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A theoretical description of ideal and viscous fluid media is proposed to address the problem of
modeling damping effects of surface acoustic waves and more generally of any guided elastic waves
at the interface between viscous fluids and solids. It is based on the Fahmy-Adler eigenvalue
representation of the elastic propagation problem, adapted to provide Green’s function of the
considered media. It takes advantage of previous efforts developed to numerically stabilize
Green’s-function computation process. This function is used to compute a harmonic admittance
according to the Blötekjaër approach. The influence of acoustic radiation and viscosity effects on
different kinds of waves excited on various substrates is reported and discussed. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2168242�
I. INTRODUCTION

Surface acoustic waves �SAWs� can be excited at the
surface of any solid material. These waves may exhibit ellip-
tic as well as pure shear polarizations �case of isotropic me-
dia�, but the practical case of wave propagation at the surface
of anisotropic material generally yields combinations of pure
polarization, except along the given crystal or symmetry
axes.1 True SAWs are assumed to propagate without any
losses along the guiding surface, providing a nice opportu-
nity to manufacture low loss devices such as filters and reso-
nators. However, it is also known that best quality factors
and/or smallest insertion losses of SAW devices are obtained
using packages closed under vacuum to avoid leakage due to
acoustic radiation in air. The use of SAW devices for the
development of sensors immersed in fluid media has also
been widely investigated. For instance, Rayleigh waves are
known to be dramatically damped by water but pure shear
waves are often considered capable to exist even when their
propagation substrate is loaded by a liquid. Theoretical
analysis of SAW excitation and propagation under such op-
erating conditions requires the adaptation of existing simula-
tion tools to provide a reliable description of the induced
effects by the nature of the surrounding medium on the SAW
device response.

In the proposed analysis, the way Green’s function and
the harmonic admittance can be used in that matter is de-
scribed. The mathematical developments required to develop
a computation tool based on such concepts are exposed. The
case of viscous fluids �in the limit of the Newtonian fluid
assumption2� has been particularly investigated, since it also
allows the simulation of ideal fluids simply by setting the
viscosity coefficients to zero. Many cases then are consid-
ered in order to illustrate the interest of the proposed ap-
proach, for instance, the attenuation of Rayleigh waves due
to water damping, the sensitivity of Leaky waves to viscos-
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ity, or the behavior of plate modes loaded on one side by
viscous water. The corresponding theoretical results are dis-
cussed. The specific situation of pure shear waves as used in
surface transverse waves �STWs� is particularly investigated.
These waves are generally assumed poorly affected by water
and other weakly viscous fluids. The limit of this hypothesis
is examined theoretically.

II. THEORY

A. Modeling the acoustic behavior of ideal and
viscous fluids

The theoretical representation of acoustic waves in fluids
is usually performed using a pressure formulation. Neverthe-
less, in order to easily derive the corresponding Green’s
function, a displacement formulation can be constructed as
well. For any fluid, the independent elastic constants re-
quired for such a formulation reduce to one, i.e., C11 which is
also equal to C12, yielding C66=0 consequently. According to
Ref. 2, a shear effect in a fluid between a moving solid and a
reference solid results in a linear stress proportional to the
velocity gradient via the coefficient � called shear viscosity
or absolute viscosity of the fluid. In an isotropic homoge-
neous uncompressible Newtonian fluid, the stress is propor-
tional to the linear strain; this is called the Stokes law. In a
very general approach,3 one should also consider the com-
pressive viscosity factor �. The pressure in the fluid P is
proportional to the displacement divergence via the fluid
compressibility as

P = −
1

�

�ui

�xi
. �1�

In the proposed developments, we assume the absence of any
relaxation phenomenon �no specific time dependence� within

the considered fluids. The stress then can be written as
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Tij = − �P + j��2

3
� − ��Skk��ij + 2j��Sij , �2�

where Tij and Sij are the stress and strain tensors, respec-
tively, and � is the angular frequency. One can remark that
for �=�=0 �no viscosity�, Eq. �2� reduces to the classical
pressure equilibrium with no shear effects �Tij =0 for i� j�.
According to the literature,4,5 the compressive viscosity may
be responsible for important effects and hence should in no
way be neglected. For instance, in the case of water, the
absolute viscosity equals 0.8 cP but the compressive viscos-
ity is about 2.8 times larger.5 These two numerical values are
assumed in the numerical applications of Sec. III without any
restriction and their respective influence on wave damping is
evaluated.

B. Fahmy-Adler formulation for viscous fluids

Let us now explain how one can represent the propaga-
tion of acoustic waves in viscous fluids as an eigenvector
problem conformably to the general description of
Fahmy-Adler6 for solids. Without any loss of generality, one
considers the propagation in the plane �x1 ,x3� and the depen-
dence along x2 is given by the linear system to be solved, as
shown further. We assume a harmonic dependence in time,
with the implicit term ej�t omitted. We define the following
state vector, mixing displacement, and stress components in
the propagation plane,

h = 	 T21

− j�

T22

− j�

T23

− j�
u1 u2 u3
 . �3�

In a more general approach, one should add the electrical
potential and the electrical displacement vector component
along x2, enabling one to represent the dielectric viscous flu-
ids. For the sake of simplicity, we only focus on the acoustic
contribution. The propagation equations provide the first de-
rivatives of the in-plane stresses versus x2 as follows, using
the notation �ij =Tij / �−j��,

�

�x2�
�21

�22

�23
� = j���I��u1

u2

u3
� −

�

�x1�
�11

�12

�13
� −

�

�x3�
�31

�32

�33
� . �4�

We need three more equations to establish the first deriva-
tives of the displacement versus x2. This is performed by
developing �2� as follows:

��11

�12

�13
� =

�

�x1
�A11��u1

u2

u3
� +

�

�x2
�A12��u1

u2

u3
�

+
�

�x3
�A13��u1

u2 � ,
u3
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��21

�22

�23
� =

�

�x1

t�A12��u1

u2

u3
� +

�

�x2
�A22��u1

u2

u3
�

+
�

�x3
�A23��u1

u2

u3
� , �5�

��31

�32

�33
� =

�

�x1

t�A13��u1

u2

u3
� +

�

�x2

t�A23��u1

u2

u3
�

+
�

�x3
�A33��u1

u2

u3
� ,

where matrices �Aij� depend on the viscosity factors, the
compressibility factor, and the frequency �see Appendix �.
From the second line of �5�, one deduces the derivatives of
the displacement versus x2,

�

�x2�
u1

u2

u3
� = �A22�−1
��21

�22

�23
� −

�

�x1

t�A12��u1

u2

u3
�

−
�

�x3
�A23��u1

u2

u3
�� . �6�

Inserting �5� and �6� yields the following expressions of �1j

and �3j;

��11

�12

�13
� =

�

�x1
�A11��u1

u2

u3
� + �A12��A22�−1
��21

�22

�23
�

-
�

�x1

t�A12��u1

u2

u3
� -

�

�x3
�A23��u1

u2

u3
��

+
�

�x3
�A13��u1

u2

u3
� ,

�7�

��31

�32

�33
� =

�

�x1

t�A13��u1

u2

u3
� + t�A23��A22�−1
��21

�22

�23
�

-
�

�x1

t�A12��u1

u2

u3
� -

�

�x3
�A23��u1

u2

u3
��

+
�

�x3
�A33��u1

u2

u3
� .
The above system is related to the state vector h as follows:
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��11

�12

�13
� = ��A12��A22�−1 �A12��A22�−1� �

�x1

t�A12� +
�

�x3
�A23��

+
�

�x1
�A11� +

�

�x3
�A13���

�21

�22

�23

u1

u2

u3

� ,

�8�

��31

�32

�33
� = � t�A23��A22�−1 − t�A23��A22�−1� �

�x1

t�A12�

+
�

�x3
�A23��

+
�

�x1

t�A13� +
�

�x3
�A33���

�21

�22

�23

u1

u2

u3

� .

Inserting �4� and �8�, and combining the result with �6�, we
obtain the eigenvalue formulation we are looking for. As-
suming a harmonic dependence of the fields versus x1 and x3,
replacing the corresponding gradients by −j�s1 and −j�s3

�with si the slowness along xi� yields

�

�x2�
�21

�22

�23

u1

u2

u3

� = � ��11� ��12�
�A22�−1 �A22�−1� j�s1

t�A12� + j�s3�A23�� �

	�
�21

�22

�23

u1

u2

u3

� , �9�

with

��11� = �� j�s1�A12� + j�s3
t�A23���A22�−1�

��12� = � j���I� + j�s1��A12��A22�−1� j�s1
t�A12�

+ j�s3�A23�� - j��s1�A11� + s3�A13���
+ j�s3�t�A23��A22�−1� j�s1

t�A12� + j�s3�A23��
- j��s1

t�A13� + s3�A33���� .
The main difficulty introduced by the proposed development
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consists in the frequency dependence of the matrices �Aij�,
requiring their computation for each frequency point.

C. Green’s function of viscous fluids

The way the above relations can be used to compute
Green’s function of the medium is detailed in Refs. 7 and 8.
Only a brief description of its derivation is reported here.
Conformably to the Fahmy-Adler approach,6 one considers
the above-defined state vector h to describe the acoustic
properties of a semi-infinite or finite thickness medium po-
tentially inserted in a stack of layers with assumed flat inter-
faces. For a given surface slowness �s1 ,s3� ,h can be repre-
sented as the product of a matrix F composed of the eight
eigenvectors of the considered medium with a diagonal ma-
trix 
�x2� of rank 8	8, which describes the dependence of
the acoustic field versus x2 via the eigenvalues s2, and with a
vector a accounting for the amplitudes of the partial waves,

h�x2� = F��x2�a exp�j��t − s1x1 − s3x3�� . �10�

For viscous fluids, the matrices F depend on frequency �con-
trarily to ideal fluids and classical solids�. As in Refs. 7–9,
we introduce the vector variable g�m� which is split in two
parts to differentiate between the incident �g�m−�� and re-
flected �g�m+�� waves defined as follows:

g�m−��Xm−1� = R�m�g�m+��Xm−1� , �11�

where m is the number of the considered layer in the stack
�m=1 for semi-infinite media� and R�m� is a reflection matrix
relating the incident and reflected partial waves. The reflec-
tion matrices of each interface of the stack are then recur-
sively deduced from the reflection matrix at the first
interface.8,9 This is achieved by introducing two submatrices
K and L, respectively, associated with the reflected and in-
cident partial waves,

�Fm+1�−1F�m�� I4

��m−��− tm�R�m���m+��tm� � = �K

L
� , �12�

with tm the thickness of the mth layer of the stack. These
matrices are used to compute the reflection matrix of the
�m+1� layer: R�m+1�=LK−1. This recursive scheme is re-
peated until the top layer of the stack �numbered M� is
reached, at which surface we intend to compute Green’s
function. The state vector h then reads

h�XM� = F�M�g�M��XM� = F�M����M−��− tM�R�M���M+�

	�tM��g�M+��XM� = �N

P
�g�M+��XM� . �13�

In �13�, we have defined two submatrices N and P, respec-
tively, associated with the displacement field and the stresses.
Green’s function which relates ui to T2j then is directly given
by the product G=NP−1. As in Ref. 10, we intend to com-
pute Green’s function at the interface between two media.
Since G can be computed following the above procedure at
any surface or interface of a given material stack �still as-
suming flat parallel interfaces�, it can be derived for any
configurations �e.g., semi-infinite piezoelectric solids, plates,

or a layered waveguide in contact with viscous fluids in our
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case�. In the case of a semi-infinite substrate in contact with
a semi-infinite viscous fluid, Green’s function at the interface
between the two media depends on the frequency in a com-
plicated way �due to viscosity effects�. It is then computed
for each frequency point as in the case of dispersive
waveguides. Note that in the spectral domain, Green’s func-
tion relates the generalized displacements ui �Refs. 7–9� �in-
cluding the potential � as u4� and the generalized surface
stresses T2j �where T24=D2 the electrical displacement nor-
mal to the surface� as ui=GijT2j.

D. Blötekjaër’s harmonic admittance

Green’s function can be used to compute the actual re-
sponse of infinitely periodic-guided elastic wave devices us-
ing different approaches.9–11 In this work, we derive the cel-
ebrated effective permittivity12 from Green’s function as
follows:

�EFF��,s1� =
1

j�s�G44��,s1�
, �14�

yielding a frequency-dependent effective permittivity. In
�14�, the expression of �EFF is restricted to the saggital plane
in which the waves are excited, assuming an infinite aperture
of the transducer along x3 �s3 then is set to zero�. It is used to
compute a harmonic admittance,12 neglecting the mechanical
contribution of the electrodes. This approach first used in
Ref. 11 for interface wave computations enables one to simu-
late the excitation of acoustic waves by nonmassive infinite
periodic transducers �interdigital transducers �IDT�, for in-
stance� at any interface of any layered structure. In this sec-
tion, we just point out the way the above effective permittiv-
ity is introduced in the calculation. The potential � and
electrical charge Q are developed as Bloch-Floquet series to
meet the periodic conditions �see Fig. 1 for axis definition� as
follows:

� = �
n=−


+


�̃ne−j�snx1,

�15�

Q = �
n=−


+


q̃ne−j�snx1,

where sn=s1+2�n / �p�� is the equivalent slowness of the
nth term of the series. The relation between the weights of �
and Q is established in the spectral domain conformably to

12

FIG. 1. Scheme of the typical geometry considered for simulations.
the effective permittivity definition as follows:
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q̃n = ��sn��n�̃n with �n = �EFF�sn� . �16�

The boundary conditions of the addressed problem consist in
the absence of charge between the electrodes and the nullity
of the electrical field parallel to the excitation surface under
the electrodes. The corresponding equations are solved
thanks to a Legendre-polynomial development of the un-
known fields.12 The weights of this development are related
to the potential and charge coefficients as follows:

�sn�̃n = �
m=M1

M2

�m sgn�m − n�Pn−m�cos��a

p
�� ,

�17�

q̃n = �
m=M1

M2

�mPn−m�cos��a

p
�� ,

where Pn is the nth Legendre polynomial, a is the width of
the electrode, and p the grating period. The weights of the
Legendre developments �m and �m then become the actual
unknowns of the problem. M1 and M2 are the bounds of the
discrete summation in �17�, theoretically equal to − and +
infinities. Practically, infinite sums cannot be handled for
computation and the summations of �15� and �17� have to be
truncated �N1 and N2 represent the finite bounds of the sum
in �15��. For a given value of �, the effective permittivity is
known to converge towards an asymptotic value written, ��.
This is correct for usual materials, but a particular care must
be paid to the case of viscous fluids, for which the frequency
is intricately related to the intermediate matrix �Aij� used to
derive Green’s function. However, for usual frequencies
�smaller than 10 GHz�, it is possible to find a slowness large
enough to allow for a satisfying definition of �� �i.e., for
which the latter value is moderately affected by the fre-
quency�. By properly choosing the values of �M1 ,M2� and
�N1 ,N2�,12 one can establish the following relation between
�m and �m:

sgn�n��m = �
 sgn�n − m��m. �18�

Combining �17� and �18� yields the following homogeneous
algebraic system which must be solved in our case for each
frequency point of the development:

��sgn�n − m� −
�


�n
sgn�n��Pn−m�cos��a

p
�����m� = 0.

�19�

Once the coefficients are derived from �19�, the computation
of the harmonic potential Vharm and current Iharm is performed
as described in Ref. 12, yielding the definition of the har-
monic admittance as the ratio of Iharm over Vharm. The com-
putation of this value allows for the identification of coupled
acoustic waves generated by nonmassive IDTs and their
characterization �phase velocity, coupling strength, propaga-
tion loss, and reflection coefficient�. In the next section, we
consider numerous examples for which the influence of vis-

cous fluids on different waveguides is analyzed.
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III. COMPUTATION RESULTS

Calculations have been performed for different kinds of
wave polarization on the most used piezoelectric substrates,
i.e., quartz, lithium tantalate, and lithium niobate, assuming a
semi-infinite dielectric fluid domain �water� adjacent to the
solid substrate. An isotropic dielectric constant equal to
10 pF/m was arbitrarily set for the fluid. This explains the
change in static capacitance when passing from vacuum to
the fluid load on the following admittance plots. The absolute
viscosity of water �close to 1 cP �Ref. 8�� was changed from
1 to 10 cP and 100 cP to check its influence on the wave
characteristics. For all tested materials, Rayleigh as well as
leaky SAW have been considered. For quartz, surface trans-
verse waves also have been taken into account. Finally, the
influence of a water load on acoustic plate modes �APMs� on
�YXl� /36° cut of quartz has been simulated for both viscous
and nonviscous water. Note that all the admittance results are
given for a unit width aperture.

Figure 1 shows the general geometry of the problem. For
the sake of consistence, a metal ratio equal to 0.5 was con-
sidered for all computations, and the period was fixed to
5 �m �acoustic wavelength forced to 10 �m�. Figures 2 and
3 show the results obtained for the �YXl� /36° cut of quartz,
expended in three sections to magnify the different contribu-
tions to the harmonic admittance.

The damping of Rayleigh wave by the water load is
clearly shown in Fig. 2. Also an influence is pointed out on
the surface skimming bulk wave �SSBW� close to the
Rayleigh wave and radiated from the surface, mainly due to
the damped Rayleigh wave conductance. The very small in-
fluence of viscosity on the Rayleigh wave signature yields
almost no difference between the viscous and nonviscous
water-loaded admittances which indicates that the main leak-
age source of the propagation is due to the acoustic radiation
in the fluid.

Figures 3�a� and 3�b� show the influence of a water load
on the two leaky modes �fast shear and longitudinal� on
�YXl� /36° cut of quartz, which is clearly less dramatic than

FIG. 2. Harmonic admittance of an infinite periodic IDT on �YXl� /36° cut
of quartz with an adjacent semi-infinite fluid domain, influence on the
Rayleigh, and surface skimming bulk wave �SSBW� signature �period
5 �m, metallization ratio a / p=0.5�.
in the case of the Rayleigh wave. These two modes partially

Downloaded 15 Mar 2006 to 195.83.19.253. Redistribution subject to
guided by the surface exhibit an almost pure polarization and
then a negligible component normal to the surface. This
means that they radiate almost no energy in the fluid. How-
ever, they are affected by viscosity effects, yielding a signifi-
cant increase of losses due to viscous shearing within the
fluid. This is particularly emphasized for the fast shear leaky
wave which is almost not affected by the presence of ideal
water. In contact with viscous water, the conductance of this
mode is reduced by more than a factor of 2 and the quality
factor of the mode changes from 8300 to 3200. �This value is
derived from the conductance peak relative to the mode as
the ratio of its central frequency divided by its width at half
height.� In that particular case, the impact of rather small
viscosity properties at usual frequencies cannot be neglected.
One can note that the central frequency is also slightly
shifted down. A more surprising result is the robustness of
the longitudinal mode in contact with water. In that case, the
mode guiding even seems improved according to the slight
increase of the corresponding conductance peak. However,
viscosity effects also dramatically reduce its excitation effi-
ciency. Again in that case, they induce a slight frequency
decrease of the mode. The values of the quality factor for the
different analyzed operating conditions are, respectively,
2650 �vacuum�, 3000 �ideal water�, and 1850 �viscous wa-

FIG. 3. Harmonic admittance of an infinite periodic IDT on �YXl� /36° cut
of quartz with vacuum, ideal and viscous water as adjacent semi-infinite
media, and �a� shear and �b� longitudinal-radiated bulk waves �period 5 �m,
metallization ratio a / p=0.5�.
ter�.
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Figure 4 shows the same computations performed for
STW on the �YXlt� /36° /90° quartz cut. The curves relative
to vacuum and to nonviscous water as adjacent media are
confound, since no shear displacement can develop in perfect
fluids. As soon as viscosity is introduced, the STW is dra-
matically damped, yielding a quality factor of 12 400 which
rapidly falls down when increasing the viscosity, as shown in
Fig. 5. A quality factor of 2000 is predicted for a viscosity
equal to 10 cP and it passes under 500 when increasing the
viscosity to 100 cP. This is an important issue to consider
when expecting using the STW for immersed biomedical ap-
plications, since biological liquids may exhibit rather large
viscosity values.

The case of Love waves is also investigated to check
whether the elimination of propagation loss associated with
the STW allows for improving the device operation. In that
purpose, we assume a silica overlay atop the quartz substrate
to guide the pure shear wave. The electric excitation is as-
sumed at the interface between the quartz substrate and the
silica overlay. The thickness of the SiO2 layer was arbitrarily
set to 500 nm, yielding a Love wave propagating with a

FIG. 4. Harmonic admittance of an infinite periodic IDT on �YXlt� /36° /90°
cut of quartz �STW cut� with vacuum, and ideal and viscous water as adja-
cent semi-infinite media �period 5 �m, metallization ratio a / p=0.5�.
Downloaded 15 Mar 2006 to 195.83.19.253. Redistribution subject to
phase velocity close to 5010 m s−1 with a coupling coeffi-
cient �the usual Ks

2 �Ref. 1�� equal to 2.1‰. As previously, a
water load does not significantly change the harmonic admit-
tance of the structure. However, viscosity effects again yield
a dramatic reduction of the wave conductance, which then
presents a finite quality factor. Note that for a 0.1 cP viscos-
ity, this factor equals 2100 but it falls down to 660 for 1 cP
�standard water�. We also point out a frequency shift of about
250 kHz between these two operating conditions. Love
waves on quartz, consequently, are very sensitive to viscosity
and seem hardly capable to operate with highly viscous flu-
ids �viscosity larger than 50 cP� as the loading medium �Fig.
6�.

Regarding these results, it then sounds interesting to ana-
lyze the robustness of longitudinally polarized waves in the
presence of fluids exhibiting such viscosities. In that view,
we have considered the case of �YZ�-cut lithium niobate, on
which a well-coupled Rayleigh wave can propagate but also
a high velocity longitudinal wave may be trapped under thick

FIG. 5. Influence of the viscosity on
the STW response on �YXlt� /36° /90°
quartz—absolute viscosities equal to
1, 10, and 100 cP �compressive viscos-
ity equals 2.8 times the absolute one�.

FIG. 6. Harmonic admittance of an infinite periodic IDT at the interface
between a 500-nm-thick SiO2 overlay and the �YXlt� /36° /90° cut of quartz
�excitation of Love waves� with vacuum, and ideal and viscous water �0.1
and 1 cP� as adjacent semi-infinite media �period 5 �m, metallization ratio
a / p=0.5, and 500-nm-thick silica overlay�.
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electrodes. Even if we cannot simulate such an electrode
configuration, we can point out the longitudinal wave signa-
ture on the harmonic admittance and then predict the influ-
ence of viscous fluids on this kind of wave. Figure 7 shows
the influence of ideal and viscous water loads on the har-
monic admittance signatures of the Rayleigh and longitudi-
nal waves on �YZ�LiNbO3 cut. We also have reported the
evolution of these responses for various values of viscosity
in Fig. 8, which shows that the longitudinal wave is clearly
less affected by viscosity than shear waves on quartz area.
One could also argue that the Rayleigh wave signature does
not change when increasing the viscosity, but it should be
kept in mind that this wave almost vanishes when loaded by
water, whereas the amplitude of the longitudinal wave almost
remains unchanged for the different considered operating
conditions.

However, such a longitudinal wave cannot be considered
as a relevant demonstration of interest for immersed applica-
tions since its signature on the harmonic admittance remains
weak compared to a real surface-guided mode. We then in-
vestigate the operation of Lamb waves loaded by fluids. This
is a very interesting configuration in which very thin plates

FIG. 7. Harmonic admittance of an infinite periodic IDT on �YZ� cut of
LiNbO3 with vacuum, and ideal and viscous water as adjacent semi-infinite
media �period 5 �m, metallization ratio a / p=0.5�.

FIG. 8. Influence of the viscosity on the Rayleigh wave and longitudinal
wave responses on �YZ�LiNbO3—absolute viscosities equal to 1, 10, and

100 cP �compressive viscosity equals 2.8 times the absolute one�.
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simultaneously can support waves not damped by the water
load because of their very small phase velocity �lower than
1500 m s−1� and also high velocity waves that almost behave
like pure longitudinal modes. Figure 9 shows the dispersion
curves of Lamb waves on a �YZ�LiNbO3 cut plate. For
thickness-frequency products smaller than 220 m s−1, the
first antisymmetric mode A0 exhibits a phase velocity smaller
than the one of water and one can also remark that the first
symmetric mode �S0� velocity is almost constant and close to
the longitudinal bulk wave velocity �about 7000 m s−1�. Note
that for the considered wavelength, the polarization of this
mode principally lies along the x axis. �The elliptic polariza-
tion actually is very weak in that case.�

We check the behavior of such a device for two plate
thicknesses, i.e. 1.4 and 5 �m. A simple geometric construc-
tion gives the operating frequencies for each excited Lamb
mode. For a plate thickness h, the slope m of a straight line
passing through the origin is equal to the wavelength-plate
thickness ratio �m=� /h�. For the imposed wavelength ��
=10 �m�, the slopes are, respectively, m1=7.14 and m2=2
for thicknesses h1=1.4 �m and h2=5 �m. In the first case,
the A0 mode is close to the velocity threshold at which the
mode radiates its energy in water. However, due to the water
mass loading, its contribution to the harmonic admittance is
shifted down, yielding no leakage due to radiation in water
�see Fig. 10�a��. Its electromechanical coupling is very weak
but one should note that such a structure �a single-crystal
plate, symmetric around its neutral line� is poorly adapted to
excite antisymmetric waves. On the other hand, a coupling
factor of more than 4% is obtained for the S0 mode. Figure
10�a� shows the degradation of the A0 mode amplitude when
increasing the viscosity. An identical behavior is pointed out
for the S0 mode which is damped by water but still exhibits a
well-defined response �Fig. 10�b��. The mode amplitude dra-
matically falls down for values of viscosity larger or equal to
10 cP, but the A0 mode actually exhibits a sharper peak than
the S0 does under these operating conditions. In that case,

FIG. 9. Velocity curves of Lamb waves on a �YZ� lithium niobate thin plate.
The straight lines plotted on this graph correspond to plate thicknesses h1

=1.4 �m and h2=5 �m considered for the following computations. Their
intersections with the velocity curves indicate the actual velocities of the
excited Lamb modes.
one can point out that the main issue is to efficiently excite
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the A0 mode for any exploitation of its properties. A bimorph
structure �naturally nonsymmetric� would certainly help in
that purpose.

For the 5-�m-thick plate, the situation is quite different,
since the A0 mode is largely above the radiation threshold,
and the A1 and S1 modes do contribute now to the harmonic
admittance �see Fig. 9�. The same computations as previ-
ously performed are then conducted for that case. The A0 and
S0 modes almost vanish as soon as the plate is loaded by
water �Fig. 11�a��. However, the A1 mode exhibit more ro-
bustness to the presence of water, as shown in Fig. 11�b�. It
still exhibits a well-defined peak on the conductance even for
10 cP viscosity. This result tends to prove that high-order
Lamb modes could operate as well as the low velocity A0

mode even when submitted to a water load. This presents the
advantage of an efficient excitation together with a device
architecture simpler than the one required for the exploita-
tion of the A0 mode �very thin bimorph structures�.

IV. CONCLUSION

A model describing the propagation of acoustic waves in
fluids exhibiting or not exhibiting viscosity properties has
been developed and implemented. The use of a harmonic

FIG. 10. Harmonic admittance of an infinite periodic IDT on a
1.4-�m-thick plate of LiNbO3�YZ� cut with vacuum, and ideal and viscous
water �1 and 10 cP. compressive viscosity equals 2.8 times the absolute one�
as adjacent semi-infinite media. �a� A0 mode and �b� S0 mode �period 5 �m,
metallization ratio a / p=0.5�.
admittance enables one to determine the influence of nonvis-
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cous and viscous water loads on various combinations of
waves/substrates. The damping of Rayleigh wave due to the
radiation of the displacement field component normal to the
guiding surface is clearly pointed out. It is also shown that
waves exhibiting a quasipure shear polarization are almost
not affected by the presence of water. However, the influence
of viscosity appears even for pure shear waves on quartz,
yielding an additional leakage phenomenon generally ne-
glected for practical applications. A more unusual result is
the robustness of longitudinally polarized waves versus the
presence of water. Moreover, according to our computations,
since no shear effect is involved in this kind of propagation,
longitudinal modes or pseudomodes would be less sensitive
to viscosity than shear waves. Also Lamb waves were tested,
showing the interest of the A0 mode on very thin plates but
also the capability of higher-order modes to operate even
with moderately viscous water loads.

These results suggest that contrarily to what is usually
admitted �i.e., only pure shear wave and modes with a veloc-
ity smaller than the water threshold—1500 m s−1—can be
operated in viscous fluids�, different kind of waves and
modes can be exploited for immersed application even with
moderately viscous fluids. This means there are still a lot of

FIG. 11. Harmonic admittance of an infinite periodic IDT on a 5-�m-thick
plate of LiNbO3�YZ� cut with vacuum, ideal and viscous water �1 and 10 cP,
compressive viscosity equals 2.8 times the absolute one� as adjacent semi-
infinite media. �a� A0 and S0 modes and �b� A1 and S1 modes �period 5 �m,
metallization ratio a / p=0.5�.
opportunities to point out the optimal combinations of mate-
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rials, wave natures, and electrode structures for the develop-
ment of electroacoustic devices operating in contact with flu-
ids �for instance, in sensing applications within organic
bodies�.

In this context, the simulation of more complicated elec-
trode structures using a combination of finite element analy-
sis boundary element methods would yield better insights
and new ideas in the development of such devices.
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APPENDIX: DEFINITION OF THE MATRICES †AIJ‡

We express the stress field according to �2� to define the
matrices that appear in �5� as follows:

�T11

T12

T13
� =

�

�x1�
1
� + j� 4

3� + ��� 0 0

0 j�� 0

0 0 j��
��u1

u2

u3
�

+
�

�x2� 0 1
� − j� 2

3� − ��� 0

j�� 0 0

0 0 0
��u1

u2

u3
�

+
�

�x3� 0 0 1
� − j� 2

3� − ���

0 0 0

j�� 0 0
��u1

u2

u3
� ,

�T21

T22

T23
� =

�

�x1�
0 j�� 0

1
� − j� 2

3� − ��� 0 0

0 0 0
��u1

u2

u3
�

+
�

�x2� j�� 0 0

0 1
� + j� 4

3� + ��� 0

0 0 j��
��u1

u2

u3
�

+
�

�x3�
0 0 0

0 0 1
� − j� 2

3� − ���

0 j�� 0
��u1

u2

u3
� , �A1�

�T31

T32

T33
� =

�

�x1�
0 0 j��

0 0 0
1
� − j� 2

3� − ��� 0 0
��u1

u2

u3
�

+
�

�x2�
0 0 0

0 0 j��

0 1
� − j� 2

3� − ��� 0
��u1

u2

u3
�

+
�

�x3� j�� 0 0

0 j�� 0

0 0 1 + j� 4� + ���
��u1

u2

u3
� .
� 3
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Consequently, six independent matrices are defined allowing
for a more compact matrix formulation of the problem:

�A11� = �
1

j�� + 4
3� 0 0

0 � 0

0 0 �
�, �A12� = �0 1

j�� − 2
3� 0

� 0 0

0 0 0
� ,

�A13� = �0 0 1
j�� − 2

3�

0 0 0

� 0 0
� ,

�A22� = �� 0 0

0 1
j�� + 4

3� 0

0 0 �
�, �A23� = �0 0 0

0 0 1
j�� − 2

3�

0 � 0
� ,

�A2�

�A33� = �� 0 0

0 � 0

0 0 1
j�� + 4

3�
� ,

�A21� = t�A12�, �A31� = t�A13�, �A32� = t�A23� .
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