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The demand for high frequency surface acoustic wave devices for modern telecommunication
applications imposes the development of devices able to answer the manufacturer requirements. The
use of high velocity substrates for which a piezoelectric layer is required to excite and detect surface
waves has been widely investigated and requires the implementation of accurate theoretical tools to
identify the best combinations of material. The present paper proposes a mixed formulation
combining finite element analysis with a boundary integral method to accurately simulate the
capability of massive periodic interdigital transducers to excite and detect guided acoustic waves in
layered media. The proposed model is exploited for different typical configurations. ©2004
American Institute of Physics.@DOI: 10.1063/1.1758317#

I. INTRODUCTION

Since the beginning of the 1990s, the growth of the mod-
ern telecommunication market and more specially the devel-
opment of general public cellular phones has generated a
high demand in research and development for passive radio-
frequency~RF! components such as surface acoustic wave
~SAW! filters widely used in these systems. Spectacular ad-
vances have been performed concerning the size reduction of
the SAW devices for narrow band intermediate frequency
filtering ~30–300 MHz! as well as wide band RF applications
~0.8–2.4 GHz!. This was achieved not only because of tech-
nology improvements but also because of a very strong effort
in the modeling and design of SAW devices, taking properly
into account their actual structure to benefit from the optimi-
zation of second-order effects~for instance, the shape of the
metal strips used in interdigital transducers affects the trap-
ping and diffraction effects of wave propagating under such
gratings!. Pioneer works were proposed by Blo¨tekjaer, Inge-
brigsten, and Skeie1 for modeling infinite periodic grating
capabilities to launch and detect surface waves on any semi-
infinite piezoelectric substrate but neglecting the mass load-
ing of the electrodes. Milsom, Reilly, and Redwood2 then
proposed a model of finite length devices composed of any
pattern of electrodes~still neglecting the electrode mass load-
ing!. Afterwards, the interest in the accurate prediction of the
influence of the electrode mass loading has pushed some
researchers to develop or to adapt modeling concepts mixing
integral formulations based on the knowledge of the Green’s
function of the substrate~the displacement response of a sub-
strate submitted to a local stress solicitation or vice versa!
and numerical computation tools such as finite difference or
finite element analyses. Baghai-Wadjiet al.have proposed in
the early 1990s such developments for infinite periodic
gratings3 as well as finite electrode structures.4 Many im-
provements have been performed since then, allowing for the

development of versatile and very accurate models as pro-
posed by Ventura, Hode, and Solal,5 Endoh, Hashimoto, and
Yamagushi,6 or Koskela, Plessky, and Salomaa7 generally
devoted to the theoretical characterization of infinite periodic
gratings, providing useful data for design tools based on
P-matrix8 or coupling-of-mode9 approaches.

At the same time, the need for increasing the frequency
operation of such devices has generated studies not only on
high velocity surface modes such as leaky SAW on LiTaO3

or LiNbO3 but also on compound substrates, for instance,
consisting of a piezoelectric layer~AlN, ZnO, etc.! deposited
atop a high acoustic wave velocity material such as
diamond-C, silicon carbide, sapphire, silicon, and so on. The
multiplication of papers on this topic prevents the citation of
all of them but Refs. 10–12 can be considered as represen-
tative work in that field. Although models exist for predicting
the dispersion behavior of acoustic wave in almost any lay-
ered structure,13,14 very little work was devoted to the theo-
retical description of excitation and detection of waves on
stacked media using massive surface interdigital transducers.

In the present paper, we report on a model based on the
theoretical approach proposed by Venturaet al. for infinite
periodic electrode gratings atop semi-infinite substrates
widely described in Refs. 15 and 16 and extended to the
simulation of such transducers atop any layered media~as-
suming flat interfaces between each layer!. The electrode
contribution is described using a finite element analysis ben-
efiting from all the advances performed in that field.17 The
compound substrate is simulated via its Green’s function in-
serted in the above-mentioned boundary integral method
~BIM !, here again taking advantage of recent developments
devoted to the numerical stabilization of the corresponding
calculation.18 This point is essential when computing the re-
sponse of a device consisting in piezoelectric, dielectric, or
metallic layers19 with various thicknesses in the range from a
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few micrometers to a few tenth of nanometers deposited on a
semi-infinite or a thick substrate. Both calculations are mixed
along the method described in Refs. 15 and 16, allowing for
the derivation of the harmonic admittance of the considered
structure. One can then extract from this result typical char-
acteristics of the waves that can be excited and detected by
the IDTs, such as phase velocity~or slowness!, electrome-
chanical coupling, propagation losses, and diffraction of the
wave on the electrodes. Although the model can treat intrin-
sic material losses as imaginary parts of the physical con-
stants, these leakage sources have been neglected in this
work. The only leakage phenomena that can occur are then
related to wave radiation into the bulk~semi-infinite sub-
strate assumption!. In the first section of this paper, we recall
the principles of the proposed calculation. Some specific as-
pects concerning the treatment of the Green’s function~and
more specifically its asymptotic behavior! are also shown. A
second part is devoted to the exploitation of the model for
particular layered structures in order to validate our simula-
tion tool and to illustrate its interest for typical layered struc-
tures. The propagation modes on typical combinations of
layer and substrate are first identified, and a full character-
ization is provided for optimal working point~frequency-
thickness product,f t). Further exploitations and develop-
ments of our model are discussed as a conclusion.

II. THEORETICAL APPROACH

A. Harmonic admittance

As mentioned in the Introduction, only the general prin-
ciples are recalled here since they were already presented in
detail in Refs. 15 and 16. We first introduce the basic geom-
etry of the problem, i.e., an infinite periodic grating lying
alongx1 deposited atop a compound substrate composed of
piezoelectric or metallic layers stacked alongx2 as shown in
Fig. 1 ~the first layer must be at least dielectric but is gener-
ally piezoelectric!. Practical interdigital transducers used for
the excitation of surface waves generally exhibit apertures
large enough to neglect the dependence of the fields along
x3 . We assume a spatial harmonic excitation driving the
electrode grating, allowing for considering only one period
in the formal description of the problem. Using the well es-

tablished Green’s function formalism, the relation between
the generalized surface stressTjk•nk ~including the normal
electrical displacement as defined in Refs. 15 and 16! and the
generalized displacementsui ~including the electrical poten-
tial! is given by

ui~x1!5E
2p/2

1p/2

Gi jk
p ~x12x8, f !Tjk~x8!nk dx8, ~1!

where the periodic Green’s functionGi jk
p is defined as fol-

lows, according to the Floquet theorem combined with the
Bloch function:

Gi jk
p ~x1 , f !5

1

p (
l 52`

1`

G̃i jk S s15
2p

p
~g1 l !, f D

3expS 2 j
2p

p
~g1 l !xD ~2!

with f being the frequency,s1 the slowness alongx1 as de-
fined above, andg the harmonic excitation parameter.15,16

The tilde denotes the spectral Green’s function andl is the
current number of the spatial harmonic of the Bloch-Floquet
development. In the following, the normalnk is considered
normal tox1 without any loss of generality. There is no ob-
vious general analytical solution for Eq.~1!. As a conse-
quence, one has to transform the corresponding continuous
problem into a discrete form that can be solved using linear
algebra techniques. In that matter, we use a Chebyshev de-
velopment of the generalized displacement and surface stress
fields, inserting in the latter the function 1/A(12x2) account-
ing for the well-known charge electrode edge effects.2–7,15,16

This yields the following expressions ofT2 j andui under the
electrode:

T2 j~x1!5
(n52`

1` a jnCn~ x̄1!

A12 x̄1
2

,

ui~x1!5 (
n52`

1`

b inCn~ x̄1!,

with

x̄15
2x1

a
,

~3!

ux1u,
a

2
.

In Eq. ~3!, Cn are the Chebyshev polynomials, anda in and
b jn are the development coefficients which become the ac-
tual unknowns of the problem. Inserting Eq.~3! into Eq. ~1!
and then projecting that obtained from over the Chebyshev
base provides the relation between the stress and displace-
ment coefficients (a in andb jn) as follows:

b im5Aim jna jn , ~4!

where

FIG. 1. Scheme of the typical geometry of the addressed problem: an infi-
nite grating of periodp along x1 atop a compound substrate composed of
layers stacked alongx2 . a/p is the metallization ratio andh/2p the electrode
relative height.
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Aim jn5nn

p2

p
j m2n (

l 52`

1`

G̃i j 2~g1 l , f !

3JmS pa

p
~g1 l ! D JnS pa

p
~g1 l ! D . ~5!

In Eq. ~5!, Jn are the Bessel’s functions of nth order and of
first kind ~also called cylindrical by some authors! andnn is
a coefficient accounting for the orthogonality properties of
the Chebyshev polynomials.15,16

Equation ~5! then provides 43M relations between
83M unknowns, requiring then additional equations to
solve the problem. They are provided by the boundary con-
ditions imposed at the propagation surface. We consider first
the mechanical boundary conditions allowing for the descrip-
tion of massive electrode contribution to the problem. The
mechanical stress and displacements are assumed continuous
at the electrode/substrate boundary and the normal stresses
vanish elsewhere,

ui5Li j ~T2 j ! for ux1u,
a

2
,

~6!

T2 j50 for
a

2
,ux1u,

p

2
.

According to Ref. 16, the mechanical behavior of the elec-
trode is simulated using a finite element analysis~FEA! con-
sisting in the calculation of the displacement at the interface
electrode/substrate for each term of the Chebyshev develop-
ment and for each surface stress component. Assuming the
restriction of the FEA solution at the above-mentioned inter-
face written as@Ki j 2v2Mi j #G

21, one can establish the rela-
tion betweena in andb jn generated by the electrode as fol-
lows:

b im5Dim jna jn with i , j 51,2,3 ~7!

and

Dim jn5F E PmCqG@Ki j 2v2Mi j #G
21F E PnCkG , ~8!

wherev is the angular frequency and the matrix@* PmCq#
symbolically holds for the integration of the product of FEA
interpolation and Chebyshev polynomials when mixing the
FEA and the boundary integral formulation of Eq.~1!. Equa-
tion ~7! then provides 33M more equations to the 43M
ones previously established in Eq.~4!. Finally, an electric
boundary condition is imposed, considering the flat electrode
assumption conformably to Refs. 2–7, 15, and 16. It consists
in setting the electrode to a 1 V excitation potential, fixing
then the correspondingM Chebyshev development coeffi-
cients as follows:

b4051 and b4m50 for mÞ0. ~9!

As in Refs. 15 and 16, the linear system constructed with
Eqs.~4!, ~7!, and~9! is solved using standard linear algebraic
equation tools. One can then have access to the harmonic
admittance of the structure by computing the total electrical
chargeQtotal under the electrode, taking advantage of the
orthogonal properties of Chebyshev polynomials. The har-

monic admittance is computed considering an acoustic aper-
ture equal to twice the grating’s period, in order to normalize
the frequency by the above-mentioned period (f p). The har-
monic admittanceYH is then directly expressed in siemens
~S!. For a unit potential excitation, it reads

YH~g, f p!52pY~g, f p!

5 j 2pvQtotal

5 j 2p f p
pa

2
a40. ~10!

From this harmonic admittance, one can extract general data
about the excitation and guiding of any mode of the structure
as performed for single-crystal substrates,15,16 i.e., the veloc-
ity, the electromechanical coupling, the propagation leakage,
and the wave diffraction due to massive electrodes. Thanks
to the use of FEA, no restriction has to be considered about
the electrode shape and height.

B. Green’s function for layered substrates

In the calculation presented above, only the spectral
Green’s function has to be computed to simulate any sub-
strate~semi-infinite or of given thickness! thanks to the infi-
nite periodicity of the problem. This considerably simplifies
the calculation process since the Green’s function of a given
compound substrate can be easily derived only in the spectral
domain. Moreover, the dispersion behavior of such a sub-
strate would impose the computation of the spatial Green’s
function ~if required! for each frequency by inverse Fourier
transform, which would take too long. However, particular
care must be devoted to the way the Green’s function is
computed to avoid numerical instabilities, particularly for the
case of a substrate of finite thickness, for thick layers atop
semi-infinite substrates, and for stacked layers exhibiting
large thickness variations. In these cases, a so-called
diffusion-matrix method was proposed in Ref. 18 enabling
stable computation of the Green’s function of any substrate.
The principle of this method is recalled here.

According to Fahmy-Adler approach,13,20 we consider a
state vectorh5(ui ,T2 j )

t associating the generalized stress
and displacement fields to describe the acoustic behavior of
each material of the stack by an eigenvalue problem~the
superscriptt indicates vector or matrix transposition!. The
stacked structure conforms to the definition of Fig. 2. For a
given couple of slowness (s1 ,s3), the state vector for any
material of the layer stack can be expressed as the product of
a matrixF composed of the eight corresponding eigenvectors
with a diagonal matrixD(x2) of rank 838 describing the
dependence alongx2 via the eigenvaluess2 ~Ref. 18! and a
vectora of the partial mode amplitudes,

h~x2!5FD~x2!aexp@2 j p f ~ t2s1x12s3x3!#. ~11!

For each layer m, an intermediate variableg(m) is introduced.
This vector of same nature and rank asa allows for the
separation of reflected and incident partial waves at the layer
interfaces~see Fig. 3!,

7733J. Appl. Phys., Vol. 96, No. 12, 15 December 2004 Ballandras et al.

Downloaded 03 Dec 2004 to 195.83.19.253. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



g~m!~x2!5S g~m1 !

g~m2 !D
5D~m!~x2!a~m!

5S D~m1 !~x2! 0

0 D~m2 !~x2!
D S a~m1 !

a~m2 !D , ~12!

whereD (m6)(x2) and a(m6) correspond to the terms of the
matrix D and of the vectora relative to reflected~1! and
incident ~2! partial waves. By a matter of fact, one can de-
fine a reflection matrixR(m) of rank 434 at the interface
between layer (m21) and layerm linking together incident
and reflected partial waves as follows:

g~m2 !~Xm21!5R~m!g~m1 !~Xm21!. ~13!

In case the first layer is semi-infinite, the reflection matrix
R(1) is null, otherwise the bottom surface is assumed free. In
this latter situation, the surface stress and charge density are
assumed null~only the generalized surface displacements in
vectorh are nonzero!, providing the expression ofg(1). Thus,
one can compute the reflection matrixR(1) considering the
definition of Eq.~13!.18 Note that the permittivity of the ad-
jacent medium can be taken into account along the process
described in Refs. 13, 15, 16, 18, and 19. Once the reflection
matrix is known at the first interface, the reflection matrices
at the other interfaces of the stack are computed iteratively
using a recurrence process. It consists first in linking the
interfaces between layersm and (m11) via the variableg as
follows:

g~m!~Xm!5D~2tm!g~m!~Xm21!, ~14!

wheretm is the thickness of the layerm conformably to Fig.
2. Using Eq.~13!, one can expressg(m)(Xm) only as a func-
tion of reflected partial waves, yielding the following expres-
sion:

g~m!~Xm!5S I 4

D~m2 !~2tm!R~m!D~m1 !~ tm! D
3D~m1 !~2tm!g~m1 !~Xm21!. ~15!

In Eq. ~15!, I 4 is the identity matrix of rank 434. The con-
tinuity of the generalized normal stresses and displacements
at the interface between layersm and (m11), i.e., the equal-
ity of state vectorsh(m11)(Xm) and h(m)(Xm), provides the
relation betweeng(m11) andg(m) which reads

g~m11!~Xm!5@Fm11#21F~m!g~m!~Xm!. ~16!

Equation~15! can be now inserted into Eq.~16!, yielding the
definition of a matrix of rank 834 in which two submatrices
K andL can be emphasized, relative to reflected and incident
partial waves of layer (m11), respectively,

@Fm11#21F~m!S I 4

D~m2 !~2tm!R~m!D~m1 !~ tm! D5S K
L D .

~17!

Conformably to Eq.~13! one can finally deduce the reflec-
tion matrix of layer (m11) asR(m11)5LK 21. This itera-
tive scheme is repeated until the top layer of the stack is
reached~i.e.,x25XN as defined in Fig. 2!. The state vectorh
relative to the top surface then reads

h~XN!5F~N!g~N!~XN!

5F~N!S I 4

D~N2 !~2tN!R~N!D~N1 !~ tN! D
3g~N1 !~XN!

5S N
PDg~N1 !~XN!. ~18!

IntroducingN and P as submatrices relative to the general-
ized surface displacements and stresses, respectively, one can
define the spectral Green’s function relatingui to T2 j as G
5NP21 @whereG is a matrix of rank 434 corresponding to
theGi j 2 tensor of Eq.~5!#, conformably to the usual process
for semi-infinite substrates.2–7,15,16

FIG. 2. Geometrical definition of a stacked structure for the computation of
the corresponding surface Green’s function.

FIG. 3. Recurrence principle—definition of the re-
flected and incident modes.
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C. Numerical aspects

An important point to note concerns the fact that in the
above-described recurrence process, all the inverted matrices
are nonsingular in the most general case. Particularly, for
large values of the frequency-slowness-thickness product
(vs2tm) in matrix D, the associated submatrices relative to
reflected and incident partial waves tend to zero and do not
degrade the algorithm stability. This is obviously a strong
advantage of the partial waves’ separation.

In Eq. ~5!, one assumes infinite summation of the spatial
harmonics that cannot be practically performed. Conse-
quently, a description of the asymptotic behavior of the
Green’s function is used conformably to the one proposed by
Ventura~see Ref. 15 for a comprehensive description of the
calculation!. Actually the first layer of the stacked substrate
may appear as a semi-infinite material for large enough val-
ues of slowness. In that case, one can substitute the corre-
sponding Green’s function to the one of the actual compound
substrate for the computation of the asymptotic Green’s
function coefficients. The infinite summation of spatial har-
monics can be then truncated to a given valueL (2L21
, l ,L, for instance,L510 provides accurate and stable re-
sults!. However, due to the possible large differences be-
tween the substrate layers’ thickness, one has to implement
stable algorithms for accurately computing the Green’s func-
tion, especially for large values of slowness which exacer-
bates the above-mentioned differences.18

Also the number of terms in the Chebyshev develop-
ments has to be set to a given valueM. Practically, the re-
striction of the developments to ten terms consists in a sat-
isfying trade-off between computation duration and
accuracy, as in the case of single-crystal semi-infinite
substrates.15,16 A smaller value yields inaccurate results,
whereas over-dimensioned value ofM ~for instance, M
greater than 30! generates numerical instabilities.

III. EXPLOITATION OF THE MODEL

Once the model is implemented numerically, one can
exploit it to identify optimal working configurations on any
compound substrate. To illustrate that procedure, typical
combinations of material are considered along the following
procedure. We first compute the dispersion curve of the com-
pound considered using the Green’s function. This provides
the evolution of the mode velocities and coupling coeffi-
cients versus the normalized frequency-thickness (f t) prod-
uct. The coupling coefficientKs

2 then is given by the ratio
2(Vf ree2Vmet)/Vf ree with Vf ree andVmet the wave velocity,
respectively, assuming a free and a metallized surface. Both
values are deduced from the effective permittivity that is
inversely proportional to theG442 term of the Green’s func-
tion. We then focus on the most favorablef t working points
for computing a full set of relevant excitation and propaga-
tion parameters of selected modes, i.e., phase velocity, cou-
pling strength~here defined as the ratio between the ampli-
tude of the pole of the mode and the static capacitance!,
reflection coefficient on a single strip, and propagation leak-
age. Concerning the latter parameter, we principally look for
nonleaky modes. Consequently, it is generally not plotted

and simply indicated when not identically equal to zero.
Note that the coupling strength is comparable with the cou-
pling coefficient, but more general since it can apply to the
above definition for leaky modes. The coupling strength also
accounts for the dynamic capacitance changes whereas the
coupling factorKs

2 is a static parameter.

A. ZnO ÕC-diamond

Zinc oxide is one of the most often used piezoelectric
layers to excite guided waves on nonpiezoelectric
substrates.10,12 It is obtained by reactive RF sputtering of
zinc using an oxygen plasma to promote the oxidation phe-
nomenon. To the best of our knowledge, it can be easily
deposited on a large number of substrates. ZnO belongs to
the 6 mm class of hexagonal materials and grows along its C
axis using most of the standard sputtering deposition pro-
cesses. The use of diamondlike carbon for surface acoustic
wave engineering has been imagined as soon as such sub-
strate and thin piezoelectric layers became available. As for
ZnO, the diamond layer is assumed C oriented~i.e., the C
axis is normal to the surface! and is identified as a (YXl)/90°
in the IEEE Std-176 standard~1949!. With bulk acoustic
wave velocities ranging from 12 000 to 20 000 m s21, it ap-
pears as a very attractive material for RF applications. Figure
4 shows the dispersion curve for the first modes of the wave-
guide. One can note from this graph that forf t smaller than

FIG. 4. Dispersion curve for the ZnO/C-diamond configuration for the five
first modes.~a! Phase velocities (Vm metallized surface,Vf free surface!, ~b!
electromechanical coupling factors.
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1 km s21 ~or 1 GHzmm!, no wave can be efficiently excited.
The most interesting working should be found in the range
2.5–3.5mm because the second mode is then found well
coupled (Ks

2 in the range 3%–5%! and the phase velocity
appears almost stable withf t variations. The main drawback
of such a configuration is the occurrence of a non-negligible
contribution of the first mode, the third one almost vanishing
(Ks

2 smaller than 0.1%! at f t53.3 km s21. Note that the fifth
mode can reach an electromechanical coupling larger than
4% at f t53.5 km s21 ~phase velocity equals 12 300 m s21!,
but the dependence of the velocity versusf t was judged too
large for any actual implementation as well as the spectral
distribution density. One can actually note that the fourth and
fifth modes behave similarly to the first and second ones
when their velocities become very close. All the regarded
modes are free of any propagation leakage.

The analysis of an infinite periodic aluminum grating’s
acoustic-electric properties is then performed forf t
53.4 km s21 for which the coupling of the second mode
reaches 5.5% and the mode separation sufficient to enable
efficient computations.16 Also it may be acceptable to de-
posit, for instance, a 2mm thick ZnO layer for devices op-
erating at 1.6–1.8 GHz. Above that value off t, the coupling
of the second mode dramatically drops and the two first
modes tend to mix together. In our calculations, we have
fixed the thickness of the ZnO layer to 3.4mm, yielding a
grating’s period of 2.35mm corresponding to an expected
wave velocity close to 4700 m s21 ~working frequency in the
vicinity of 1 GHz!. The aluminum is assumed isotropic and
the shape of the electrode is assumed rectangular. Its relative
height h/2p and metallization ratioa/p are varied in the
respective ranges 1%–5% and 30%–80%. Figure 5 shows an
example of the harmonic admittance computed forg50.5
~alternated1V/2V excitation figure!, h/2p anda/p being,
respectively, fixed to 1% and 50%. Among the tremendous
number of guided modes~indicated by the poles of the har-
monic susceptance, i.e., the sharp variations of the curve ver-
sus frequency!, a major contribution is actually found at 1
GHz and also less coupled contributions of other modes as
previously predicted. This figure also confirms the absence

of leaky propagation~harmonic conductance G is negligible!
until the velocity threshold of bulk radiation in C-oriented
diamond~i.e., 12 807 m s21!.

The wave velocity as well as the coupling strength and
the reflection coefficient on one aluminum strip are then ex-
tracted according to Ref. 15, and the results are reported in
Figs. 6~a!–6~c!. As in the case of single-crystal substrates,
the wave velocity is strongly affected by the mass loading
effect and then exhibits a quadratic decrease alongh/2p and
a/p. However, one can note that surprisingly the coupling
strength never reaches the value of 5% found usingKs

2 de-
rived from the effective permittivity and remains smaller
than 3%, even if no mass loading is considered. This phe-
nomenon does not occur for the first mode~coupling strength

FIG. 5. Harmonic admittance of a 3.4mm thick ZnO layer atop C-diamond.
Grating period 2.35mm, excitation parameterg50.5, h/2p51%, a/p
550%.

FIG. 6. Characterization of the second mode of the ZnO/C-diamond com-
pound vs electrode shape~relative heighth/2p and metallization ratioa/p).
ZnO thickness 3.4mm, grating period 2.35mm. ~a! Phase velocity,~b!
electromechanical coupling strength,~c! magnitude of the reflection coeffi-
cient on one aluminum strip.
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found close to 0.93% when computed using the harmonic
admittance! and may be explained by a distortion of the
mode shape due to the actual charge distribution over the
electrode. On the other hand, one can expect a larger cou-
pling coefficient when increasing the electrode thickness at
the price of a dramatic reduction of the phase velocity~which
is already comparable to the phase velocity on
LiNbO3 (YXl)/64° in that configuration!. Nevertheless, one
can note that the propagation leakages are homogeneously
equal to zero for all the considered electrode shapes. Another
interesting aspect of this configuration is that the maximum
of the reflection coefficient magnitudeuRu is found for small

metallization ratio, contrary to the case for most of the
single-crystal substrates.5,15,16,21Such a feature is very im-
portant for the fabrication of actual devices and cannot be
accessed without an advanced simulation tool as the one de-
scribed and used here. Finally, the directivity factor remains
always smaller than 0.1°, indicating that the resonance al-
ways occurs at the beginning of the frequency stop band~no
resonance arises at its end!.

B. AlN ÕSapphire

The analysis of the effective permittivity enables one to
extract the propagation parameters of two coupled modes,
but only one is free of propagation leakages~the second one
exhibits losses up to 1 dB/l which is not compatible with
practical surface wave device implementation!. This is
mainly due to the fact that waves propagate in the AlN layer
with a phase velocity generally larger than the cutoff velocity
corresponding to bulk wave radiation in sapphire. The dis-
persion of this mode is reported in Fig. 7. We then only focus
on the first mode for which a zero dependence of the phase
velocity versus thef t product can be found in the range
3–3.5 km s21. The FEA/BIM computation is then performed
for f t53.25 km s21 and the grating’s period was fixed to 2.8
mm in order to operate close to 1 GHz.

Figures 8~a!–8~d! show the evolution of the phase ve-
locity, the coupling strength, and the reflection coefficient on
one aluminum strip. In that case, the coupling strength is in
good agreement with the coupling factor obtained from the
Green’s function, but one can see that it dramatically reduces

FIG. 7. Dispersion curve of the first mode for the AlN/sapphire configura-
tion ~phase velocities and electromechanical coupling factor!.

FIG. 8. Characterization of the first mode of the AlN/sapphire compound vs electrode shape~relative heighth/2p and metallization ratioa/p). AlN thickness
3.25mm, grating period 2.8mm. ~a! Phase velocity,~b! electromechanical coupling strength,~c! magnitude of the reflection coefficient on one aluminum strip,
~d! directivity.
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with the mass loading. Another interesting point concerns the
reflection coefficient that changes its sign when the electrode
reaches a given shape (a/p timesh/2p). Under that thresh-
old, the resonance occurs at the beginning of the frequency
stop band and at the end above it. This is characterized by
the change in the directivity~the capability of the transducer
to generate more electroacoustic energy on one side than the
other; see, for instance, Refs. 15 and 21 for a comprehensive
definition of the phenomenon! which abruptly varies from 0°
to 90°. A similar phenomenon was already pointed out for
the Rayleigh wave on (YXl)/128° lithium niobate.21 Note
that large reflection coefficients are obtained aboveh/2p
53% to the price of a severe reduction in the electrome-
chanical coupling. Finally, a stability point of the reflection
coefficient~corresponding amplitude from 0.1 to 0.13! is ob-
served for smalla/p and h/2p. Such a configuration is at-
tractive only for delay lines which requires almost no reflec-
tion by the grating. One can then take advantage of the weak
reflection and operate using standard finger width~l/4! in-
stead of split fingers hardly achievable at high frequencies.
Whatever, this solution suffers from a lack of coupling for
filter application but may be attractive when using heavy
metallization for resonators. The problem here is the linear
thermal dependence of the frequency which weaken the so-
lution compared to quartz for instance.

C. LiNbO 3Õ„100… Silicon

In this case, the lithium niobate layer is assumed to be
deposited using sputtering techniques, yielding a C-oriented
film. This corresponds to a (YXl)/90° cut conformably to the
IEEE standard Std-176. Only the propagation along theX
axis is considered for the sake of conciseness. The silicon
corresponds to a (YX) cut. The propagation parameters of
the fourth first modes are extracted from the effective per-
mittivity as previously and reported in Fig. 9. Propagation
loss is always smaller than 1024 dB/l. The second mode is
particularly interesting, exhibiting an electromechanical cou-
pling above 6% atf t51.3 km s21. This is the working point
for which the FEA/BIM analysis is performed as for the
previous cases. Note that the coupling of the third mode
tends to increase with increasingf t values when this mode
comes near the second one. However, possible mixing of
modes and also the large values off t prevent the practical
use of such a mode.

The FEA-BIM calculation results are reported in Figs.
10~a!–10~c!. Note that in this case, the coupling strength
extracted from the harmonic admittance is also in good
agreement with the electromechanical coupling coefficient
computed using the effective permittivity~in the vicinity of
6%!. This coefficient increases along the electrode height
and slightly higher values of coupling strength should be
reached for larger mass loading. The metallization ratioa/p
corresponding to a maximum coupling factor is small for
thin metal thickness and moves to larger values for large
electrode height~0.75 ath/2p55%). A similar evolution is
observed for the reflection coefficientuRu, but the optimum
value is rather found ata/p50.5 for h/2p55%. Since the
variation of the coupling strength versusa/p is weak for

such an electrode height, it sounds better to optimizeuRu and
to take advantage of the inversion point of its dependence
versus the metallization ratio. As for ZnO/diamond~Sec.
III A !, there is no directivity effects, and the resonance al-
ways arises at the beginning of the frequency stop band.

D. LiNbO 3ÕC-diamond Õ„100… Silicon

Finally a more complicated case is addressed to fully
illustrate the capability of the proposed model. It consists in
a thin LiNbO3 film deposited atop a thick diamondlike car-
bon layer above a semi-infinite~100! silicon substrate. This
combination of material has been already tested and provides
an attractive solution for very high frequency large band fil-
tering applications.22 Here, the carbon layer thickness was
arbitrarily fixed to 20mm but of course a comprehensive
optimization of this configuration would require to vary this
parameter too. For the present illustration, thef t product
only holds for the LiNbO3 layer. As in the case of ZnO/C-
diamond~Sec. III A!, many modes are found close to each
other ~see Fig. 11!, but the third one exhibits particularly
attractive properties, with a large coupling coefficient~up to
18%! and a high phase velocity~about 104 m s21) for an f t
product close to 1.3 km s21. This point has been then se-
lected for the FEA-BIM characterization, even if the phase
velocity is found highly dependent on the layer’s thickness.

FIG. 9. Dispersion curve for the LiNbO3/~100! silicon configuration for the
five first modes.~a! Phase velocities (Vm metallized surface,Vf free sur-
face!, ~b! electromechanical coupling factors.
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Actually, considering technology limits, the use of such com-
pound substrate allows for the fabrication of 5 GHz devices
with a grating period of 1mm, which is out of reach for any
single piezoelectric crystal. In the following calculations, the
period was fixed to 5mm for the sake of comparison with the
other treated cases.

As in the previous cases, the phase velocity, coupling
strength, and reflection coefficient~as well as the directivity!
have been computed for 0.3,a/p,0.8 andh/2p varying
from 0% to 5%. Figures 12~a!–~c! present the mapping of
these characteristics along these parameters. The propagation
leakages are homogeneously equal to zero for all the consid-
ered couples (h/2p,a/p). As in the case of ZnO/diamond
~Sec. III A!, the coupling strength is found to be about twice

as small as expected considering results extracted from the
effective permittivity. The metallization ratioa/p50.5
which is the most commonly used when developing proto-
type SAW in a blind approach is found the less favorable
case in terms of coupling strength~this of course is not an
intuitive result!. When also regarding the reflection coeffi-
cient uRu, one can easily deduce that the preferred configu-
ration on such compound corresponds to small values ofa/p
~typically 0.3–0.35!. A coupling strength of 8.7% can be
reached fora/p50.3 andh/2p55% with a velocity close to
9500 m s21. These figures are particularly well suited for
present and future RF wide band filtering applications. For
those who have access to diamond and LiNbO3 layer
technologies,22 it is a possible alternative to the development
of bulk acoustic wave ~BAW! AlN-based thin film
resonators,23 which exhibit comparable features considering
the phase velocity and coupling factor.

E. Discussion

As we tried to show along with the presented illustra-
tions, the evolution of wave characteristics under periodic
gratings may significantly differ from the data extracted from
the effective permittivity or any equivalent approach. In such
models, severe assumptions concerning the propagation con-
ditions of the wave may generate considerable missestimat-

FIG. 10. Characterization of the second mode of the LiNbO3/~100! silicon
compound vs electrode shape~relative heighth/2p and metallization ratio
a/p). LiNbO3 thickness 1.3mm, grating period 2.3mm. ~a! Phase velocity,
~b! electromechanical coupling strength,~c! Magnitude of the reflection co-
efficient on one aluminum strip.

FIG. 11. Dispersion curve for the LiNbO3/C-diamond/~100! silicon configu-
ration for the four first four modes.~a! Phase velocities (Vm metallized
surface,Vf free surface!, ~b! electromechanical coupling factors.
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ing of the wave characteristics as shown for the electrome-
chanical coupling and also for the impact of the electrode
shape on the reflection coefficient. Note that, in any case, the
coupling strength is also affected by the width and height of
the strip. The observed dramatic fall off of the electrome-
chanical coupling only happens for the diamond based sub-
strate~see Secs. III A and III D!. We are not able to propose
any clear explanation of that phenomenon yet. The observa-
tion of the mechanical displacement and electrical potential
distribution in the compound wave guide~including the elec-
trodes! may provide more information about it and should be
performed in future developments. The analysis of the mode

distribution computed using the Green’s function approach
does not reveal any particular difference between the treated
waveguides and the polarization of the wave is either elliptic
~Sec. III A! or mainly transverse~Sec. III D!. Whatever the
origin of the phenomenon, the presented examples show that
for such complicated associations of material, one cannot
avoid an accurate and realistic analysis of the waveguide
properties to optimize any SAW device built on those com-
pound substrates.

IV. CONCLUSION

A model combining periodic FEA and a boundary inte-
gral method has been developed and implemented to address
the problem of elastic waveguides based on interdigital
transducers deposited atop layered substrates. In the pro-
posed model, the number of layers and their geometrical
characteristics are not restricted because of the effort devel-
oped to ensure the stability of the Green’s function compu-
tations required to describe the acoustic behavior of the com-
pound substrate. The only restriction concerns the interfaces
between the layers which have to be flat by construction of
the model. Many features of the proposed theoretical ap-
proach were not developed here avoiding a too long descrip-
tion, but one can note that a finite thickness substrate can be
considered and also one can force the electrical potential at
the above-mentioned interface, for instance. It has been dem-
onstrated throughout the paper that the optimization of an
acoustic waveguide on compound substrates is not intuitive
and strongly depends on material combinations. In that mat-
ter, one cannot save the development of such accurate mod-
els. It has been demonstrated these passed years that it is a
key point in SAW industry. It is also necessary to point out
that accurate predictions of SAW characteristics can be
achieved only if reliable material coefficients are available.
As these coefficients can change considering the bulk and the
thin layer configurations, the proposed model also can be
used to update material constants taking into account the
actual structure of the regarded device~particularly the con-
tribution of the electrodes on the wave signatures!. Future
developments are expected to provide predictions on tem-
perature stability of acoustic wave devices built on stratified
media.
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