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Finite-element analysis of periodic piezoelectric transducers
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The need for optimized acoustic transducers for the development of high-quality imaging probes
requires efficient simulation tools providing reliable descriptions of the behavior of real devices. The
purpose of this work is the implementation of a finite-element model for the simulation of periodic
transducer arrays. By using the assumption of harmonic excitation, the harmonic admittance of the
studied structure can be derived. It is then shown how the mutual admittance is deduced from this
feature, allowing one to estimate the amount of cross-talk effects for a given periodic transducer.
Computation results are reported for standard linear acoustic probes, 2-2~one-dimensional periodic!
and 1-3 ~two-dimensional periodic! piezocomposite materials. In the case of 2-2 connectivity
composites, a comparison between nonperiodic and periodic computations of the mutual admittance
is conducted, from which the minimum number of periods for which periodic computations can be
trustfully considered can be estimated. ©2003 American Institute of Physics.
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I. INTRODUCTION

Ultrasound transducers for acoustic imaging are n
standard tools for medical diagnostics and nondestruc
control. Technological developments in this field during te
of years have resulted in the production of very sensit
acoustic probes providing accurate measurements for a
range of applications. Such technical improvements are
due to a strong effort in the modeling of the dynamical b
havior of these transducers. One of the most popular mo
devoted to piezoelectric vibrators was proposed by Mas1

in the early 60s. This approach consisted in a simplifi
model using a scalar representation of the electroacou
vibration, which is very efficient in the prediction of vibra
tions of archetypal structures~plates, bars, etc!.2 But, since
then, technical improvements have rendered the fabrica
of devices more and more different than these archety
and many authors have proposed theoretical approaches
are better adapted to the simulation of structures with gen
geometries. In 1966, Lloyd and Redwood3 investigated the
possibility of modeling vibration modes of thin piezoelectr
plates using the finite difference method. A few years la
Holland4 proposed to apply the Rayleigh–Ritz approach
solve this kind of problem. At the same time, Tierste5

Eerniess,6 and Allik and Hugues7 explored the capability of
finite-element analysis~FEA! to simulate piezoelectric struc
tures. Since these pioneer works, many authors have con
uted to the development and improvement of the modeling
piezoelectric problems using FEA.8–12

Modern ultrasound arrays for medical imaging applic
tions are mainly based on composite structures associa
materials of various natures. The actuation principle gen

a!Electronic mail: mikael.wilm@lpmo.edu
7020021-8979/2003/93(1)/702/10/$20.00
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ally consists in the vibration of a piezoelectric transduc
~PZT! ridge glued on a backing, with one or two matchin
layers covered by a Mylar layer and possibly an acou
lens. These transducers exhibit up to 192 single transdu
for one-dimensional~1D! periodic probes or more tha
64364 transducers for two-dimensional~2D! periodic de-
vices devoted to three-dimensional~3D! imaging. Devices
based on piezocomposites have also been introduced to
prove the characteristics of classical acoustic probes, and
new concept of the micromachined ultrasound transduc13

gives rise to new opportunities in the development of hig
density integrated imaging devices.

Although FEA has been extensively used to address c
sical 2D or 3D problems~i.e., single transducer devices o
reduced size arrays!, it has seldom been adapted to explicit
take into account periodicity.14 However, it is a very efficient
way to simulate acoustic imaging probes exhibiting a la
number of elementary transducers as those currently use
medicine. The design of transducers requires powerful
flexible tools, that can accurately simulate complex arran
ments of materials exhibiting acoustic and dielectric loss
Furthermore, the periodicity of the probes has to be ta
into account to correctly predict their capability to conve
bulk vibrations into acoustic radiation, avoiding any paras
effects due to waveguiding along the array. The present w
is devoted to the development of finite-element computat
tools to address this problem. It is based on an harmo
analysis of the admittance~or impedance!15 of piezoelectric
transducers as used for medical imaging or nondestruc
evaluation. Periodicity is taken into account using a stand
periodic finite-element approach and Bloch wave expans
allowing one to rigorously establish the periodic bounda
conditions. Computations are performed for different kin
of piezoelectric ultrasound transducers to illustrate the e
© 2003 American Institute of Physics
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FIG. 1. Definition of the elementary
cell of the considered transducer arra
composed of PZT bars glued on
backing, with a matching layer, and
covered with a Mylar layer.
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ciency of the proposed approach, but the corresponding
velopments apply for any kinds of problems in the field
linear elasticity.

Moreover, the computation of harmonic admittan
gives access to the mutual admittances and so to the c
talk effects. Kino16 first gave an analytical formulation o
crosscoupling in the case of a classical transducer array~PZT
bars on a backing!. More recently, Certonet al.17 measured
cross-coupling effects in the case of a 1-3 piezocompo
array and they considered the piezocomposite as a hom
neous medium in their theoretical approach. Finally, the c
cept of mutual admittances15 was introduced and is now
adapted to transducer arrays. This latter formulation allo
one to derive mutual admittances from the harmonic adm
tance and gives the practical conditions to be applied to
form electrical measurements of cross-talk effects. Us
FEA, complex geometries of the structure and piezoelect
ity are taken into account.

The basic principles of the simulation of periodic d
vices using FEA are summarized in Sec. II~following Ref.
14!, together with very important notions such as harmo
and mutual admittances which we extensively use to cha
terize periodic transducers. We have implemented them
model standard multilayer~backing/PZT/matching layer! ul-
trasound transducers, and piezocomposite materials of
~1D periodic! and 1-3~2D periodic! connectivity. For classi-
cal transducers, a comparison between different simple p
excitation conditions is conducted using nonperiodic and
riodic computations. The capability of both approaches
accurately simulate actual operating conditions is then
cussed. An illustration of the interest of periodic calculatio
is outlined, demonstrating the influence of undercuts in
backing on the guiding of lateral modes by the array. In
case of 2-2 connectivity composites, a comparison betw
nonperiodic and periodic computations of mutual admitta
is reported. Mutual admittances for the very first neighb
of one excited period are computed and compared to th
deduced from a Fourier transform of the harmon
admittance.15 This leads to the definition of the minimum
number of periods for which periodic computations can
trustfully considered. Results are also reported for 1-3 pie
composite and compared to published data. As a conclus
the use of such numerical tools for industrial design is d
cussed.
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II. FINITE ELEMENTS APPLIED TO PERIODIC
STRUCTURES

The development of finite-element calculations to a
dress piezoelectricity problems has been reported in m
articles ~see e.g., Refs. 7–12!. The description adopted fo
the present work relies on a mechanical displacement
electrical potential formulation12–14 and only the final form
of the problem is recalled here. Let us consider an elem
tary cell of a quasiperiodic transducer whose geometry c
forms to the representation of Fig. 1. The operating beha
of this element without any acoustic load~in a vacuum! is
considered here. One of the boundary conditions consist
the electrical excitation of the piezoelectric layer, which
assumed to be governed by an harmonic relation15

fn5f0 exp~ j 2png!, ~1!

meaning that thenth active electrode is excited by a potenti
of magnitudef0 modulated by a phase proportional to i
distance from the 0th electrode. The excitation parameteg
describes the way the structure is excited. For instance
integer value ofg corresponds to a synchronous excitatio
whereasg51/2 holds for an alternate1V/2V excitation of
the array. The bottom electrode is set to the reference po
tial ~0 V!. In the harmonic excitation frame, the mechanic
displacements and the stresses obey a quasiperiodicity l

ui~x11np!5ui~x1!ej 2pgn5ui n
~x1!,

~2!Ti j ~x11np!5Ti j ~x1!ej 2pgn5Ti j n
~x1!.

These relations yield specific boundary conditions at the l
its GA andGB of the elementary cell of Fig. 1. These cond
tions are straightforwardly deduced from Eqs.~1! and~2! as
shown in Eq.~3!, and directly involve the degrees of free
dom ~DOF! at the corresponding boundary

H uGB

fGB
J 5H uGA

fGA
J ej 2pg. ~3!

Note that the spatial distribution of nodes~supporting the
DOF! on GA andGB must be identical to ensure the cohe
ence of Eq.~3!. This relation is then used according to Re
14 to simplify the linear algebraic system obtained after d
cretization and integration of the piezoelectric Lagrang
expression.12–14Equation~3! imposes that the number of in
dependent variables of the problem is reduced. Howeve
the present work, the initial number of DOF is preserved
avoid matrix reorganization, considered here as a sourc
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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time consumption and yielding too many program compli
tions. In this approach, a transformation matrix@Cu# is in-
troduced as

H u,fGA

u,fV

u,fGB

J 5@Cu,f#H v,wGA

v,wV

v,wGB

J
5F I G 0 0

0 I V 0

I Gej 2pg 0 I G

G H v,wGA

v,wV

v,wGB

J , ~4!

whereu,fV are the DOF of the inner meshed domain (GA

andGB excluded!. Equation~4! is then inserted in the stan
dard discrete form of FEA written as follows for a mon
chromatic dependence of mechanical and electrical fie
@time dependence of the form exp(jvt)]:

tFCu* 0

0 Cf*
G FKuu2v2Muu Kuf

Kfu Kff
GFCu 0

0 Cf
G H n

wJ
5

tFCu* 0

0 Cf*
G H F

QJ , ~5!
e-

a

an

c
t i
ec
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whereKuu andMuu are, respectively, the stiffness and ma
matrices of the purely elastic part of the problem,Kuf is the
piezoelectric coupling matrix, andKff represents the purely
dielectric part of the generalized piezoelectric stiffness m
trix K. Superscriptst and* denote, respectively, matrix trans
position and complex conjugation. Equation~5! is solved by
settingvGB andwGB to zero in order to comply with bound
ary condition~3!. In the right-hand side of Eq.~5!, F andQ
are, respectively, relative to nodal mechanical and electr
load. These terms vanish within the meshed domain but
take nonzero values at its bounds, depending on the bo
ary conditions. One should note that in the case of comp
matricesKuu , Kuf , and Kff , the matrix product on the
left-hand side of Eq.~5! yields a general complex matri
with no particular symmetry but a large number of zeros.
a consequence, one can advantageously use a sparse m
resolution algorithm18 to reduce the computation time with
out loss in accuracy.

In the case of 3D computations with two periodic boun
ary conditions~see Fig. 2!, one has to take particular care
the way the corners of the mesh are related to one ano
~see Ref. 14!. In that case, the transformation matrix
written
¦

u,fGA

u,fGC

u,fV

u,fGB

u,fGD

u,fE1

u,fE2

u,fE3

u,fE4

§
5@Cu,f#

¦

v,wGA

v,wGC

v,wV

v,wGB

v,wGD

v,wE1

v,wE2

v,wE3

v,wE4

§
53

I G1

0 I G2

0 0 I V

I G1
ej 2pg1 0 0 I G1

0 I G2
ej 2pg2 0 0 I G2

I E

I E e j 2pg1 I E

0 I E e j 2pg2 0 I E

I E e j 2p~g11g2! 0 0 I E

4 ¦
v,wGA

v,wGC

v,wV

v,wGB

v,wGD

v,wE1

v,wE2

v,wE3

v,wE4

§
, ~6!
ed

ode
id-
on.
the
-
f
-
le-
where g1 and g2 are the two excitation parameters corr
sponding to the two directions of periodicity.

Considering the 2D computation case, inserting Eq.~3!
into the discrete FEA formulation via the transformation m
trix given by Eq.~4! makes the problem dependent onv and
g. Thus, Eq.~5! must be solved for each couple~v,g! to
determine the specific properties of a given structure,
particularly to calculate the harmonic admittanceY(v,g).15

Since the magnitude of the excitationf0 is fixed to 1 V,
Y(v,g) is directly given by the current generated in the a
tive electrode by the vibration of the structure. This curren
simply derived from the nodal charges on the active el
trode using
-

d

-
s
-

Y~v,g!5I ~v,g!5 j v (
n51

Ne

Qn , ~7!

where Ne is the total number of nodes at the consider
electrode. One could also proceed as proposed by Lerch12 by
applying a constant charge excitation on the active electr
and then computing the resulting potential, directly prov
ing the harmonic impedance for a unit charge excitati
This latter approach does not require the computation of
right-hand side of Eq.~5!, but it does require either reorga
nize the stiffness and mass matrices~because the number o
independent DOF is reduced! or to introduce one more trans
formation matrix. The first approach was preferred for imp
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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mentation in our computer software architecture. Using
harmonic admittance as defined in Eq.~7!, one can easily
define the mutual admittances15 of the array by using the
Fourier series property

Yn~v!5E
0

1

Y~v,g!ej 2pgndg. ~8!

Equation~8! describes the influence of one excited cell in t
array ~taken to ben50! on the other cells, yielding, e.g., a
estimate for the level of crosstalk between two adjacent c
or revealing propagation phenomena at the surface of
array along thex1 axis ~Fig. 1!. The integral in Eq.~8! is
evaluated using Gauss quadrature forg defined in the range
@0;0.5#, taking advantage of the symmetry of the harmo
admittance around 0.5. For each frequency point, the c
putation ofYn(v) requires only the evaluation ofY(v,g) at
the integration points, and the computational burden is l
This approach is very efficient for smooth contributions
the harmonic admittance. For sharp peaks, the propo
computation is valid only for a given range of neighbor ce
Since it is very difficult to define an equivalent degree
polynomial for such rapid variations of the harmonic adm
tance, this range cannot be rigorously defined and has t
determined empirically as shown in the next section.

In the case of 2D periodic structures~3D computations!,
two excitation parameters have to be considered which y
the following generalization for the mutual admittances

Ynm~v!5E
0

1E
0

1

Y~v,g1 ,g2!ej 2pg1nej 2pg2mdg1dg2 .

~9!

III. COMPUTATION RESULTS AND ASSESSMENTS

A. Standard one-dimensional acoustic probe

The first case discussed in this section is that of class
1D acoustic probes composed of PZT ridges on a back
with a matching layer, the whole structure being covered
a Mylar layer~as pictured in Fig. 1!. The mesh used for the
analysis is shown in Fig. 3. All computations are perform
using second-order interpolation polynomials. The back
thickness is set to 1 mm and the PZT layer thickness as w

FIG. 2. In-plane definition of an elementary cell in the case of a biperio
structure for 3D computations.
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The backing exhibits large acoustic losses~mechanical
Q51.6!, while the acoustic and dielectric losses of the P
layer, represented by the imaginary part of the material c
stants, are set to 1% of the real part of the material consta
The acoustic impedance of the matching layer is close to
of water, resulting in a layer thickness equal to 250mm, with
acoustic losses set to 10% of the elastic constants. The M
layer is 50mm thick, with acoustic properties equivalent
those of the matching layer. This structure corresponds to
academic problem used only to assess the proposed ana

The computations were first performed assuming no
riodic boundary conditions. Displacements alongx1 at the
GA andGB boundaries are blocked in order to simulate ad
cent cells. Only one phase arrangement can be consider
that case for transducer excitation. It is the synchronous
eration of the infinite array~all cells are excited in phase!,
requiring one to mesh only one cell of the array. The perio
computation is then performed along the same lines, set
the excitation parameterg to zero. The results are compare
in Fig. 4. The perfect agreement between nonperiodic
periodic computations can be observed forg50, demonstrat-
ing that both calculations are equivalent (u1

GA5u1
GB50,

u2
GA5u2

GA).
Another computation was then performed to illustra

how the proposed periodic computation can be used to qu
tatively optimize periodic arrays. The well-known case
undercuts in the backing17 is considered here. Figures 5~a!
and 5~b! display the harmonic charge versusg andv for the

c

FIG. 3. Mesh of one cell of the considered periodic classical acoustic pr
The period is set to 150mm.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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706 J. Appl. Phys., Vol. 93, No. 1, 1 January 2003 Ballandras et al.
array of Fig. 1 without and with undercuts in the backi
~undercut depth set to 200mm!. The harmonic charge is pre
ferred for these plots because it allows a better illustration
the studied phenomena. The influence of the undercut cle
appears at low frequencies~under the first longitudinal reso
nance located at 1.5 MHz!, causing the vanishing of larg

FIG. 4. Comparison between nonperiodic and periodic computations fo
standard 1D acoustic probe of Fig. 3 operating in a vacuum.

FIG. 5. Imaginary part of the harmonic electrical charge vs the excita
parameterg and the angular frequencyv ~a! without undercut and~b! with
a 200mm deep undercut. A spurious contribution to the electrical charg
low frequencies, corresponding to waves propagating at the surface o
backing, is strongly reduced.
Downloaded 05 May 2003 to 134.206.58.122. Redistribution subject to A
f
rly

contributions to the harmonic charge that are due to pro
gation at the surface of the backing. One can numeric
estimate the efficiency of the undercut by computing the
lution of the problem forf50.6 MHz andg50.5 where a
large unwanted contribution to the harmonic charge is fou
This effect is still present in the undercut structure but
displacements alongx1 ~propagation direction! andx3 ~nor-

e

n

t
he

FIG. 6. Definition of the 2-2 connectivity piezocomposite material used
2D computations. PZT and polymer bars are assumed infinite along thx2

axis.

FIG. 7. Harmonic~a! and mutual~b! admittances for the 2-2 piezocomposi
of Fig. 6.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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mal to the backing! are reduced, respectively, by a factor of
and 6 in magnitude when compared to the standard dev

B. 2-2 connectivity piezocomposite material

The case of 2-2 connectivity piezocomposites is n
considered to illustrate the interest of the harmonic and m
tual admittance concepts for the study of cross-talk effe
The geometry of the studied structure is depicted in Fig
Once again, this is an academic problem of an infinite p
odic transducer composed of infinitely long PZT and po
mer bars perfectly glued together.

FIG. 8. Comparison between the mutual admittances of~a! a 9-cell finite
length transducer,~b! a 49-cell finite length transducer, and~c! a periodic
infinite 2-2 piezocomposite transducer. The electrical excitation is applie
cell 0. The mutual admittances of the 49-cell and the infinite devices exh
a perfect agreement, considering the first five neighboring cells.
Downloaded 05 May 2003 to 134.206.58.122. Redistribution subject to A
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The mutual admittances@Eq. ~8!# are computed using the
Gauss integration procedure described in Sec. II. As in
cated previously, due to the sharp variations ofY(v,g) for a
transducer operating in a vacuum, a large number of inte
tion points are required. The harmonic admittance is co
puted for 30 Gauss points withg in the range@0;0.5#. Taking
advantage of the symmetry ofY~v,g! aroundg50.5, this is
equivalent to a numerical integration performed over
points. Figures 7~a! and 7~b! displayY~v,g! and the first 20
mutual admittances; for these the integration results
found to be reliable. Mutual admittances exceeding rank
exhibit sharp nonregular variations alongv caused by the
instability of the numerical integration scheme alongg, re-
sulting in artifacts. This sets a limitation to the propos
approach, the presented results corresponding to moder
sharp resonances~maximum quality factor smaller than th
mechanicalQ of the PZT set to 100 as in the previous se
tion!.

These results have also been assessed by comp
them with nonperiodic computations performed for 9-c
and 49-cell piezocomposite transducers. In both cases,
the central~n50! cell is excited, all others being grounde
For a 1 V excitation, thenth mutual admittance is directly
given by the current flowing between the electrodes of
nth cell. The results are plotted in Figs. 8~a!–8~c! for the
9-cell, the 49-cell, and the periodic structures, respectively
clearly appears that the frequency dependence of the mu
admittances obtained in the three cases is very similar.
periodic and the 49-cell curves are almost indistinguisha
The most obvious differences are found when comparing
9-cell mutual admittances to the two others. First, below
fundamental longitudinal mode of the transducer located
MHz, a couple of small contributions arise, possibly due
structural resonances of the whole device~the length of the
piezocomposite is 1.8 mm!. The number of such low-
frequency contributions increases with the number of c
considered in the computation while their magnitudes
crease. For the 49-cell device as well as for the perio
device, a kind of continuum of modes at the correspond
frequencies can be observed. In the vicinity of the fundam
tal longitudinal mode, almost no differences arise betwe
the three computations. The most representative deviat

to
it

FIG. 9. Different combinations of 2-2 piezocomposite structure conside
for a comparative analysis of their mutual admittances~a! 30% PZT vol.
Fract. ~w560 mm, p5200 mm!, ~b! 30% PZT vol. Fract.~w5100 mm,
p5333mm!, ~c! 50% PZT vol. Fract.,~d! 70% PZT vol. Fract.~w5140mm,
p5200 mm!, and~e! 70% PZT vol. Fract.~w5100 mm, p5140 mm!.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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FIG. 10. ~a!–~e! Mutual admittances for the five configurations of Fig. 9.
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are found at frequencies above 10 MHz at which contri
tions due to lateral modes, Lamb modes, and the third o
tone of the fundamental mode overlap. The mutual adm
tances of the 9-cell device exhibit frequency dependen
that are more difficult to analyze than the two other cas
certainly due to the influence of the boundary conditio
Again, it can be remarked that for the first two neighbors
the excited cell, the three results are very close. As a con
sion for these 2D computations, even moderately long arr
~i.e., larger than ten periods! can be efficiently analyzed us
ing periodic FEA.

The computation of mutual admittance has also b
performed for various combinations of PZT and polym
volumes within the considered cell to check the capability
our approach to identify specific behavior of the differe
corresponding 2-2 piezocomposite structures. Volume fr
tions of PZT equal to 30% and 70% have been impo
assuming either a constant period~200 mm!, or a constant
width of the ridge~100 mm!, the thickness of the structur
remaining fixed to 300mm. Figure 9 shows the considere
Downloaded 05 May 2003 to 134.206.58.122. Redistribution subject to A
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arrangements of 2-2 piezocomposite and the calculation
sults are reported in Fig. 10, compared to the mutual adm
tances of the 50% PZT volume fraction device previou
considered.

In terms of magnitude and modal purity of the mutu
admittance, Fig. 10~a! for which the width/thickness ratio
~w/t! is the smallest~0.2! exhibits the most advantageou
response. As a counterpart, only a small volume of the
contributes to the useful longitudinal vibration, which al
explains the small amount of cross-talk effects related to
mode. However, one can point out a large contribution of
first lateral mode on the first neighbor mutual admittan
For this mode, the vibration mainly takes place within t
polymer. Since Fig. 10~a! exhibits the largest amount o
polymer among all those regarded, it is rather easy to exp
the observed result. For Fig. 10~b!, this mode is found to
strongly contribute to the first neighbor mutual admittanc
Figure 10~b! also exhibits large cross-talk effects in terms
propagation depth along the grating. Figure 10~d! for which
the w/t is close to 0.5 provides the largest fundamental lo
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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709J. Appl. Phys., Vol. 93, No. 1, 1 January 2003 Ballandras et al.
gitudinal vibration, but also a very large amount of cross-t
phenomena, with important contributions of Lamb waveli
modes. Figure 10~e! shows a complicated distribution of mu
tual admittances, with large contributions for even neighb
and smaller responses for odd ones. Furthermore, low-o
Lamb wavelike modes seem to interact with the piston mo
The largest third overtone contributions are also found in t
case, mixed with higher-order modes.

Finally, a tradeoff can be reached with Fig. 10~c!. Even
if lateral mode contributions occur, it is the one which e
hibits the smallest cross-talk phenomena related to the
longitudinal mode. On the other hand, it is clear that prec
criteria have to be defined to select one or the other solut
Whatever these criteria could be, it is shown that differ
configurations of 2-2 piezocomposite yield different mutu
admittance figures which can be actually used to accura
optimize the structure.

C. 1-3 connectivity piezocomposite—three-
dimensional computations

The computation of 2D periodic structures was a
implemented to analyze 1-3 connectivity piezocompos
properties. The first studied piezocomposite exhibits two
riods of 200mm and a thickness of 300mm, the volume
fraction being set to 1/4. In this calculation, the harmo
admittance depends on the angular frequency and on the
propagation parametersg1 and g2. First computations to
validate the approach were performed by settingg2 to zero
and scanningg1 from 0 to 0.5. The different modal contri
butions showing out in the harmonic admittance~see Fig. 11!
have then been identified. The first mode is the first sy
metrical Lamb-type wave clearly exhibiting a frequen
stopband~well identified in literature!. The fundamental lon-
gitudinal mode is then naturally found, and then the fi
lateral mode forg1 smaller than 0.3. The third overtone
also easily identified. The observed dispersion behavio
very close to that of the previous section@compare Fig. 7~a!
with Fig. 11# This result was expected since all cells alongx2

are assumed to vibrate synchronously, an operating princ
very close to that of 2-2 piezocomposite devices. Note t

FIG. 11. Real part of the harmonic admittance of the considered 1-3
nectivity piezocomposite~biperiodic structure! for g250 and g1 varying
from 0 to 0.5.
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inverting g1 and g2 in the calculation scheme yields th
same results since the structure is symmetric~square in-plane
section of the period!.

It can be remarked that the resonant frequency and
magnitude of the fundamental longitudinal mode are b
affected by the value ofg1. The corresponding dependenc
can be rigorously identified using the approach proposed
Ref. 19. Figures 12~a! and 12~b! show the displacemen
fields for two values of the frequency corresponding, resp
tively, to the fundamental longitudinal mode and the fi
lateral mode~consideringg15g250), this latter being due
to Bragg diffraction of transverse waves in the period
structure.20,21

Finally, mutual admittances were computed for a 1-3
ezocomposite structure exhibiting a volume fraction of 0.
two periods of 600mm, and a thickness of 900mm. The
width of the square section PZT bar is 445mm. In that case,
one has to compute many more values of the harmonic

n-

FIG. 12. Displacement fields of the fundamental thickness mode~a! and the
first lateral mode~b! located in Fig. 9 withg15g250. In the case of the
first lateral mode, the polymer and the PZT do not vibrate synchronou
moreover, the polymer exhibits a larger magnitude of vibration than
PZT.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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FIG. 13. Mutual admittance of the first neighbor of the excited cell along thex1 direction, for the considered 1-3 connectivity piezocomposite. Real~a! and
imaginary~b! parts, as well as the magnitude~c! and the phase~d! are shown. The continuum of modes at low frequencies is due to the S0-Lamb-type
of the structure, whose cutoff frequency is approximately 1 MHz.
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mittance to achieve a good accuracy for the Gauss inte
tion scheme. In the present case, the number of Gauss p
alongg1 andg2 was restricted to 13~169 calculation points
for each value ofv! and the number of frequency points
501.

Figure 13 shows the mutual admittance of the fi
neighbor of the excited cell along thex1 axis. At low fre-
quencies, the kind of continuum of modes is due to the c
tribution of the S0-Lamb-type mode whose cutoff frequen
is about 1 MHz. A similar contribution was measured
Certon et al.17 for 1-3 piezocomposite arrays. Finally, th
contributions of the fundamental thickness mode and its th
overtone are easily found at 1.6 MHz and 3.9 MHz, resp
tively.

IV. CONCLUSION

A calculation method for the simulation of period
structures using the finite-element method has been de
oped and implemented to analyze the properties of perio
transducer arrays. The method has been tested for diffe
kinds of transducers~classical stacked transducers, 2-2 a
1-3 connectivity piezocomposite materials!. Particularly, the
extensive use of mutual admittances provides an evalua
of cross-talk effect which could be useful for the design
high-quality transducers for imaging applications and non
structive evaluations. Indeed, the influence of fine change
a given structure~geometry, materials! on the magnitude of
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mutual admittances can be directly evaluated, which can
used to identify the best transducer configuration accord
to the amount of permitted crosstalk.
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