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Abstract
We investigate the polarization of Bloch waves in two-dimensional piezoelectric phononic crystals
and phononic crystal waveguides managed therein. It is found that in addition to the strong
coupling induced for waves polarized in the plane of the periodic structuration, a weaker but
non-negligible coupling of polarization components originates from material anisotropy.
Numerical illustrations are given for an array of air holes in lithium niobate arranged according to a
square lattice. It is observed that when a band mostly polarized in-plane gets close to a band mostly
polarized out-of-plane, a phenomenon of repelling can occur, that in some instances introduces a
local band gap. This interaction is accompanied by a transfer of the polarization state from one
band to the other.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Phononic crystals are periodic structures that can give rise
to complete band gaps (BG) for acoustic waves in fluids or
elastic waves (acoustic phonons) in solids [1, 2], in the very
same way that photonic crystals prohibit the propagation of
optical or electromagnetic waves [3, 4]. The dispersion of the
bands constituting the band structure, the frequency position
and the width of the band gaps are conditioned by the contrast
between material constants of the constituent media on the one
hand, and by the filling fraction, the geometrical shape of the
inclusions and the lattice topology on the other hand. Within
a frequency band gap, a phononic crystal acts as a mirror for
incident waves, as a result of destructive interferences between
waves scattered on the periodic inclusions. Thanks to the
wide operating frequency range of acoustic and elastic waves,
complete band gaps have been demonstrated theoretically and
experimentally at different scales, for bulk waves [2, 5, 6]
and surface waves [7–11], as well as for phononic crystal
slabs [12–14]. Phononic crystals also allow for the obtaining
of confined states or guided waves through the introduction
of point or linear defects [15–18]. Phononic waveguides,
resonators and stubs have been proposed as possible ways

to create filtering and multiplexing structures based on the
coupling of resonance and waveguiding phenomena [19–21].

In the case of acoustic waves in fluids, because of the
single polarization involved (longitudinal), the band structure
in the perfect crystal case and the transmission coefficient
in the waveguide case are usually considered sufficient to
characterize a phononic crystal. But for elastic waves
propagating in a solid, both transverse and longitudinal
polarizations exist and are possibly coupled owing to the
periodic structuration. Taking the polarization state into
account in the analysis of band diagrams is hence compulsory
to show a complete picture of elastic wave propagation. This
has, for example, been shown by a previous study dedicated
to polarization effects in a perfect 2D phononic crystal made
of air inclusions in an epoxy matrix [22]. This work
highlighted the influence of the filling fraction on the coupling
between in-plane transverse and longitudinal polarizations,
where in-plane refers to the plane normal to the inclusion
axis. The in-plane polarization components were found to be
more coupled for higher filling fractions, and a continuous
variation of the polarization when the wavevector sweeps
the first Brillouin zone was reported. This continuity of the
elastic displacement fields along band structures has also been
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investigated in order to study the repulsion level between
different branches in the band diagram for both one- [23] or
two- [24] dimensional phononic crystals. We are not aware
of similar works for phononic crystals involving anisotropic
materials or phononic waveguides, although the dependence
of the guided waves dispersion on a change in the central
inclusion radius or in the waveguide width has been reported
recently [25, 26]. With the configurations proposed in these
works, some branches initially located outside the band gap
in the case of the perfect phononic crystal can enter or exit
the band gap when the dimensions of the defect vary. The
displacement field of some confined modes was reported as
well and it was observed that following the same band as
the Bloch wavevector varies in the first Brillouin zone, the
polarization of the displacement field can change partially or
totally. A detailed investigation of this phenomenon, however,
remains to be performed.

In this paper, we first investigate the consequences
of material anisotropy on the coupling of polarization
components in two-dimensional phononic crystals. Of
particular relevance is the combination of the effects of material
anisotropy and of the periodic structuration. It is well known
that a two-dimensional periodic structuration introduces a
coupling for the in-plane polarization components, while
the out-of-plane component remains decoupled. We here
show that material anisotropy can result in the coupling of
all polarization components. For illustration purposes, we
numerically investigate the evolution of the polarization of
Bloch waves in a two-dimensional piezoelectric phononic
crystal composed of a square-lattice array of holes in lithium
niobate (LiNbO3). As a piezoelectric material, LiNbO3 is
anisotropic for elastic wave propagation, so that in general the
two shear and the longitudinal components of the polarization
are not decoupled. The coupling induced by the anisotropy of
LiNbO3 is rather weak compared with the coupling induced
by the periodic structuration, but will be shown not to be
negligible. In our analysis, we first concentrate on the perfectly
periodic phononic crystal. The plane wave expansion (PWE)
method combined with an energy balance criterion is used
to compute band structures displaying additional information
related to the weighting of each polarization. We underline
cases where polarizations are exchanged between interacting
bands or conversely when this exchange does not happen upon
band crossing. The study is then extended to the case of a
phononic waveguide obtained by inserting a line defect in the
initial phononic crystal thanks to the super-cell technique.

2. Polarization coupling

In this section, we investigate the influence of the anisotropy on
the coupling of polarization components in phononic crystals.
The considered geometry and the definition of axes and
Brillouin zone are given in figure 1. The following analysis
as well as the computation of band structures and modal
distributions in the next sections are based on the PWE method.
The PWE method is based on a direct application of the Bloch–
Floquet theorem to the representation of Bloch waves as the
product of a periodic function, given by a discrete sum over

Figure 1. (a) 2D piezoelectric phononic crystal consisting of a
two-dimensional square-lattice array of circular cylindrical holes in
lithium niobate. (b) Corresponding first Brillouin zone.

Fourier harmonics in the reciprocal-lattice space, with a time-
harmonic exponential function with frequency ω and Bloch
wave vector k. For instance, the displacements in the x

direction read

ux(r) =
(

N∑
n=1

Uxn exp(−ıGnr) exp(−ık · r)

)
, (1)

where Gn are the reciprocal-lattice vectors and ı2 = −1.
Similar expressions hold for uy and uz. We specifically use
the formulation by Wilm et al for bulk and plate waves in
piezoelectric media [27], which was later extended to surface
waves in anisotropic and piezoelectric media [9, 10]. The
representation of hollow inclusions follows the procedure
exposed in [10]. The secular equation ((5) of [10]),

ω2R̃Ũ =

 ∑

i,j=1,3

�iÃij�j


 Ũ , (2)

defines an eigenvalue problem for the frequency as a function
of the wave vector and is used to obtain band structures. In
this expression, Ũ is a vector gathering the Fourier coefficients
of the three displacements and the electric potential, and the
matrices �i , Ãij and R̃ contain 4N × 4N Fourier coefficients.
The detailed expressions of the different matrices will be useful
to investigate the incidence of anisotropy on Bloch waves and
their polarization. These matrices read

Ãij =




Aij0 AijG1−G2 . . . AijG1−GN

AijG2−G1 Aij0 . . . AijG2−GN

...
...

. . .
...

AijGN −G1 AijGN −G2 . . . Aij0


 , (3)

�i =




(ki + G1
i )Id 0

(ki + G2
i )Id

. . .

0 (ki + GN
i )Id


 , (4)

R̃ =




ρ0Ĩ ρG1−G2 Ĩ . . . ρG1−GN Ĩ

ρG2−G1 Ĩ ρ0Ĩ . . . ρG2−GN Ĩ
...

...
. . .

...

ρGN −G1 Ĩ ρGN −G2 Ĩ . . . ρ0Ĩ


 , (5)
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Table 1. Shapes of the Aij matrices in the case of materials with isotropic, cubic and trigonal 3m crystalline symmetry. Orientation along
the principal crystallographic axes is assumed. Zero elements are indicated by dots (.) while non-zero values are indicated by circled
crosses (⊗).

Symmetry A11G or A22G A12G or A21G ÃGm−Gn

Isotropic or cubic (e.g. silicon)




⊗ . . .
. ⊗ . .
. . ⊗ .
. . . ⊗







. ⊗ . .
⊗ . . .
. . . .
. . . .







⊗ ⊗ . .
⊗ ⊗ . .
. . ⊗ .
. . . ⊗




Trigonal 3m (e.g. lithium niobate)




⊗ . . .
. ⊗ ⊗ ⊗
. ⊗ ⊗ ⊗
. ⊗ ⊗ ⊗







. ⊗ ⊗ ⊗
⊗ . . .
⊗ . . .
⊗ . . .







⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗




with AilG(j, k) = cijklG, AilG(j, 4) = elijG, AilG(4, k) =
eiklG, AilG(4, 4) = −εilG. Id is the 4 × 4 identity matrix and
Ĩ = Id but for Ĩ (4, 4) = 0. cijkl , eijk and εij are the elastic,
piezoelectric and dielectric tensors, respectively. The �i and R̃

matrices are each formed of N2 4×4 diagonal blocks. Material
anisotropy enters the Ãij matrices only, and the structure and
symmetries of these matrices are directly dependent on those
of the material tensors cijkl , eijk and εij . In turn, the influence
of anisotropy in the secular equation (2) is contained in the
matrix

Ã =
∑

i,j=1,3

�iÃij�j (6)

appearing in the right-hand side. Ã retains the block structure
of the Ãij matrices. More precisely, the (m, n)th sub-block
reads

ÃGm−Gn =
∑

i,j=1,3

(ki + Gm
i )(kj + Gn

j )AijGm−Gn . (7)

The above expressions can be further detailed for a two-
dimensional phononic crystal. In this case, the summation
i, j = 1, 2 and using the contracted notation for tensors we
arrive at

A11G =




c11G c16G c15G e11G

c61G c66G c65G e16G

c51G c56G c55G e15G

e11G e16G e15G −ε11G


 ,

A12G =




c16G c12G c14G e21G

c66G c62G c64G e26G

c56G c52G c54G e25G

e16G e12G e14G −ε12G


 ,

A21G =




c61G c66G c65G e16G

c21G c26G c25G e12G

c41G c46G c45G e14G

e21G e26G e25G −ε21G


 ,

A22G =




c66G c62G c64G e26G

c26G c22G c24G e22G

c46G c42G c44G e24G

e26G e22G e24G −ε22G


 .

(8)

In the absence of any structuration, i.e. for a homogeneous
material, the summations on the reciprocal-lattice vectors
would be limited to G = 0, and the matrix Ã would be

formally equivalent to the Christoffel tensor [28]. In this case,
propagation in the x direction would only involve the A1 1 0

matrix (respectively A2 2 0 for propagation in the y direction).
The periodicity of the phononic crystal is manifested by non-
zero Gm and Gn components for (m, n) �= 0 and causes
a mixing of matrix elements in equation (7), whatever the
propagation direction k.

In the case of general anisotropic media, inspection of
the block matrices in equation (8) reveals which polarization
components are coupled. Such an analysis is straightforward
but should be conducted for every crystallographic symmetry
class and every material orientation considered. As an
example, we have considered two cases in table 1. In the
case of materials with isotropic or cubic crystalline symmetry
(e.g. silicon), the periodic structuration results in non-zero
off-diagonal terms coupling displacements ux and uy , but
the out-of-plane displacement uz and the electric potential φ

are uncoupled. This directly explains the coupling between
in-plane polarization components and the decoupling of the
out-of-plane polarization component in isotropic 2D phononic
crystals. The case of materials with trigonal 3m symmetry (e.g.
lithium niobate) is different. In the homogeneous material,
propagation along the x and y directions occurs according
either to a non-piezoelectrically coupled wave (decoupled ux

polarization) or to piezoelectrically coupled waves (coupled
uy , uz and φ polarization). With the additional consideration
of a periodic structuration in the (x, y) plane, all polarization
components get coupled. This analysis, of course, is based
only on the nullity or not of matrix elements, and the strength of
the coupling induced by the periodic structuration and material
anisotropy depends quantitatively on the actual magnitude of
the matrix elements. Numerical illustrations are given in the
subsequent sections in the case of lithium niobate.

3. Two-dimensional piezoelectric phononic crystal

We consider in the following a two-dimensional piezoelectric
phononic crystal made of a square-lattice array of circular
cylindrical holes in LiNbO3. The crystallographic orientation
of LiNbO3 is chosen to be the Z-cut, so that the Z

crystallographic axis is parallel to the z-axis of the reference
frame of figure 1(a). The filling fraction is 64%. Theoretical
and experimental properties of such a phononic crystal have
been investigated before, and the existence of a complete band

3
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gap for both bulk and surface waves has been demonstrated
[10, 11, 29]. Here we further consider the evolution of the
polarization of Bloch waves.

The two-dimensional Fourier expansions are truncated
to the 36 first harmonics in this section, as a result of a
compromise between convergence and computation time, but
also to obtain band structures that are directly comparable to
those obtained for waveguides with the super-cell technique
in the next section. With this choice, convergence in terms
of frequencies is within a few per cent of the high number of
harmonics limit.

In order to avoid possible confusions, we use throughout
this paper the displacement field components ux , uy and
uz to represent polarizations. In this way, we avoid
using the terminology of longitudinal, horizontal and vertical
shear polarizations, which are dependent on the direction of
propagation. In the band structures, polarization is represented
by three positive numbers summing to unity. For instance, the
amount of polarization along the x direction is given by

p2
x =

∫ |ux |2dr∫
(|ux |2 + |uy |2 + |uz|2) dr

, (9)

with the integral taken over the unit-cell. Similar expressions
hold for the amounts of polarization p2

y and p2
z measured along

the y- and the z-axes, respectively.
Figure 2 displays the band structure giving the dispersion

relation for elastic waves propagating in the phononic crystal
of figure 1(a). The structure shows a complete band gap
with a 33% fractional bandwidth. The three band structures
actually display the same ω(k) dispersion relations, but with
the additional information of the amounts of polarization p2

x ,
p2

y and p2
z in figures 2(a), (b) and (c), respectively.

It can be observed in figure 2 that the bands do not
in general possess a pure polarization, except for some
portions of them. The coupling of the in-plane polarization
components (ux and uy), however, appears much stronger than
the coupling with the out-of-plane component (uz), especially
above the complete band gap. This observation is fully
consistent with the results of the previous section. If it
were not for the anisotropy of LiNbO3, the two-dimensional
periodic structuration would introduce a strong coupling of
the in-plane polarization components, but the out-of-plane
component would remain completely decoupled. The coupling
between in-plane polarization components is especially strong
in figure 2 for propagation directions that encompass the M
point of the first Brillouin zone. The comparatively weaker
coupling of all three polarization components is caused by
material anisotropy.

As a general rule, it can be observed that the polarization
varies continuously as the Bloch wave vector sweeps the
first Brillouin zone. There are, however, intriguing points
in the band structure where bands cross without interacting
or conversely interact and repel each other. Points at which
repelling between bands occurs have been labelled A to G
in figure 2. Figure 3 displays closer views at these seven
points, with the colour indicating the p2

z component of the
polarization. Each couple of repelling bands is composed

Figure 2. Band structure of the phononic crystal depicted in
figure 1(a). The complete band gap is indicated by the greyed
region. The three band structures depict the same dispersion
relations but the colouring of the bands shows the amount of
polarization along (a) the x-axis, (b) the y-axis and (c) the z-axis.
Points A, B, C, D, E, F and G mark the (k, ω) positions of the first
seven intersections of repelling branches.

of a mostly in-plane polarized band and of a mostly out-
of-plane polarized band, which leads us to the conclusion
that repelling occurs as a result of the coupling provided by
the anisotropy of LiNbO3. It can be observed that when
bands repel, they exchange their polarization state, so that
the polarization remains a continuous function of the wave
vector k.

Two different cases are further observed. Repelling at
points C, D, F and G introduces a local band gap, while,
conversely, repelling at points A, B and E does not introduce
any. We observe that the occurrence of a local band gap

4
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Figure 3. Enlarged dispersion relations in figure 2(c) in the vicinity of repelling bands near (a) point A, (b) point B, (c) point C and D,
(d) point E, (e) point F and ( f ) point G.

is conditioned by the two repelling bands being either on
opposite sides of a horizontal line passing at the repelling point
(presence of a local BG) or on the same side (absence of a
local BG).

Figure 4 illustrates in more detail how the polarization is
transferred between the two repelling bands at point C. At the
left of point C, the upper band is mostly polarized along z,
while the lower band is mostly polarized in-plane and rather
along the y-axis. After repelling, the respective polarizations
have been exchanged from out-of-plane to in-plane, and vice
versa.

4. Piezoelectric phononic crystal waveguide

In this section, we consider a phononic crystal waveguide
managed by removing a row of holes from the phononic crystal
along the x direction and investigate how the polarization
and repelling properties obtained in the previous section for
the perfectly periodic phononic crystal are modified. The
PWE method can be used to obtain the dispersion of guided
waves for frequencies that fall within the complete band
gap, using the super-cell technique [25, 26]. In practice,
the considered unit-cell shown in figure 5 is made 7 times
longer along the y direction, as compared with the unit-
cell in figure 2, and thus includes three holes on both sides

Figure 4. Spatial distribution of the polarization components ux , uy

and uz of the displacement field for points before and after the
repulsion in point C.

of the central guiding section. The holes have the same
filling fraction as in the previous section and the number of
Fourier harmonics has been increased by a factor of 6 in the
y direction to achieve convergence conditions similar to those
obtained in the previous section. Because of periodicity in
the computations, six holes separate neighbouring waveguides.

5
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Figure 5. Phononic crystal waveguide created by removing a row of
holes from the phononic crystal along the x direction. The framed
box shows the unit-cell used for super-cell computations.

We have checked that this separation is actually sufficient to
isolate the periodically repeated waveguides by computing the
band structure along the �Y direction of the first Brillouin
zone and verifying that only flat bands are obtained within the
complete band gap (if we had obtained dispersion then this
would have been an indication of coupling between adjacent
waveguides).

Figure 6 displays the dispersion relations of Bloch waves
guided by the structure in figure 5 and propagating along
the x direction for frequencies within the complete phononic
band gap. As for the band structure of the perfectly periodic
phononic crystal depicted in figure 2, the band structure for
guided Bloch waves is repeated three times with the additional
information of the amounts of polarization p2

x , p2
y , and p2

z

in figures 6(a), (b) and (c), respectively. Eight different
bands are apparent and are numbered sequentially. Bands
1 and 4 are mostly polarized in-plane and repel midways
between the � and the X points. Bands 2 and 6 are also
mostly polarized in-plane. For all these bands, the distribution
between in-plane components px and py does not remain
constant as the wavevector varies from the � to the X points.
Band 3 is purely polarized out-of-plane (vertical shear wave),
while band 8 is mostly polarized out-of-plane. The cases of
bands 5 and 7 are more intriguing, since these two bands are,
respectively, mostly polarized in-plane and out-of-plane before
points I and J where they repel, create a local band gap and
abruptly exchange their polarization state. The mechanism for
the coupling between these two bands is made possible thanks
to the anisotropy of LiNbO3, similarly to what was discussed
in section 2.

Figure 7 illustrates how polarization transfer occurs at the
repelling of bands 5 and 7. We have chosen to show the
modulus of the real part of the displacements ux . It can be
observed that the distribution of ux at point K on band 7 is
transferred without almost any alteration to point J on band
5. At the wavevector for which the bands are the closest, i.e.
at points I and L, the modal distributions are very similar. In

Figure 6. Band structure along the �X direction for the phononic
waveguide displayed in figure 5, showing the dispersion relation for
guided Bloch waves. The band structure is repeated three times with
the information of the amount of polarization (a) p2

x , (b) p2
y and

(c) p2
z .

the absence of anisotropy, the repelling point would have been
replaced by a crossing of the two bands, and points H and M
would have been on the same band (similarly, points J and K
would have been on the same band).

5. Conclusion

In summary, we have investigated the polarization of Bloch
waves in a two-dimensional piezoelectric phononic crystal
and a phononic crystal waveguide managed inside it. By
examining the structure of the matrices involved in the secular
equation and by studying band structures, it was found that in
addition to the strong coupling induced for waves polarized
in the plane of the periodic structuration, a weaker but non-
negligible coupling of all polarization components originates
from material anisotropy. As a consequence, when a band
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Figure 7. Spatial distribution of the modulus of the real part of the
displacements ux at the repelling of bands 5 and 7, shown for the six
points H to M indicated in figure 6. Points H, I and J are placed
along band 5 before, at and after the repelling point, respectively.
Points K, L and M are similarly placed along band 7.

mostly polarized in-plane gets close to a band mostly polarized
out-of-plane, a phenomenon of repelling can occur between
them that in some instances introduces a local band gap. This
interaction is accompanied by a transfer of the polarization
state from one band to the other. The findings in this
paper illustrate that when anisotropic materials are involved,
dispersion relations for Bloch waves in phononic crystals
in the form ω(k) do not give a complete picture of wave
propagation and must be supplemented with the dependence
of the polarization on the wavevector.
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