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The need for optimized acoustic transducers for the development of high-quality imaging probes
requires efficient simulation tools providing reliable descriptions of the behavior of real devices. The
purpose of this work is the implementation of a finite-element model for the simulation of periodic
transducer arrays. By using the assumption of harmonic excitation, the harmonic admittance of the
studied structure can be derived. It is then shown how the mutual admittance is deduced from this
feature, allowing one to estimate the amount of cross-talk effects for a given periodic transducer.
Computation results are reported for standard linear acoustic probeésn2-2limensional periodic

and 1-3 (two-dimensional periodjcpiezocomposite materials. In the case of 2-2 connectivity
composites, a comparison between nonperiodic and periodic computations of the mutual admittance
is conducted, from which the minimum number of periods for which periodic computations can be
trustfully considered can be estimated. Z003 American Institute of Physics.
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I. INTRODUCTION ally consists in the vibration of a piezoelectric transducer
(PZT) ridge glued on a backing, with one or two matching
Ultrasound transducers for acoustic imaging are nowayers covered by a Mylar layer and possibly an acoustic
standard tools for medical diagnostics and nondestructivgens. These transducers exhibit up to 192 single transducers
control. Technological developments in this field during tensfor one-dimensional(1D) periodic probes or more than
of years have resulted in the production of very sensitiveg4x64 transducers for two-dimensioné2D) periodic de-
acoustic probes providing accurate measurements for a widgces devoted to three-dimension@D) imaging. Devices
range of applications. Such technical improvements are alsgased on piezocomposites have also been introduced to im-
due to a strong effort in the modeling of the dynamical be-prove the characteristics of classical acoustic probes, and the
havior of these transducers. One of the most popular modelsew concept of the micromachined ultrasound transdticer
devoted to piezoelectric vibrators was proposed by Masongives rise to new opportunities in the development of high-
in the early 60s. This approach consisted in a simplifiedjensity integrated imaging devices.
model using a scalar representation of the electroacoustic A|though FEA has been extensive|y used to address clas-
vibration, which is very efficient in the prediction of vibra- sical 2D or 3D pr0b|em$i_e_, Sing|e transducer devices or
tions of archetypal structurelates, bars, el But, since  reduced size arraysit has seldom been adapted to explicitly
then, technical improvements have rendered the fabricatiogyke into account periodicity: However, it is a very efficient
of devices more and more different than these archetypegyay to simulate acoustic imaging probes exhibiting a large
and many authors have proposed theoretical approaches thimber of elementary transducers as those currently used in
are better adapted to the Simu|ati0n Of structures W|th gener@hedicine_ The design Of transducers requires powerfu' and
geometries. In 1966, Lloyd and Redwdddvestigated the flexible tools, that can accurately simulate complex arrange-
possibility of modeling vibration modes of thin piezoelectric ments of materials exhibiting acoustic and dielectric losses.
plates using the finite difference method. A few years latergyrthermore, the periodicity of the probes has to be taken
Holland* proposed to apply the Rayleigh—Ritz approach tointo account to correctly predict their capability to convert
solve this kind of problem. At the same time, Tiersten, pyk vibrations into acoustic radiation, avoiding any parasitic
Eerniess, and Allik and HugueSexplored the capability of  effects due to waveguiding along the array. The present work
finite-element analysi€~EA) to simulate piezoelectric struc- s devoted to the development of finite-element computation
tures. Since these pioneer works, many authors have contrisqis to address this problem. It is based on an harmonic
uted to the development and improl\éement of the modeling ohnaysis of the admittanc@r impedancg® of piezoelectric
piezoelectric problems using FEA! S ~ transducers as used for medical imaging or nondestructive
~ Modern ultrasound arrays for medical imaging applica-g,/ajyation. Periodicity is taken into account using a standard
tions are mainly based on composite structures associatifgeriodic finite-element approach and Bloch wave expansion
materials of various natures. The actuation principle 9generyjiowing one to rigorously establish the periodic boundary
conditions. Computations are performed for different kinds
3E|ectronic mail: mikael.wilm@Ipmo.edu of piezoelectric ultrasound transducers to illustrate the effi-
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FIG. 1. Definition of the elementary
cell of the considered transducer array,
composed of PZT bars glued on a
backing, with a matching layer, and

X3 l covered with a Mylar layer.
Backing X

ciency of the proposed approach, but the corresponding dék FINITE ELEMENTS APPLIED TO PERIODIC
velopments apply for any kinds of problems in the field of STRUCTURES
linear elasticity. The development of finite-element calculations to ad-
Moreover, the computation of harmonic admittancedress piezoelectricity problems has been reported in many
gives access to the mutual admittances and so to the crosaticles (see e.g., Refs. 7-12The description adopted for
talk effects. Kind® first gave an analytical formulation of the present work relies on a mechanical displacement and
crosscoupling in the case of a classical transducer &ray  €lectrical potential formulatioi=**and only the final form
bars on a backing More recently, Certoret al*” measured of the problem is recalled here. Let us consider an elemen-
cross-coupling effects in the case of a 1-3 piezocomposité'y cell of a quasiperiodic transducer whose geometry con-
array and they considered the piezocomposite as a homogms to the representation of Fig. 1. The operating behavior
neous medium in their theoretical approach. Finally, the con®f thiS element without any acoustic lodth a vacuumis
cept of mutual admittancEswas introduced and is now conS|dereq here. 'On.e of the boqndary corjdltlons con§|st§ in
adapted to transducer arrays. This latter formulation aIIowéhe electrical excitation of the plezoelegtrlc Iayer, which is
one to derive mutual admittances from the harmonic admit_assumed to be governed by an harmonic relation
tance and gives the practical conditions to be applied to per-  ¢n=$o Xp(j27NnYy), 1)

form electrical measurements of cross-talk effects. Usingneaning that theth active electrode is excited by a potential
FEA, complex geometries of the structure and piezoelectricof magnitude¢, modulated by a phase proportional to its
ity are taken into account. distance from the Oth electrode. The excitation parameter
The basic principles of the simulation of periodic de- describes the way the structure is excited. For instance, an
vices using FEA are summarized in Sec(fidlllowing Ref.  integer value ofy corresponds to a synchronous excitation,
14), together with very important notions such as harmonicwhereasy=1/2 holds for an alternate- V/ —V excitation of
and mutual admittances which we extensively use to charadhe array. The bottom electrode is set to the reference poten-
terize periodic transducers. We have implemented them ttial (0 V). In the harmonic excitation frame, the mechanical
model standard multilayebacking/PZT/matching laypul-  displacements and the stresses obey a quasiperiodicity law
trasounq transducers, and ple_zocomp05|.te. materials qf 2-2 yi(xy+np)=ui(x))d2™M=u; (x,),
(1D periodig and 1-3(2D periodig connectivity. For classi- . " 2)
cal transducers, a comparison between different simple phase Tij(X1+np)=T;j(x)&?™"=T;; (xy). (
e_xm_tanon condmons IS conducte(_:i_ using nonperiodic and PeThese relations yield specific boundary conditions at the lim-
riodic computations. The capability of both approaches tqiq 1 andr, of the elementary cell of Fig. 1. These condi-
accurately simulate actual operating conditions is then disgns are straightforwardly deduced from E¢®. and(2) as

cussed. An illustration of the interest of periodic calculationsgpown in Eq.(3), and directly involve the degrees of free-
is outlined, demonstrating the influence of undercuts in thgyom (DOF) at the corresponding boundary

backing on the guiding of lateral modes by the array. In the
case of 2-2 connectivity composites, a comparison between Urg _ ur, g2my 3)
nonperiodic and periodic computations of mutual admittance dry or, '

is reported. Mutual admittances for the very first neighbors\ote that the spatial distribution of nodésupporting the

of one excited period are computed and compared to thoS§oF) on T, andT's must be identical to ensure the coher-
deduced from a Fourier transform of the harmonicence of Eq(3). This relation is then used according to Ref.
admittancé.S This leads to the definition of the minimum 14 to Slmpllfy the linear a|gebraic System obtained after dis-
number of periods for which periodic computations can begretization and integration of the piezoelectric Lagrangian
trustfully considered. Results are also reported for 1-3 piezoexpressiort? **Equation(3) imposes that the number of in-
composite and compared to published data. As a conclusiogependent variables of the problem is reduced. However, in
the use of such numerical tools for industrial design is disthe present work, the initial number of DOF is preserved to
cussed. avoid matrix reorganization, considered here as a source of
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time consumption and yielding too many program complica-whereK,, andM ,, are, respectively, the stiffness and mass

tions. In this approach, a transformation mafr®,] is in-
troduced as

u,ér, U,@r,
U,da 1 =[Cyygly U %0
U, ér, U, Pry
I 0 0]f(ver,
= 0 lo 0§ viea ¢, 4
€277 0 Iy v,er,

whereu, ¢, are the DOF of the inner meshed domalf, (

matrices of the purely elastic part of the problefy,, is the
piezoelectric coupling matrix, arid ,, represents the purely
dielectric part of the generalized piezoelectric stiffness ma-
trix K. Superscripts and* denote, respectively, matrix trans-
position and complex conjugation. Equati(®) is solved by
settingu g and ¢rg to zero in order to comply with bound-
ary condition(3). In the right-hand side of Ed5), F andQ

are, respectively, relative to nodal mechanical and electrical
load. These terms vanish within the meshed domain but can
take nonzero values at its bounds, depending on the bound-
ary conditions. One should note that in the case of complex
matricesK,, K4, and K,,, the matrix product on the

andI's excluded. Equation(4) is then inserted in the stan- |eft-hand side of Eq(5) yields a general complex matrix
dard discrete form of FEA written as follows for a mono- with no particular symmetry but a large number of zeros. As
chromatic dependence of mechanical and electrical fieldg consequence, one can advantageously use a sparse matrix

[time dependence of the form expf)]:
t

Ci 0 |[Ky—o?My, Kyl[Cy O {,,]
0 C} Keu  Kupll 0 Cylle
Tcr o](E

:{ 0o c [Q] ©
[u.r,) [v.er,) F o,

U, ér v, er, 01 Ir,

u,éq v, @0 0 0 Iy
u,ér, v, ¢ry I @27 0 0
Whro ) =[Cuyl| V¥ )= 0 Ipe?™ o
U, b, v, P,

U:¢E2 U, ¢k,

U:¢’E3 U, PE, 0
| ude,) \vee,) L

where y, and vy, are the two excitation parameters corre-

sponding to the two directions of periodicity.

Considering the 2D computation case, inserting 6.

Ir,

0 |r2

resolution algorithrtf to reduce the computation time with-
out loss in accuracy.

In the case of 3D computations with two periodic bound-
ary conditions(see Fig. 2, one has to take particular care in
the way the corners of the mesh are related to one another
(see Ref. 14 In that case, the transformation matrix is
written

- (U,QDFA\
vi(PFc

U,Q0

U;QDFB

v!QDFD

, (6)
le U, Pk,
leel2m ¢ v, ¢k,
leel?™2 0 Ig

lgel2m(ntr) o 0

U, PE,

le ] kv,cpEd

Ne

Y(w,y>=l<w,y>=1wn§1 Qn, @)

into the discrete FEA formulation via the transformation Ma- here Ne is the total number of nodes at the considered

trix given by Eq.(4) makes the problem dependent @rand
v. Thus, Eg.(5) must be solved for each couple,y) to

electrode. One could also proceed as proposed by t%ibgh
applying a constant charge excitation on the active electrode

determine the specific properties of a given structure, andnq then computing the resulting potential, directly provid-

particularly to calculate the harmonic admittantew, y).1°
Since the magnitude of the excitatiapy is fixed to 1V,

ing the harmonic impedance for a unit charge excitation.
This latter approach does not require the computation of the

Y(w,) is directly given by the current generated in the ac-right-hand side of Eq(5), but it does require either reorga-
tive electrode by the vibration of the structure. This current isnize the stiffness and mass matri¢escause the number of
simply derived from the nodal charges on the active elecindependent DOF is reduckedr to introduce one more trans-

trode using

formation matrix. The first approach was preferred for imple-
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FIG. 2. In-plane definition of an elementary cell in the case of a biperiodic 0
structure for 3D computations.

mentation in our computer software architecture. Using the
harmonic admittance as defined in E@), one can easily
define the mutual admittancésof the array by using the
Fourier series property

-

1 |
Yn(w)= fo Y(w,y)e*7"dy. ()

-1000
Equation(8) describes the influence of one excited cell in the Fa 0 100 TIg
array (taken to ben=0) on the other cells, yielding, e.g., an Xy (um)
estimate for the level C_'f crosstalk between two adjacent CeII1':"—'IG. 3. Mesh of one cell of the considered periodic classical acoustic probe.
or revealing propagation phenomena at the surface of thene period is set to 15pm.
array along thex; axis (Fig. 1). The integral in Eq(8) is
evaluated using Gauss quadrature fadefined in the range
[0,0.5], taking advantage of the symmetry of the harmonicThe backing exhibits large acoustic lossémechanical
admittance around 0.5. For each frequency point, the comg=1 ), while the acoustic and dielectric losses of the PZT
putation ofY,(w) requires only the evaluation &f(w,y) at  |ayer, represented by the imaginary part of the material con-
the integration points, and the computational burden is lowstants, are set to 1% of the real part of the material constants.
This approach is very efficient for smooth contributions toThe acoustic impedance of the matching layer is close to that
the harmonic admittance. For sharp peaks, the proposest water, resulting in a layer thickness equal to 268, with
computation is valid only for a given range of neighbor cells.acoustic losses set to 10% of the elastic constants. The Mylar
Since it is very difficult to define an equivalent degree ofjayer is 50um thick, with acoustic properties equivalent to
polynomial for such rapid variations of the harmonic admit-those of the matching layer. This structure corresponds to an
tance, this range cannot be rigorously defined and has to hg:ademic problem used only to assess the proposed analysis.
determined empirically as shown in the next section. The computations were first performed assuming no pe-
In the case of 2D periodic structur€dD computations  riodic boundary conditions. Displacements alangat the
two excitation parameters have to be considered which yielg, andI"; boundaries are blocked in order to simulate adja-
the following generalization for the mutual admittances  cent cells. Only one phase arrangement can be considered in
101 , _ that case for transducer excitation. It is the synchronous op-
Ynm(w):f f Y(w,71,72) €222y dy, . eration of the infinite arrayall cells are excited in phase
070 ) requiring one to mesh only one cell of the array. The periodic
computation is then performed along the same lines, setting

Il COMPUTATION RESULTS AND ASSESSMENTS f[he §XC|tat|on parameter to zero. The results are compgred
in Fig. 4. The perfect agreement between nonperiodic and
A. Standard one-dimensional acoustic probe periodic computations can be observed 610, demonstrat-

The first case discussed in this section is that of classicdf‘rg th"’F‘t both calculations are equwalenmg(‘=u£3=0,
1D acoustic probes composed of PZT ridges on a backing,”=U,").
with a matching layer, the whole structure being covered by  Another computation was then performed to illustrate
a Mylar layer(as pictured in Fig. L The mesh used for the how the proposed periodic computation can be used to quali-
analysis is shown in Fig. 3. All computations are performedtatively optimize periodic arrays. The well-known case of
using second-order interpolation polynomials. The backingindercuts in the backingis considered here. Figuregab
thickness is set to 1 mm and the PZT layer thickness as weland §b) display the harmonic charge versysnd w for the
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FIG. 4. Comparison between nonperiodic and periodic computations for the
standard 1D acoustic probe of Fig. 3 operating in a vacuum. FIG. 6. Definition of the 2-2 connectivity piezocomposite material used for

2D computations. PZT and polymer bars are assumed infinite along, the

axis.
array of Fig. 1 without and with undercuts in the backing
(undercut depth set to 2Q@m). The harmonic charge is pre-

ferred for these plots because it allows a better illustration ofOntributions to the harmonic charge that are due to propa-
the studied phenomena. The influence of the undercut clear§@tion at the surface of the backing. One can numerically
appears at low frequenciésnder the first longitudinal reso- €Stimate the efficiency of the undercut by computing the so-

nance located at 1.5 MBizcausing the vanishing of large 'Ution of the problem forf=0.6 MHz andy=0.5 where a
large unwanted contribution to the harmonic charge is found.

This effect is still present in the undercut structure but the

Imaginary part of the electrical charge Q (mC.m™") displacements along, (propagation directionandx; (nor-

Real part of the harmonic admittance (mS.m™")

8x10°
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6x10°
5x108
4x10

3x10®
2x10°
1x108
0x10°

2000 3000
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Frequency (kHz)
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(a) Frequency (kHz)

Imaginary part of the electrical charge Q (mC‘m")

(a)

Magnitude of the mutual admittance (mS,m")
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02 = - 0x10°

o =« N oW s oo

055 w00 1000 1500 2000 2500 3000
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s 000

(b) Number of the neighboring celt 207g Frequency (kHz)
FIG. 5. Imaginary part of the harmonic electrical charge vs the excitation

parametery and the angular frequenay (a) without undercut andb) with (b)

a 200um deep undercut. A spurious contribution to the electrical charge at

low frequencies, corresponding to waves propagating at the surface of thelG. 7. Harmonida) and mutualb) admittances for the 2-2 piezocomposite

backing, is strongly reduced. of Fig. 6.
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E
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H cell width
é 2x107 |
1107
o0’ g T 20000
Frequency (kriz) FIG. 9. Different combinations of 2-2 piezocomposite structure considered
(a) for a comparative analysis of their mutual admittant@s30% PZT vol.
Fract. (w=60 um, p=200 um), (b) 30% PZT vol. Fract.(w=100 um,
6x10” . p=333 um), (c) 50% PZT vol. Fract.(d) 70% PZT vol. Fract(w=140 um,
~ Cellrumber p=200 zm), and(e) 70% PZT vol. Fract(w=100 um, p=140 um).
E 7
,g' 5x10°
7 b
o The mutual admittancd&q. (8)] are computed using the
3 a0l Gauss integration procedure described in Sec. Il. As indi-
E , cated previously, due to the sharp variation& ¢&, y) for a
3 20T transducer operating in a vacuum, a large number of integra-
o’ tion points are required. The harmonic admittance is com-
puted for 30 Gauss points within the rangd0;0.5]. Taking
0x10® - pro T PPy o advantage of the symmetry M w,y) aroundy=0.5, this is
Frequency (kHz) equivalent to a numerical integration performed over 60
(b) points. Figures (&) and 7b) display Y(w,y) and the first 20
mutual admittances; for these the integration results are
_ ext0” Gl rumber found to be reliable. Mutual admittances exceeding rank 20
& Lt z exhibit sharp nonregular variations aloagcaused by the
£ R instability of the numerical integration scheme alopgre-
a0’ | sulting in artifacts. This sets a limitation to the proposed
, approach, the presented results corresponding to moderately
% =y sharp resonancdsnaximum quality factor smaller than the
;.; 2ni0” mechanicalQ of the PZT set to 100 as in the previous sec-
tion).
10 These results have also been assessed by comparing
ot . them with nonperiodic computations performed for 9-cell
0 m‘:"xm) 20000 and 49-cell piezocomposite transducers. In both cases, only
the central(n=0) cell is excited, all others being grounded.
(©) For a 1 V excitation, theith mutual admittance is directly

given by the current flowing between the electrodes of the

FIG. 8. Comparison between the mutual admittance&apf 9-cell finite . .
length transducei(b) a 49-cell finite length transducer, atd a periodic ~ Nth cell. The results are plotted in Figs(aB-8(c) for the

infinite 2-2 piezocomposite transducer. The electrical excitation is applied t®-cell, the 49-cell, and the periodic structures, respectively. It
cell 0. The mutual admittan_ces‘ of the 49-ce_ll and Fhe infi_nite devices exhibiueaﬂy appears that the frequency dependence of the mutual
a perfect agreement, considering the first five neighboring cells. admittances obtained in the three cases is very similar. The
periodic and the 49-cell curves are almost indistinguishable.
i ) The most obvious differences are found when comparing the
mal to the backingare reduced, respectively, by a factor of 4 g_ce|| mytual admittances to the two others. First, below the
and 6 in magnitude when compared to the standard devicendamental longitudinal mode of the transducer located at 5
MHz, a couple of small contributions arise, possibly due to
structural resonances of the whole devitlee length of the
piezocomposite is 1.8 mm The number of such low-
The case of 2-2 connectivity piezocomposites is nowfrequency contributions increases with the number of cells
considered to illustrate the interest of the harmonic and mueonsidered in the computation while their magnitudes de-
tual admittance concepts for the study of cross-talk effectscrease. For the 49-cell device as well as for the periodic
The geometry of the studied structure is depicted in Fig. 6device, a kind of continuum of modes at the corresponding
Once again, this is an academic problem of an infinite perifrequencies can be observed. In the vicinity of the fundamen-
odic transducer composed of infinitely long PZT and poly-tal longitudinal mode, almost no differences arise between
mer bars perfectly glued together. the three computations. The most representative deviations

B. 2-2 connectivity piezocomposite material
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FIG. 10. (a)—(e) Mutual admittances for the five configurations of Fig. 9.

are found at frequencies above 10 MHz at which contribu-arrangements of 2-2 piezocomposite and the calculation re-
tions due to lateral modes, Lamb modes, and the third oversults are reported in Fig. 10, compared to the mutual admit-
tone of the fundamental mode overlap. The mutual admittances of the 50% PZT volume fraction device previously
tances of the 9-cell device exhibit frequency dependencesonsidered.
that are more difficult to analyze than the two other cases, In terms of magnitude and modal purity of the mutual
certainly due to the influence of the boundary conditionsadmittance, Fig. 1@ for which the width/thickness ratio
Again, it can be remarked that for the first two neighbors of(w/t) is the smallest(0.2) exhibits the most advantageous
the excited cell, the three results are very close. As a concluesponse. As a counterpart, only a small volume of the cell
sion for these 2D computations, even moderately long arraysontributes to the useful longitudinal vibration, which also
(i.e., larger than ten periogsan be efficiently analyzed us- explains the small amount of cross-talk effects related to this
ing periodic FEA. mode. However, one can point out a large contribution of the
The computation of mutual admittance has also beeffirst lateral mode on the first neighbor mutual admittance.
performed for various combinations of PZT and polymerFor this mode, the vibration mainly takes place within the
volumes within the considered cell to check the capability ofpolymer. Since Fig. 1@ exhibits the largest amount of
our approach to identify specific behavior of the differentpolymer among all those regarded, it is rather easy to explain
corresponding 2-2 piezocomposite structures. Volume fracthe observed result. For Fig. @), this mode is found to
tions of PZT equal to 30% and 70% have been imposedtrongly contribute to the first neighbor mutual admittances.
assuming either a constant peri@D0 um), or a constant Figure 1@b) also exhibits large cross-talk effects in terms of
width of the ridge(100 um), the thickness of the structure propagation depth along the grating. FigurédlGor which
remaining fixed to 30Qwm. Figure 9 shows the considered the wit is close to 0.5 provides the largest fundamental lon-
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fundamental thickness—mode

Real part of the harmonic admittance (mS)
first symmetrical Jamb-like mode
- first lateral mode

3rd overtone of the thickness-mode

™ 5000 12000 14000
0.5 2000 4000 6000 8000 10000 12000
Frequency (kH2)

FIG. 11. Real part of the harmonic admittance of the considered 1-3 con-
nectivity piezocompositébiperiodic structurg for y,=0 and y; varying
from O to 0.5.

gitudinal vibration, but also a very large amount of cross-talk
phenomena, with important contributions of Lamb wavelike
modes. Figure 1@) shows a complicated distribution of mu-
tual admittances, with large contributions for even neighbors
and smaller responses for odd ones. Furthermore, low-order
Lamb wavelike modes seem to interact with the piston mode.
The largest third overtone contributions are also found in that I
case, mixed with higher-order modes. ]ﬂ N (
Finally, a tradeoff can be reached with Fig.(@0 Even
if lateral mode contributions occur, it is the one which ex-
hibits the smallest cross-talk phenomena related to the first ! J
longitudinal mode. On the other hand, it is clear that precise S

criteria have to be defined to select one or the other solution. )\ )

Whatever these criteria could be, it is shown that different
configurations of 2-2 piezocomposite yield different mutual

admittance figures which can be actually used to accurately
optimize the structure. (b)

FIG. 12. Displacement fields of the fundamental thickness ntadend the
first lateral modeb) located in Fig. 9 withy;=y,=0. In the case of the

C. 1-3 connectivity piezocomposite—three- first lateral mode, the polymer and the PZT do not vibrate synchronously;
dimensional computations moreover, the polymer exhibits a larger magnitude of vibration than the
PZT.

The computation of 2D periodic structures was also
implemented to analyze 1-3 connectivity piezocomposite
properties. The first studied piezocomposite exhibits two peimverting y; and vy, in the calculation scheme yields the
riods of 200 um and a thickness of 30@m, the volume same results since the structure is symmésugiare in-plane
fraction being set to 1/4. In this calculation, the harmonicsection of the period
admittance depends on the angular frequency and on the two It can be remarked that the resonant frequency and the
propagation parameterg; and y,. First computations to magnitude of the fundamental longitudinal mode are both
validate the approach were performed by settjingto zero  affected by the value of,. The corresponding dependence
and scanningy, from 0 to 0.5. The different modal contri- can be rigorously identified using the approach proposed in
butions showing out in the harmonic admittarisee Fig. 11  Ref. 19. Figures 1@) and 12b) show the displacement
have then been identified. The first mode is the first symf{ields for two values of the frequency corresponding, respec-
metrical Lamb-type wave clearly exhibiting a frequencytively, to the fundamental longitudinal mode and the first
stopbandwell identified in literatur@ The fundamental lon- lateral mode(consideringy, = y,=0), this latter being due
gitudinal mode is then naturally found, and then the firstto Bragg diffraction of transverse waves in the periodic
lateral mode fory, smaller than 0.3. The third overtone is structure?>?!
also easily identified. The observed dispersion behavior is Finally, mutual admittances were computed for a 1-3 pi-
very close to that of the previous sectipmompare Fig. @) ezocomposite structure exhibiting a volume fraction of 0.55,
with Fig. 11] This result was expected since all cells along two periods of 600um, and a thickness of 90@m. The
are assumed to vibrate synchronously, an operating principleidth of the square section PZT bar is 445. In that case,
very close to that of 2-2 piezocomposite devices. Note thabne has to compute many more values of the harmonic ad-
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FIG. 13. Mutual admittance of the first neighbor of the excited cell alongthdirection, for the considered 1-3 connectivity piezocomposite. Rgalnd
imaginary(b) parts, as well as the magnitu@® and the phaséd) are shown. The continuum of modes at low frequencies is due to the SO-Lamb-type mode
of the structure, whose cutoff frequency is approximately 1 MHz.

mittance to achieve a good accuracy for the Gauss integranutual admittances can be directly evaluated, which can be
tion scheme. In the present case, the number of Gauss poinised to identify the best transducer configuration according
alongy, and y, was restricted to 18169 calculation points to the amount of permitted crosstalk.

for each value ofw) and the number of frequency points to
501.

Figure 13 shows the mutual admittance of the first
neighbor of the excited cell along thg axis. At low fre- The authors thank J. Desbois for many fruitful discus-
quencies, the kind of continuum of modes is due to the consions concerning pseudoperiodic problems and their model-
tribution of the SO-Lamb-type mode whose cutoff frequencying.
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' 4R. Holland, IEEE Trans. Sonics Ultrasalb, 97 (1968.
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