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The possibility to excite and detect acoustic waves in fluids using capacitive transducers built on
silicon using surface micromachining offers attractive opportunities in the manufacturing of high
quality low cost imaging probes. As in the case of standard probe transducers, simulation codes are
required to accurately design such devices. The periodic structures extensively used for these
capacitive transducers has to be accounted for. In this work, a two-dimensional finite element
analysis of capacitive micromachined ultrasonic transducers(cMUT) is proposed, taking into
account periodicity and radiation in fluids. The convergence of the calculation is verified using
different computation approaches. It is then shown that the periodic computations provide a rapid
and precise analysis of the cMUT compared to non periodic calculations. The mutual displacements
are deduced from the periodic harmonic calculation, providing an efficient estimation of cross-talk
phenomena arising for cMUT radiating in water. The capability of cMUT operating under such
conditions to generate a low velocity wave guided at the fluid/silicon interface is theoretically
pointed out. ©2005 American Institute of Physics. [DOI: 10.1063/1.1839634]

I. INTRODUCTION

The concept of micromachined ultrasound transducer
(MUT)1 gives rise to opportunities in the development of
high density integrated imaging devices. The possibility to
manufacture ultrasound transducers based on electrostatic
forces (as introduced by Khuri-Yakubet al.)1 has received
particular interest, from both theoretical and experimental
points of view. Many analytical approaches have been pro-
posed to develop efficient tools providing the most important
characteristics(coupling, radiation pressure, acoustic imped-
ance, etc.) of simple capacitive muts(cMUTs) architectures
(circular shapes of the membrane).2–4 The simulation of elec-
trostatic excitation and fluid/structure interaction can be ac-
curately performed using most of the commercial finite ele-
ment analysis(FEA) package(for instance ANSYS).5 As a
consequence, previous work has already been devoted to the
numerical simulation of cMUTs by different research groups
(e.g., Refs. 1, 5, and 6). However, most of these develop-
ments does not rigorously account for the periodicity of the
corresponding structures, which is a typical feature of actu-
ally implemented cMUTs. The present work proposes a the-
oretical analysis based on a periodic FEA7 particularly well
suited for providing an accurate, reliable, and fast treatment
of such devices.

In the present work, we are investigating the simulation
of two-dimensional(2D) capacitive transducers, taking into
account the periodicity of the structure and also radiation
conditions applied to the device in operation. Inspiring our-
selves from the earlier-mentioned work1,5,6 but also from our
own experience in the development of FEA simulation tools
devoted to acoustic transducers,8 and taking advantage of all
the work already performed for modelling radiation in fluids
(see for instance Ref. 9), we have implemented a computa-
tion code allowing us to simulate 2D cMUTs radiating in

semi-infinite fluids. It has been performed using a FEA pack-
age based on the MODULEF-INRIA toolbox,10 adapted to
the addressed problem. Radiation boundary conditions are
taken into account by using a Bloch–Floquet development of
the standard Green’s function formulation(assuming flat in-
terfaces). The corresponding equations and the results are
described in the following sections. This basic development
will be used in the future as a basis for a comprehensive
three-dimensional model of cMUTs.

Comparisons between simulation results provided by the
periodic and nonperiodic computations show the conver-
gence of both approaches for 2D structures. The vanishing of
the resonance is clearly proved using the periodic approach
for structures excited in phase. However, in almost all the
other excitation configuration, one points out the arising of a
contribution to the dispersion curve assumed to correspond
to a wave traveling along the cMUT array, exhibiting a spec-
tral behavior similar to any wave guided in a periodic struc-
ture. The calculation of mutual displacements deduced from
the harmonic vibration of the considered cell clearly shows
that this wave propagates along the MUT array with a small
amount of losses. A simple approach is then proposed to
compute the admittance of the cMUT, based on the plane
capacitor approximation. This provides an estimation of the
actual electrical response of a water-loaded cMUT but it
mainly points out the electrical contribution of the earlier
mentioned guided wave, as well as the capability of the
cMUT to efficiently generate pressure waves in water for
different excitation combination.

II. BASIC EQUATIONS AND FEA FORMULATION

A. Simplified model using a uniform excitation

A scheme of the considered cMUT structure is shown in
Fig. 1. A Si3N4 membrane is assumed stress free, perfectly
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flat, and suspended over a silicon wafer(residual stresses are
neglected). A homogeneous electrostatic force applied atop
the membrane is assumed to actuate the cMUT. The upper
side of the membrane can be free of any stress(operation in
vacuum) or loaded with a radiation medium(typically wa-
ter). The cell represented in Fig. 1 consists in an elementary
part of an infinite periodic cMUT array.

The basic equations of the problem are those of an elas-
tic problem. A very first step in simulating cMUTs simply
consists in considering a uniform force excitation applied on
the backside of the cMUT membrane.

The purely elastic FEA formulation is written as follows:

E E E VS ] dui
*

] xj
Cijkl

] ul

] xk
− rv2uidui

*DdV

=E E Gdui
*TijnjdS, s1d

where ui is the mechanical displacement,dui is the varia-
tional unknowns,Tij is the dynamic stress,Cijkl is the elastic
constants,r is the mass density, andv is the angular fre-
quency. The classical FEA interpolation procedure is then
applied to the mechanical displacement field, yielding the
matrix representation of Eq.(2):

fKuu − v2Muughuj = hFj, s2d

whereKuu and Muu are the stiffness and mass matrices, re-
spectively, andF represents the inner and outer forces ex-
erted on the regarded body. This algebraic system is solved
by setting proper boundary conditions, yielding a unique so-
lution of the actual problem. In our case, Neumann condi-
tions corresponding to a uniform force are set to the top side
of the membrane(supporting the aluminium electrode)
whereas Dirichlet conditions are applied to the backside of
the silicon plate(no displacements allowed). Boundary con-
ditions related to the periodic case are discussed in the next
paragraph.

In the first computations, no radiation condition is ap-
plied and the calculation results from nonperiodic and peri-
odic (fully synchronous) simulations are compared. A period
of 50 mm together with an aperture of 40mm (the “length”
of the membrane) are considered, as well as a membrane
thickness of 0.5mm and a gap of 0.5mm conformably to
what is developed experimentally in our project. Numerous
sets of data are found in the literature concerning the elastic
properties of silicon nitride. We have arbitrary selected one
set for which our results are coherent with previously ob-
tained measurements.11 The mass density of silicon nitride is
assumed to equal 3 260 kg/m3, its elastic constants are as

follows C11=345 GPa,C12=125 GPa,C22=395 GPa,C66

=118 GPa. Silicon elastic properties are those given by
Landolt–Börnstein.4 This yields a resonance frequency in
vacuum as found using analytic models and experimentally
(more than 5 MHz, cf. Fig. 2).11 The force was arbitrarily
fixed to 4 N, yielding a stress equal to 105 Pa (the value
actually programmed in the simulation).

B. Simulation of periodic arrays

The same computation is performed using periodic
boundary conditions. In that case, the FEA formulation is
modified to take into account the dependence of the problem
to a so-called propagation coefficient varying from 0 to 1/2,
written g,7 enabling one to simulate different phase combi-
nations on the boundary of the considered domain. The main
benefit of periodic computations consists in reducing the
computation to only one period of any periodic array. The
latter is then considered infinite in the propagation direction
and the use of appropriate boundary conditions is required to
accurately take into account the actual operation of the
device.

In this approach, the mechanical displacements and the
stresses obey a quasiperiodicity law throughout the elemen-
tary period, assuming an harmonic force exciting the array7

as follows:

uisx1 + npd = uisx1de−j2pgn = uin
sx1d,

s3d
Tijsx1 + npd = Tijsx1de−j2pgn = Tij n

sx1d, s3d

where x1 is the spatial coordinate collinear to the periodic
array. These relations yield specific boundary conditions at
the limits GA andGB of the elementary cell of Fig. 1. These
conditions are simply deduced from Eq.(3), and directly
relate the degrees of freedom(dof) at boundariesGA andGB:

huGB
j = huGA

je−j2pg. s4d

Note that the spatial distribution of nodes(supporting the
dof) on GA andGB must be identical to ensure the coherence
of Eq. (3). This relation is then used to simplify the linear
algebraic system obtained after interpolation and integration
of the Lagrangian expression.7 Equation(3) imposes that the
number of independent variables of the problem is reduced.

FIG. 1. Scheme of a single cell of a cMUT for the FEA computations.GA

andGB are the bounds of the considered period.

FIG. 2. Comparison between nonperiodic and periodic simulations of an
infinite array excited synchronouslysg=0d.
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However, in the present work, the initial number of dof is
preserved to avoid matrix reorganizations, considered here as
a source of time consumption and yielding too much pro-
gram complications. In this approach, the following transfor-
mation matrixfTug is introduced:

5uGA

uV

uGB

6 = fTug5vGA

vV

vGB

6
= 3IG 0 0

0 IV 0

IGe−j2pg 0 IG

45vGA

vV

vGB

6 with hvGB
j = h0j, s5d

whereuV corresponds to the dof of the inner meshed domain
(GA andGB excluded), andn is the new set of dof, taking into
account the periodicity condition, used to solve the FEA
problem. Equation(5) is then inserted in the standard dis-
crete form of the FEA written as follows for a monochro-
matic variation of mechanical and electrical fields considered
in the problem(time dependence inejvt):

tfTu
*sgdgfKuu − v2MuugfTusgdghvj = tfTu

*sgdghFj, s6d

where upper scriptst and *, respectively, denote a matrix
transposition and a complex conjugation. Examples of com-
putations are reported in Figs. 2 and 3. In Fig. 2, periodic and
nonperiodic computations are compared. For nonperiodic
computations, the displacements alongx at boundariesGA

andGB are set to zero describing then a symmetric structure
at these bounds. In the case of periodic computations, the
boundary conditions reported in Sec. II A are used setting the
propagation coefficientg to 0, which corresponds to a syn-
chronous excitation of the array. One can underline the per-
fect agreement between both results, showing the equiva-
lence of the corresponding boundary conditions. Figure 3
shows the deformed mesh atg=0 for a frequency close to
the resonance. The fundamental flexural vibration can easily
be identified on this result.

C. Radiation of cMUTs in fluids

The analysis of ultrasound transducer operation is gen-
erally performed in two steps. The first one consists in the
simulation of the device in vacuum, allowing to determine
resonance frequencies, coupling coefficients and so on. The
second step requires the computation of the transducer radi-
ating in a semi-infinite medium(air or water), assuming a
physically acceptable representation of the fluid/structure
coupling phenomena. Again in that case, it is desirable to

treat both problems of periodic and nonperiodic devices.
This enables to take into account any transducer structure,
with an accurate treatment of actual operation conditions.

The accurate simulation of radiation conditions in fluids
can be obtained by the use of the Green’s function approach.9

The problem of nonperiodic transducer radiating in fluids has
been addressed by many authors, see for instance Ref. 12.
However, the periodic problem has received a smaller inter-
est. It is then of great importance in the present work to
propose an efficient treatment of the periodic problem, well
adapted to describe cMUT radiating in water for instance.

In both nonperiodic and periodic cases, radiation condi-
tions are inserted in the right-hand side of Eq.(1), assuming
the pressure equilibrium at the fluid/structure interface

Tijnj = − Pni , s7d

whereP is the pressure andnj is the normal to the radiating
interface. This latter is then expressed as the convolution
between the acoustic contribution of the radiation medium
(assumed here semi-infinite) and the displacement normal to
the interface, conformably to Green’s theory and acoustics
laws in fluids.9 There are mainly two different approaches to
derive the Green’s function of a semi-infinite fluid in which
acoustic waves are radiated(the waves vanish at infinity).
The first approach consists in the resolution of the Helmholtz
problem in the real space, yielding the pressure as a Hankel
function.13 The second approach consists in solving the prob-
lem in the Fourier domain, assuming for instance the propa-
gation of waves in fluids as solution of the corresponding
Christoffel equation system.14 Both approaches lead to
equivalent representations of the acoustic behavior of the
fluid. The corresponding equations are

Psxd =E
−`

+`

Gsx − x8dunsx8ddx8

s8d

with Gsx − x8d =
− jr fv

2

2
H0

s2dskux8 − xud,

whereG is the Green’s function,H is the Hankel function of
second kind and 0th order,sx is the slowness of the wave
along x, k is a wave number equal tovsx, and r f is the
density of the fluid. Equation(8) is directly inserted in Eq.
(1) and the classical FEA interpolation is then applied to the
displacementsun normal to the interface(in most of the
treated cases,un is arbitrarily taken to be equal tou2). In the
nonperiodic developments, we have considered the expres-
sion of the Green’s function in the real domain together with
a polynomial expansion of the Hankel function allowing for
an accurate computation of the fluid contribution. The loga-
rithmic behavior of the Hankel function is explicitly inte-
grated across the polynomial interpolation of the FEA. The
resulting system to be solved is still symmetric but exhibits a
larger front band due to the connection of all the dof of the
radiating area. Nevertheless, no major changes are required
in our FEA code to solve the corresponding problem. The
contribution of the fluid initially developed in the right-hand
side is transferred to the left-hand side of Eq.(1) which is
now written as follows

FIG. 3. Vibration shapes of the membrane at 3 MHz.

034901-3 Ballandras et al. J. Appl. Phys. 97, 034901 (2005)

Downloaded 21 Jan 2005 to 195.83.19.253. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



fK − v2M − Xsvdghuj = hFj, s9d

where X represents the frequency dependent radiation
matrix.

In the case of periodic problems, the concept of the pe-
riodic Green’s functionGp15 must be introduced. The pres-
sure is now also affected by the periodicity of the problem,
yielding the following definition ofP:

Tijnj = − Pni with Psxd =
1

p
E

−p/2

+p/2

Gpsx − x8dunormalsx8ddx8

s10d

andGpsxd = o
l=−`

`

G̃sg + l,vde−j
2p
p

sg+ldx,

where p is the period(see Fig. 1). The periodic Green’s
function is a Floquet expansion of the classical Green’s func-
tion associated with the Bloch wave function. It requires the
expression of the Green’s function in the Fourier domain.13

The slownesssx is now connected to the propagation param-
eterg via the relationsx=2pg / svpd=g / sfpd. As in the non-
periodic case, Eq.(10) is inserted in the left hand side of Eq.
(1), yielding the following relations:

E E GduiTijnjdS= − o
e,«=1

E

o
l=−`

+`
1

p
G̃sg + l,vd

3E
Ge

o
n=1

Ndsed

Pnsxde−j
2p
p

sg+ldxdx3dunormal
* sn,ed

3E
G«

o
m=1

Nds«d

Pmsx8dej
2p
p

sg+ldx8dx8unormal
sm,«d .

s11d

In Eq. (11) , Pnsxd is thenth interpolation polynomial of the
current elemente (E is the total number of radiating ele-
ments) exhibiting Nd nodes. It can be remarked that the in-
tegrals in Eq.(11) do not depend on the frequency. This
property is used to optimize the computation time. Also the
two integrals are complex conjugated, providing again a pos-
sibility to optimize the computation code. However, it can be
also pointed out that no other particular symmetry can be
found in this expression. The radiation matrix of the periodic
problem writtenXsPd is then a general complex matrix and
must be computed for all values ofg andv. The problem to
be solved is finally written as

tfTu
*sgdgfKuu − v2Muu − Xspdsg,vdgfTusgdghvj = tfTu

*sgdghFj.

s12d

As in the case of Eq.(6), the mass and stiffness matricesKuu

and Muu are symmetric and complex( Muu is real positive
but Kuu takes acoustic losses into account). The final matrix
of the algebraic problem to be solved is then complex non-
symmetric. Since a lot of its components are equal to zero,
one can advantageously use a sparse matrix solver dedicated
to that kind of problem.16

Figures 4 and 5 show how the nonperiodic and periodic
approaches can be used to analyze a cMUT radiating in wa-

ter. Figure 4 shows a comparison between the normal me-
chanical displacements computed for only one cell of a
cMUT array using the nonperiodic approach and the same
result using the periodic Green’s function calculation. In both
cases, the resonance is dramatically shifted down to low fre-
quencies. However, in the case of nonperiodic computations,
the normal displacements still exhibit a true resonance con-
tribution with a well-marked phase variation whereas the pe-
riodic calculation results indicate a slowly varying magni-
tude of the displacement with no phase rotation. A
convergence test has been then performed to check the rela-
tion between periodic and nonperiodic computation. The

FIG. 4. Comparison between periodic and nonperiodic computation of a
cMUT elementary cell radiating in water.

FIG. 5. Convergence of the nonperiodic computations toward the periodic
result.(a) Real part ofun. (b) Imaginary part ofun.
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number of cells has been extended to 2, 4, 8, and 16 in the
nonperiodic calculations and the results are compared again
to the periodic case(see Fig. 5).

One can easily see that the convergence of the nonperi-
odic case toward the periodic one rapidly arises. The fre-
quency is shifted down together with the number of cells, as
well as the magnitude of displacement. The origin of the
parasitic contributions on the 4, 8, and 16 cell computations
is not identified yet.

Dispersion effects have been also computed by simply
varying the propagation parameterg from 0 to 0.5. Plotting
the corresponding displacements versusg andv allows one
for identifying the acoustic phenomena related to the peri-
odic nature of the transducer, and particularly the crosstalk
effects due for instance to modes guided along the structure.
Figure 6 shows the mean normal displacement versusg and
v in the expected operation domain.

It appears that for a propagation parameter different
from zero(not all the cells vibrating in phase), at least two
modes can be guided by the structure, one at rather low
frequencies(up to 2 MHz) and another one exhibiting a
smaller contribution to the normal displacement at 6 MHz.
The first one may correspond to a wave guided at the inter-
face cMUT/water, exhibiting a behavior similar to that of a
Stoneley wave.13 The second one may correspond to a sec-
ond harmonic of the 2 MHz guided wave. To better under-
stand the influence of these contributions to the actual opera-
tion of the cMUT array, the derivation of mutual
displacement from the harmonic calculation has been inves-
tigated. We lay down that the constant homogeneous active
forceF is related to the mean normal displacementūn of the
membrane via a scalar valueH as follows:

ūnsg,vd = Hsg,vdF. s13d

For a unit value of excitation force,ūn is equivalent toH
which is called here “harmonic mechanical coupling.” It is
then possible to deduce the mutual mechanical coupling
from the harmonic mechanical coupling by Fourier trans-
form, similarly to the calculation of mutual electrical admit-
tance from harmonic admittance7

Hmsvd =E
0

1

Hsg,vdej2pmgdg. s14d

For a unit force excitation, the mutual mechanical coupling
is equivalent to the mean normal displacement generated by
the earlier mentioned force on the neighboring cells of the
excited one. The integration of Eq.(14) is performed using a
numerical integration scheme requiring at least 30 Gauss
points alongg (for each frequency) to correctly take into
account the sharp variations of the harmonic displacement
due to wave guided at the interface between the membrane
and the radiation domain. Figure 7 shows the computation
results for the ten closer neighbors of the excited cell. The
mutual displacement curves exhibit sharp variations from 0
to 2 MHz typically due to the guided mode identified in Fig.
6. This indicates a very large amount of crosstalk in that
frequency range. Also the mode at 6 MHz provides a visible
contribution even if 10–20 dB smaller than the ones at
2 MHz. In both cases, the modes propagate along the array
with almost no loss, according to their narrow contributions
to the imaginary part of the harmonic normal displacement.
It is also shown that if the mutual displacements could be
cleared of these contributions, the amount of crosstalk would
decrease rapidly along the array(rejection better than 20 dB
for the third neighbor, better than 40 for the tenth neighbor).

III. SIMPLIFIED ANALYSIS OF THE ELECTRIC
RESPONSE OF A CMUT

Since the basic principle of cMUTs consists in generat-
ing electrostatic forces between the two electrodes of a pla-
nar capacitor, the simulation of the electrical response of
such devices requires the computation of a capacitance tak-
ing into account the vibration modulating the gap between
the two earlier mentioned electrodes.17 Although an accurate

FIG. 6. Normal displacementun of a periodic cMUT array loaded by water
vs excitation parameterg and angular frequencyv. (a) Real part ofun. (b)
Imaginary part ofun.

FIG. 7. Mutual normal displacementsuunu of a periodic cMUT array loaded
by water. E denotes the central excited cell,E+n the nth neighbour of
cell E.
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estimation of the generated force would require the exact
computation of the charge distribution on the electrodes due
to the application of a potential difference as well as the
estimation of the actual gap when applying the dc bias volt-
age, a simplified approach can be considered first. One can
easily calculate the force generated in a planar capacitor by
using the classical capacitance formula. It is inserted in the
electrostatic energy relation which is then differentiated ver-
sus the capacitor gapsyd to access the normal force applied
on the deformable electrode. This yields the following form
of this force:

Fy = −
] U

] y
= −

1

2

] sCV2d
] y

=
«SV2

2y2 . s15d

This relation does not take into account the effects due to
charge concentration at the edge of the electrodes but is
known as a good estimation of the generated force resulting
in a correct estimation of the electromechanical phenomena
arising in air or vacuum-gap capacitors. However, one can
simply compute the capacitance variations due to the dy-
namic vibration using the standard planar capacitor formula.
Let us consider now that the value of the gap is given byg
=y+unsvd, i.e., the static value of the gap plus the normal
dynamic displacement. The definition of an admittance(for a
1 V excitation) is given by

Y =
jvQ

V
= jv

«S

g
, s16d

where Q is the electrical charge. Considering a complex
value of this normal displacement yields the following ex-
pression ofY

Y =
Imsundv«S

fy − Resundg2 + Imsund2 + j
fv − Resundgv«S

fy − Resundg2 + Imsund2 ,

s17d

where Resund and Imsund, respectively, holds for the real and
imaginary parts of the normal displacements. One can simply
apply this formula using the results of periodic as well as
nonperiodic computations to have a rough idea of the admit-
tance of cMUTs. Figure 8 shows a comparison between the
admittances of a reduced cMUT array(eight cells) and of a
periodic array.

This comparison shows that the periodic device exhibits
an almost flat conductance in the frequency bandwidth
1–6 MHz and a capacitive susceptance very comparable to
the one of the eight-cell cMUT array. The later exhibits a
conductance with sharp contributions in the vicinity of
2 MHz, corresponding to the rapid variations of the normal
displacement observed in Fig. 5. If this result is confirmed
experimentally, this means that below a critical number of
cells, the transducer bandwidth may be reduced due to unde-
sirable low frequency vibrations. It is also possible to com-
pute the mutual admittance in that way. The harmonic admit-
tance is plotted in Fig. 9 and the corresponding mutual terms
are reported in Fig. 10, yielding the same observations as for
harmonic and mutual displacements.

FIG. 8. Comparison between cMUT admittances of an eight-cell array and
of a periodic device computed with the proposed simplified model based on
planar capacitance formulae.

FIG. 9. Harmonic admittanceY of a periodic cMUT array loaded by water
(proposed simplified model). (a) Real part ofY. (b) Imaginary part ofY.
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IV. CONCLUSION

The development of an accurate simulation tool allowing
one to take periodicity of cMUTs into account provides an
extended analysis of the operating principles of such devices
under different conditions. The comparison with nonperiodic
computations shows that both approaches tend to provide
similar results, but with a dramatic gain in computation time
when using the periodic analysis instead of meshing a large
number of elementary cells in the nonperiodic approach to
simulate periodic devices. Moreover, the periodic analysis
offers better and direct understanding of what may happen if
synchronous defects arise in the array, or more generally if
phase shifts are generated in a given combination of cMUT
arrays. The capability of such devices to guide acoustic
waves at the interface with water may generate large
crosstalk effects, for instance able to degrade the operation of

a cMUT-based imaging probe. Of course, these theoretical
results have to be confirmed by experiments. Nevertheless, it
must be emphasized that a good agreement has been ob-
tained comparing periodic and nonperiodic computations
with radiation boundary conditions(both numerical codes
are perfectly independent and significantly different in sub-
stance). The nonperiodic computation was already found re-
liable when compared with experiments. Finally, the analysis
of cMUT excited with particular phase sequence shows that
cMUT-based devices are particularly able to generate inter-
facial propagation phenomena, with an evanescent wave in
the fluid.
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FIG. 10. Mutual admittancesYn of a periodic cMUT array loaded by water
(proposed simplified model). E denotes the central excited cell,E+n thenth
neighbor of cellE. (a) Real part ofYn. (b) Imaginary part ofYn.
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