Because we are considering the generation of
elastic waves with low frequency with respect to optical
frequencies ω � ω1,2. If the two optical waves are propagating
in the same direction, a situation typical of GAWBS,6 k ≈ 0
and we speak of forward ES. If they are propagating in opposite
directions, which is the SBS situation, k ≈ 2k1 and we speak
of backward ES. Because of the particular source term, the
following ansatz is assumed for the displacements of the
ES-generated elastic wave

ui(r,z; t) = ūi(r)ei(ωt−kz), (2)

where the transverse dependence ūi(r) is the unknown of the
model. The elastodynamic equation

ρ
∂2ui

∂t2
− (cijkluk,l),j = −T es

ij,j , (3)

with cijkl the rank-4 tensor of elastic constants, is written in
variational form by left-multiplying by virtual displacement
field vi and integrating over the cross section S. Further
applying Green’s theorem, we get

−ω2
∫

S

ρv∗
i ui +

∫
S

v∗
i,j cijkluk,l =

∫
S

drv∗
i,j T

es
ij , (4)

which amounts to the theorem of virtual work for the ES
force. For practical computations, the Galerkin nodal finite
element method (FEM) is then employed to transform the
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integral equation into the linear system

[K(k) − ω2M]U = X(k)T es, (5)

with mass matrix M , stiffness matrix K(k) = K0 + kK1 +
k2K2, and X(k) = X0 + kX1. U is the vector of nodal
displacements ūi and T es is the vector of electrostriction
stress tensor value at nodal points T̄ es

ij = −ε0χklijE
(1)
k E

(2)∗
l .

Equation (5) is our central result. Its solution as a function of
frequency detuning gives the rigorous distribution of displace-
ments within the waveguide cross section and can be directly
compared to experiment, as we show next. The ES stress tensor
is uniquely defined by the optical modal distribution. Matrices
K(k) and X(k) are polynomials in the wave-vector detuning k,
thus unifying in the same formula forward and backward ES,
as well as any intermediate situation.

As a test for our model, we selected a 1-km long single
mode fiber (SMF28) and a 400-m long large core PCF with
similar optical propagation properties. Single mode guidance
is achieved by total internal reflection: SMF28 has a Ge-doped
core with a larger refractive index than the surrounding
undoped silica, while PCF has a pure-silica core surrounded
by a holey structure with a lower effective index. The silica
PCF shown as an inset in Fig. 2(a) has a hole diameter of
4.6 μm and an air filling ratio d/� = 0.58, resulting for
the fundamental mode in effective index neff = 1.441 and
optical effective area Aeff = 70 μm2. The SMF28 fiber has
neff = 1.446 and Aeff = 78.3 μm2, while the core diameter is
8.2 μm.

ES-generated phonons inside an optical fiber are hardly
observable directly. They can, however, be observed indirectly
in a manner similar to spontaneous Brillouin gain spectrum
measurement or Brillouin sensing, by monitoring the light
diffracted from a coherent pump wave. A heterodyne detection
experimental setup was used for investigating backward
ES.12 To observe forward ES, we used a fiber loop mirror
interferometer.8 The measured spectra for the SMF28 fiber
are shown in Figs. 1(a) and 1(b). The forward spectrum has
many sharp peaks that gradually vanish for frequencies above
600 MHz. The peaks are known to be directly related to elastic
resonances of the fiber. The backward spectrum shows a single
Lorentzian peak with a linewidth of 27 MHz and a central
frequency 10.85 GHz. The PCF case shown in Figs. 2(a)
and 2(b) looks similar, though the resonance frequencies are
slightly different. Forward ES resonances in this case are
known to be related to the holey structure rather than to the
external cladding of the fiber.

We then proceed to model the experimental results using
Eq. (5). A FEM mesh covering the full fiber cross section was
first created, with the outer boundaries left free. The mesh of
the PCF was extracted from the scanning electron microscope
image shown as an inset in Fig. 2(a). The fundamental optical
modes are first obtained and normalized for unit transported
power. ES stress distributions are displayed in Figs. 1(c) and
2(c). For both fibers, the ES stress is confined in the core
roughly as the square of the optical field. Next, the ES-driven
elastodynamic equation was solved for the displacement of
the elastic wave by imposing the phonon wave vector k

and scanning the detuning frequency ω. Independent material
constants considered for silica are shown in Table I. To include

the phonon lifetime, elastic losses were incorporated in the
ES model by considering a complex elastic tensor whose
imaginary part is a constant viscosity tensor times frequency.13

This loss model is compatible with the usual assumption
that the Qf product is a constant for a given material, with
Q the quality factor and f the frequency. This is the only
adjustable parameter in the model. The value Qf = 5.1012 Hz
was selected to fit the SBS linewidth of SMF28.

Calculated forward (k = 0) and backward (k = 2k1) ES
spectra are shown in Figs. 1(a) and 2(a) for SMF28 and
PCF, respectively. These spectra are obtained by evaluating
the kinetic energy in the phonon beam ω2/2

∫
S
ρ|ui |2 as

a function of frequency detuning. The agreement with the
experimental spectra is excellent in the backward case, with
only one Lorentzian peak appearing. In the forward case, the
appearance of a sequence of sharp resonance peaks and its
gradual disappearance with increasing frequency are correctly
reproduced, though the relative peak heights are not accurately
predicted. These discrepancies can be explained by fine details
of the fiber away from the core that are not described
precisely in the model, while they can have a direct influence
on transverse phonon resonances. Such discrepancies were
already noted by Shelby et al.,6 when comparing modal theory
with the experiments.

We display in Figs. 1(d) and 2(d) the kinetic energy
densities at resonance for selected frequencies in the forward
ES spectrum. For SMF28, the energy distribution fills the
whole fiber. For PCF, in contrast, the phonons are confined
by the holey microstructure. For both fibers, the maximum
displacement is of the order of 150 fm and is dominantly
transversal. The situation is dramatically different in the
backward case since the phonon beam is found to be confined
to the core for both fibers. For both fibers, the maximum
displacement is of the order of 50 fm and is dominantly
longitudinal, though transversal displacements do not vanish.

Let us discuss the above results in light of the elastic
normal modes of the fiber section. Such an approach has
been successful to describe GAWBS in classical fibers16 and
recently in PCF.2,8,17,18 It has also been used to describe the
phononic crystal properties of PCF.7,11 For a given wave vector
k, the modes are obtained in the absence of any applied force as
solutions of the eigenvalue problem KU = ω2MU . Because
the fiber cross section has finite dimensions, the spectrum of
eigenmodes ωn is discrete. Modes are such that their potential
and kinetic energy are equal U

†
nKUn = ω2

nU
†
nMUn. They are

furthermore orthogonal, or U
†
mKUn = U

†
mMUn = 0, provided

ωm �= ωn. They thus constitute a complete basis, and the
solution to the forced equation can be expanded as

U =
∑

n

ω2
n

ω2
n − ω2

U
†
nXT (es)

U
†
nKUn

Un. (6)

As a consequence, the phonon response to the electrostrictive
excitation is a sequence of Lorentzian-shaped resonances; at
each resonance frequency, the modal shape is a normal mode of
the fiber. Clearly, the electrostriction gain is governed by the
overlap integral U

†
nXT (es) = ∫

V
dr(un)∗i,j T

es
ij , that compares

the strain field of each mode with the electrostrictive stress
distribution. Because of elastic losses, the response cannot
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FIG. 1. (Color online) Comparison between experiment and ES model in single mode fiber (SMF28). (a) Experimental (black) and numerical
(red) forward spectra (k = 0). (b) Experimental (black) and numerical (red) backward spectra (k = 2k1). (c) Spatial distribution of the ES force
generated by the fundamental optical mode at a wavelength of 1550 nm with 1 W optical power. The black circle limits the germanium doping
core area. (d),(e) Computed kinetic energy density at 178 MHz (forward ES) and 10.85 GHz (backward ES).

diverge to infinity at resonance. Writing ωn = ωrn + ıωin,

U (ω = ωrn) ≈ ωrn

2ıωin

U
†
nXT (es)

U
†
nKUn

Un. (7)

The first factor in this expression is proportional to the Q factor
of the resonance. As the Q factor in our viscoelastic loss model
scales with the inverse of frequency, it is clear that resonance
peaks must decrease with increasing frequency, as observed
experimentally and with the direct computation in the forward
ES case.

Now it is clear that the above normal mode argument cannot
explain observations for backward ES (k = 2k1). Actually, as
k becomes large, there exist more and more normal modes

within any frequency interval, and the above analysis in terms
of a discrete spectrum of modes becomes inadequate. The
backward case can instead be treated under the following
short-wavelength approximation. For an optical wavelength of
1.55 μm in a vacuum, indeed, the optical wavelength in silica is
about 1 μm and the acoustic phonon wavelength is thus about
500 nm. This is typically much smaller than the diameter of
a classical optical fiber, but still comparable to the size of
the core of some PCF or integrated optical waveguides. We
consider specifically core diameters exceeding a few microns
in the following discussion. Neglecting K0 and kK1 in the
stiffness matrix expression, we have

k2K2UB = ω2
BMUB, (8)

TABLE I. Independent material constants for isotropic silica (Ref. 14). Values for 0.36%-GeO2-doped silica given in parentheses are
deduced from (Ref. 15).

Elast. const., GPa c11 = 78 (76) c12 = 16 (16.15) c44 = 31 (29.9)
Photoelast. const. p11 = 0.12 p12 = 0.27 p44 = −0.073
Mat. dens., kg/m3 ρ = 2203 (2254)
Refractive index n = 1.444 (1.4492) at λ = 1550 nm
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FIG. 2. (Color online) Comparison between experiment and ES model in large core PCF. (a) Experimental (black) and numerical (red)
forward spectra (k = 0). The inset in (a) shows a cross-section of the fiber. (b) Experimental (black) and numerical (red) backward spectra
(k = 2k1). (c) Spatial distribution of the ES force generated by the fundamental optical mode at a wavelength of 1550 nm with 1 W optical
power. (d),(e) Computed kinetic energy density at 390 MHz (forward ES) and 11.01 GHz (backward ES).

which defines the usual Brillouin frequency ωB . UB , the eigen-
vector corresponding to eigenfrequency ωB , is a simple plane
wave.19 In the short-wavelength approximation, X ≈ kX1 and
the electrostrictive force is mostly longitudinal because of the
particular symmetries of the elasto-optic tensor of silica. As a
consequence, shear waves satisfying Eq. (8) will hardly be
excited and we can take UB as dominantly longitudinally
polarized, and the velocity ωB/kB as very close to the velocity
for longitudinal waves in silica

√
c11/ρ = 5950 m/s. It must

be stressed that this situation is peculiar to silica, and would
not necessarily apply to other materials, such as silicon. We
further observe that because silica is isotropic, the solution to
Eq. (8) is actually independent of the propagation direction.
The actual response of the medium to the ES stress U can
then be decomposed as an angular spectrum of plane waves,
satisfying k2K2U = ω2

BMU to a good approximation for
ω ≈ ωB . Replacing this relation in Eq. (5), we obtain that

U ≈ [
K0 + kBK1 + (

ω2
B − ω2

)
M

]−1
XT es. (9)

This expression represents a Lorentzian distribution centered
on the Brillouin frequency. Close to resonance, the matrix to
be inverted is of minimum norm, but nonvanishing because

of phonon loss. Significantly, the transverse distribution of
the phonon beam is similar to the electrostrictive stress
distribution, T es. This is very different from the forward
case, for which this distribution is given by the normal
modes of the fiber, and thus extends throughout the fiber
cross section. Figure 3 illustrates this point by showing the
profiles of the distribution of phonon energy. We believe this
particular distribution of the phonon beam explains why SBS
is remarkably efficient in optical fibers, independently of the
fact that the involved acoustic phonons are guided or not by the
transversal structure of the fiber. We note that the mechanism of
guidance by the electrostrictive stress distribution relies on the
incident optical waves being guided in the core of the fiber, and
would not hold for SBS in bulk crystals, for example. A formal
analogy can further be drawn with optical gain guidance in the
plane of the junction of double-heterostructure semiconductor
lasers.20 But while confinement normal to the laser junction is
provided mainly by the structural refractive index distribution
and not by gain, electrostrictive stress is here solely responsible
for guidance of the phonon beam.

It may be argued that if absorption would dominate over
diffractive spreading of the phonon beam, then the new

224304-4



ELECTROSTRICTION AND GUIDANCE OF ACOUSTIC . . . PHYSICAL REVIEW B 86, 224304 (2012)

FIG. 3. (Color online) Normalized X profiles of optical power
density and kinetic energy density in (a) photonic crystal fiber and
(b) standard fiber. The black line shows the fundamental optical mode
guided by total internal reflection. The dashed blue line shows the
most efficient elastic mode in the forward ES case and the red line
shows the phonon beam excited in the backward ES case.

phonons created all along the fiber core would not travel far
before being absorbed, thus explaining the apparent phonon
guidance described above. Let us show that this argument does
not hold and that lower loss, strikingly, leads to the generation
of a phonon beam that is even more confined to the core. The
quality factor of the SBS resonance in SMF28 is about 450 and
the longitudinal phonon wavelength is thus 540 nm. Phonons
thus propagate over a distance of approximately 250 μm before
getting absorbed. This distance is clearly much larger than
the phonon beam spread observed in Fig. 3, which is about
8 μm. It is also larger than the fiber diameter. Let us artificially
increase the Q factor of the resonance by a factor of 100, or
correspondingly allow phonons to propagate over distances as
large as 25 mm. Figure 4 shows the backward ES spectrum
and the kinetic energy density at resonance computed in this
case for fiber SMF28. The spectrum is 100 times less wide,
as expected, and the phonon energy distribution is even more
confined to the core as compared to the case of Fig. 1(e).
Clearly, phonon guidance is not a result of phonon loss in
the frame of our model, but rather results from the spatial
distribution of the optical force.

As a conclusion, the consideration of electrostrictive forces
has allowed us to evaluate precisely the acoustic phonons
generated in optical fibers by Brillouin-type interactions. Our

FIG. 4. (Color online) Computed backward ES spectrum and
kinetic energy density at resonance for fiber SMF28, for a Q

factor at resonance artificially increased 100-fold as compared to
the experimental value.

model encompasses the forward interaction case, including
GAWBS, and the backward interaction case, including SBS.
In all expressions we have derived, the frequency response
to electrostriction is a Lorentzian function whose width is
dictated by intrinsic phonon losses, or the inverse of the phonon
life time, possibly dependent on frequency. Significantly,
the phonon beam generated via backward ES is naturally
guided and confined to the core of the fiber. Our method
could furthermore be extended to almost any type of optical
waveguide. Silicon nanostructures, for instance, have attracted
attention recently in view of obtaining optomechanical cou-
pling in structures supporting the simultaneous confinement
of elastic and optical waves.21 Optical forces, including ES
and radiation pressure,22 have been predicted to scale to
large values in nanoscale waveguides.3 The model we have
presented, possibly supplemented with optical surface force
terms, should yield the acoustic phonons generated in such
cases.
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