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Abstract—Optoelectronic oscillators (OEOs) are microwave
photonics systems intended to generate ultrastable radio-frequency
signals with unprecedented phase noise performance for aerospace
and communication engineering applications. They had originally
been introduced in a configuration where the energy storage ele-
ment was a fiber delay line. However, recent research in view of
size and power consumption optimization has led to novel config-
urations where this fiber delay line is replaced by an ultrahigh Q
whispering-gallery mode (WGM) resonator. So far, there has been
no theoretical framework enabling to understand the dynamical
behavior of these new architectures of OEOs. In this paper, we
propose for the first time a deterministic time-domain model to in-
vestigate the dynamics of these OEOs based on WGM resonators.
This model enables us to perform the stability analysis of the mi-
crowave oscillations, and to determine rigorously their range of
stability as the loop gain is varied. After building the model, we
perform a full stability analysis of the various stationary solutions
for the microwave output. We then perform extensive numerical
simulations, which are in complete agreement with the stability
analysis. The theoretical analysis is also found to be in excellent
agreement with our experimental measurements.

Index Terms—Microwave generation, nonlinear oscillators,
optoelectronic devices.

I. INTRODUCTION

T
HE optoelectronic oscillator (OEO) is nowadays consid-

ered as one of the most promising ultrastable microwave

generator for applications in time–frequency metrology, fre-

quency synthesis, detection, and navigation systems [1]. The

first architecture of OEO, proposed by Yao and Maleki [2]–[4],

performed energy storage in the feedback loop by using a few

kilometer-long fiber-delay line instead of a high-finesse radio-

frequency (RF) filter. The idea to store laser light energy instead

of microwave energy was a conceptual breakthrough which pro-

vided a technological pathway toward improved stability for RF
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signal generators. Another noteworthy feature of OEOs is their

nearly absolute frequency versatility, since the microwave can

be arbitrarily set at any frequency belonging to the band 0.1–100
GHz. The upper limit of this frequency band is in fact imposed

by currently available optoelectronics components, and nothing

theoretically prevents OEOs to generate millimeter waves as

well.

Despite their excellent stability performances, the original

fiber-based OEOs unfortunately have the disadvantage to be

bulky because of the temperature-stabilized box containing the

optical fiber delay line. Effectively, these fiber-based OEOs are

not very transportable, and their weight might affect negatively

the payload of spacecrafts. Their size (few dm3 ) also raises prob-

lems related to temperature stabilization, which becomes overly

energy-greedy in this case. In addition, despite active stabiliza-

tion, the long fiber delay line also induces an unavoidable phase

drift that deteriorates the long-term stability of the oscillator.

The ring-cavity modes induced by the fiber delay line are also

arising as very strong (even though narrow) parasite peaks close

to the carrier in the phase noise spectrum. These spurious peaks

are indeed very detrimental in most applications.

In order to improve the features of this oscillator, many novel

architectures have been proposed in recent years. Some of them

involve multiple loops in order to suppress the spurious peaks

[5], [6]. Others lock the oscillator to atomic resonances [7], or

enhance the functionalities of the optical branch to improve the

phase noise figure [8], the tunability of the oscillator [9], or to

mode-lock the optical modes [10], [11] for ultralow jitter pulse

generation.

However, one of the most interesting architecture to over-

come the shortcomings of fiber-based OEOs is undoubtedly

the configuration which replaces the fiber delay-line by an ul-

trahigh Q WGM resonator (see, e.g., [12]–[15]). Whispering

gallery mode (WGM) resonators are low-loss dielectric disks

or rings that perform optical energy storage through trapping

photons by total internal reflection [16], [17]. The optical Q
factor of these resonators can be defined asQ = ω0/∆ω, where
ω0 is the central angular frequency of the mode of interest and

∆ω is the corresponding linewidth. When the resonators are

almost perfectly shaped (with subnanometer surface roughness)

with an ultralow-loss bulk material (fused silica, calcium, or

magnesium fluoride crystals, etc.), they can achieve a quality

factor that is typically above 108 at 1550 nm; they can even

exceptionally reach record values higher than 1011 [18]. The

linewidth∆ω = ω0/Q of these WGMs is typically of the order
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of 100 kHz for Q ∼ 109 at 1550 nm. These linewidths are at

least two orders of magnitude narrower than typical RF filters.

Alternatively, the optical storage properties of WGM resonators

can also be understood in terms of photon lifetime τph = Q/ω0 ,

which is of the order of 1 µs for Q ∼ 109 at 1550 nm.

The modal structure of these resonators is such that their

eigenmodes are grouped within families where WGMs are

nearly equidistant when dispersion is neglected. For WGMs be-

longing to the same family, the intermodal frequency (which is

sometimes referred to as free spectral range, or FSR) is a free pa-

rameter that depends on the resonator’s principal radius. It may

vary fromGHz (millimeter-size disks) to THz (micrometer-size)

frequencies. Therefore, in the case of OEOs based onWGM res-

onators, we can obtain a microwave oscillation by extracting the

intermodal frequency of an optically pumped WGM resonator,

while the energy storage would be performed by trapping pho-

tons in the long-lifetime WGM cavity. This architecture solves

almost all the problems raised by fiber-based OEOs, and yields

an oscillator that is versatile, compact, energy efficient, and free

from parasite spurious peaks (see, e.g., [19]). Most importantly,

it is expected that theseWGM-based architectures would enable

us to downsize the OEO from a shoe box (fiber-based OEO) to a

notebook (WGM-based OEO), and ultimately, to a smartphone

(integrated WGM-based OEO), without deteriorating the phase

noise performance in the most favorable case.

Even though it appears clearly that WGM-based OEOs will

play an increasingly important role in microwave photonics,

there is currently no dynamical framework to study their dynam-

ics. This lack of analytical insight into the dynamical properties

of this oscillator does not enable us to optimize its properties. In

particular, it is impossible to know under which conditions the

oscillator is merely stable, and it is worth reminding that this

stability problem is far from being trivial.

Our aim in this paper is, therefore, to propose a deterministic

model to understand and analyze the time-domain dynamics of

WGM-based OEOs. Using this model, we will study the stabil-

ity of the various solutions, and perform numerical simulations

to confirm the stability analysis study. We have also built a new

architecture of WGM-based OEO, and performed experimen-

tal measurements to check the validity of the model. Both the

theoretical and experimental studies agree with excellent preci-

sion, thereby confirming the validity of the nonlinear dynamics

framework of analysis.

This paper is organized as follows. The next section is devoted

to the description of the experimental system under study, which

is an architecture of WGM-based OEO with amplitude modula-

tion and add-drop coupling. In Section III, we present the main

lines of our theoretical approach forOEOs,which is based on the

nonlinear dynamics of the slowly varying microwave envelope,

while Section IV is focused on the construction of the theoret-

ical model for this WGM-based OEO. Then, we determine the

stationary states of the oscillator in Section V, while their sta-

bility is investigated in Sections VI and VII. Hence, we perform

numerical simulations that are compared to experimental mea-

surements in Section VIII. The last section concludes this paper

with a resume of our work and perspectives of future research.

II. EXPERIMENTAL SYSTEM

TheWGM-based OEO under study is displayed in Fig. 1. The

various elements of this single-loop architecture are as follows.

1) A continuous-wave (CW) distributed feedback (DFB)

semiconductor laser of optical power PL and whose cen-

tral wavelength is λL = 1552.2 nm, corresponding to an

angular frequency ωL = 2πc/λL , where c is the velocity
of light in vacuum.

2) An erbium-doped fiber amplifier (EDFA) delivering a

maximal optical power of 30 dBm, and of optical gain
Go when driven by the input laser.

3) A wideband integrated optics LiNbO3 Mach–Zehnder

(MZ) intensity modulator characterized by the half-wave

voltages VπD C
= 4 V and VπR F

= 4.7 V.

4) A polarization controller to tune the polarization at the

input of the MZ intensity modulator and the WGM

resonator.

5) A crystalline calcium fluoride (CaF2) WGM resonator

coupled in the add-drop configuration. The intrinsic, ex-

citation, and dropQ factors are, respectively,Qi ,Qe , and
Qd . They, respectively, correspond to photon lifetimes

Qi,e,d/ωL = τi,e,d/2, where ωL is the angular frequency

of the laser while the τ parameters are the laser field
decay times. The internal quality factor Qi is fixed and

equal to 4 × 108 , while the coupling quality factors Qe

and Qd can be varied by changing the position of the

coupling tapered fibers relatively to the resonator; in all

case, these coupling Q-factors are of the order of 108 .

The WGM disk has a refractive index equal to ng = 1.43

and a principal radius a = 3.2 mm. In consequence, its
free spectral range is a microwave frequency equal to

ΩM = c/ang = 2π × 10.4 GHz.
6) A fast photodiode with a conversion factor S = 50 Ω ×
0.75 A/W = 37.5 V/W, and bandwidth 0–12 GHz.

7) A narrowband microwave RF filter of central frequency at

10.5 GHz and a bandwidth of 1 GHz, intended to reject
the RF noise outside the frequency band of interest.

8) Cascaded microwave amplifiers with overall gain Ge are

used to close the loop and drive the intensity modulator.

The principle of operation of thisWGM-based OEO is, there-

fore, the following: noise in the microwave branch of the loop

modulates a laser light beam, and generates a broadband optical

spectrumat the output of theMZmodulator. This broadband, ini-

tially noisy optical spectrum, is narrowly filtered by the WGM

resonator. At the output, the optical spectrum is now a set of

equidistant spectral lines, separated by the FSR of the resonator

(that is, ≃10 GHz). The photodiode detects the various beating
frequencies kΩM (k being an integer), but because of its limited
bandwidth, it filters them out except the fundamental frequency

ΩM and the dc component of the field. The RF filter rejects

this dc component. Then, the microwave signal at ΩM is finally

amplified and sent as a driving signal to the MZ in order to close

the feedback loop and the same cycle is started again.

It is known from oscillator engineering theory that the oscil-

lation might be sustained when the Barkhausen conditions are

fulfilled, that is, when 1) the loop gain overcomes the loop losses
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Fig. 1. Experimental setup. EDFA: erbium-doped fiber amplifier; ESA: electrical spectrum analyzer; OSA: optical spectrum analyzer. The optical path is in thin
red, while the electric path is in thick black. Inserts show the spectra of the optical fields E(t), F(t), and G(t) at the input, interior, and output of the WGM
resonator, respectively. The spectral lines are separated by the frequency ΩM which corresponds to the FSR of the resonator. The “through” port of the coupling
fibers is used to monitor the optical spectra with the OSA, in both the transient and stationary regimes. In the electric branch, a fast oscilloscope enables us to
resolve the temporal dynamics of the microwave V (t), whose complex envelope is V(t) (or A(t) in the dimensionless form). An ESA also enables us to monitor
the corresponding RF spectrum. In the open-loop configuration (no oscillations), the “through” port is also used to perform the cavity-ring down measurement
using an oscilloscope, thereby enabling the determination of the intrinsic and in-coupling quality factors. An optical attenuator (nor represented) has been inserted
between the EDFA and the MZ in order to control the incoming optical power.

and 2) the round-trip phase of the microwave signal is null mod-

ulo 2π. However, the Barkhausen theory cannot describe what
might occur above threshold (amplitude of the oscillations, mul-

tistability, hysteresis, higher order bifurcations, chaos, etc.), nor

does it enable the stability study of the oscillating solutions. The

purpose of the nonlinear dynamics approach is to shed the light

on all these blind spots, as it provides a complete understanding

of the oscillator behavior below and above threshold. We will

explain in the next section how this nonlinear dynamics is used

in the context of OEOs in general, and WGM-based OEOs in

particular.

III. MODELING OEOS: A MICROWAVE ENVELOPE APPROACH

A microwave oscillator whose output angular frequency is

around Ω0 is always expected to have an output of the form

V (t) = A(t) cos[Ω0t + ψ(t)] (1)

where A(t) and ψ(t) are, respectively, the amplitude and the
phase of the microwave. In the case where A and ψ are con-
stant, themicrowave outputV (t) is perfectly sinusoidal. Themi-
crowave is still sinusoidal as well if ψ = ψ0 + σt, even though
the oscillation frequency is shifted to Ω0 + σ. In the general
case, both A and ψ will be time dependent, but their time varia-
tionwill be significantly slower than the period of the oscillation.

More concretely, A(t) and ψ(t) will vary at a slow time scale
comparable to the inverse RF bandwidth 1/∆Ω of the oscillation
loop, while the full microwave V (t)will vary at a fast time scale
of 1/Ω0 . Therefore, the slow and fast dynamics are split by a

factorQRF = Ω0/∆Ω corresponding to the RF quality factor of
the oscillator. This is whyA(t) andψ(t) are referred to as slowly

varying amplitude and slowly varying phase, respectively.

In general, the only variables of interest areA and ψ sinceΩ0

is known. Equation (1) can be rewritten under the useful form

V (t) =
1

2
V(t)eiΩ0 t +

1

2
V∗(t)e−iΩ0 t (2)

where V(t) = A(t)eiψ (t) , and the star denotes the complex con-

jugation. Here, the complex-valued variable V(t) synthetically
gathers all the information about the amplitude and the phase of

the microwave: it is referred to as the complex slowly varying

envelope of the microwave. Hence, it is the idoneous variable

to investigate the dynamics of the RF output of a microwave

oscillator. It is interesting to note that complex slowly varying

envelopes are routinely used in optics and laser theory, where

the nominal frequencies (from the lasers, optical cavities, etc.)

are generally known, while the optical amplitudes and phases

are the variables of interest. It is also worth noting that the com-

plex envelope takes into account eventual frequency detunings

σ from the nominal frequency Ω0 through ψ(t).
The microwave envelope approach has already been used

with great success in fiber-based OEOs. In fact, fiber-based

OEOs belong to the large family of electro-optic systems with

delayed feedback, which can be described by Ikeda-like delay-

differential equations where the main variable is the real-valued

voltage at the input of the modulator (see [20]). In the particu-

lar case of fiber-based OEOs, the narrowband filtering around

the frequency Ω0 of interest enables us to rewrite this voltage

under the form of (2). A nonlinear delay-differential equation

ruling the dynamics of the complex microwave envelope had,

therefore, been obtained, thereby enabling to demonstrate many

fundamental results. Just to name a few, this nonlinear dynam-

ics approach enables us to prove that fiber-based OEOs can

turn unstable if the feedback gain exceeds a precise bifurcation

value [21], [22]. The same approach also enabled us to show

that under certain conditions, the abrupt switch-on behavior of

the fiber-based OEOs leads to robust multimode oscillations

instead of an ultrastable single-tone microwave [23]. The time-

domain deterministic model was also an essential prerequisite

that enabled us to perform a phase noise analysis based on

stochastic differential equations (or Langevin equations) and

which enabled us to predict phase noise characteristics with re-

markable precision [24], [25]. The same formalism also enabled
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us to analyze more complex OEO architectures, like dual-loop

OEOs [26], or hybrid configurations whose outputs are an ul-

trastable microwave in the RF domain and an ultralow jitter

picosecond pulse train in the optical domain [27].

We show in the next section that a complex envelope formal-

ism can be developed as well for WGM-based OEOs.

IV. MODEL

The dynamics of this system is essentially defined by two

variables. The first variable is the laser electric field E(t) at
the input of the resonator and the second variable is the input

microwave voltage V (t) of the integrated modulator.
Instead of working directly with the real-valued E(t) and

V (t), we use their complex slowly varying amplitudes E(t) =
|E(t)|eiϕ(t) and V(t) = |V(t)|eiψ (t) defined through

E(t) =
1

2
E(t)eiωL t +

1

2
E∗(t)e−iωL t

V (t) =
1

2
V(t)eiΩM t +

1

2
V∗(t)e−iΩM t (3)

where ωL and ΩM are the angular frequencies associated with

the 1550 nm infrared laser beam, and with the 10 GHz mi-

crowave signal, respectively.

The slowly varying amplitude of the optical beam at the in-

put of the MZmodulator simply reads Ecw =
√

P0 , where P0 =
GoPL is the optical power at the output of the EDFA.This pump-

ing field sets the optical phase reference, and as a consequence is

real (its phase is null). This beam is amplitude-modulated with

a driving RF signal V (t) = |V(t)| cos[ΩM t + ψ(t)], so that the
slowly varying amplitude of the optical field at the input of the

optical fiber is

E(t) = Ecw cos

{

πV

2VπR F

+
πVB (t)

2VπD C

}

=
√

P0 cos

{

π|V(t)|
2VπR F

cos[ΩM t + ψ(t)] +
πVB

2VπD C

}

. (4)

The Jacobi–Anger expansion gives

eiz cos α =

+∞
∑

n=−∞
inJn (z)einα (5)

where Jn is the nth-order Bessel function of the first kind.
Therefore, we have

E(t) =
√

P0

+∞
∑

n=−∞
En (t)einΩM t (6)

where the dimensionless modal fields are

En (t) = ǫn (φ) Jn

[

π|V(t)|
2VπR F

]

einψ (t) (7)

with

ǫn (φ) =
1

2
[eiφ + (−1)ne−iφ ]in

=

{

(−1)
n
2 cos φ, if n is even

(−1)
n + 1

2 sinφ, if n is odd.
(8)

The parameter

φ =
πVB

2VπD C

(9)

is the offset phase due to the bias voltage of the in-

tegrated MZ modulator. The intracavity field F(t) inside
the resonator can also be spectrally decomposed as F(t) =
∑+∞

n=−∞ Fn (t)einΩM t . According to the Haus formalism [28],

the dimensionless components Fn obey

dFn

dt
= −1

τ
Fn − iσFn +

√

2

τe
En (10)

where τ is defined as

1

τ
=

1

τi
+

1

τe
+

1

τd
(11)

and stands for the overall loss-induced decay time for the elec-

tric fields inside the resonator, while σ = ωL − ω0 is the laser

detuning relatively to the central frequency of the pumpedmode.

On the other hand, the dimensionless components Gn of the out-

put field G(t) =
∑+∞

n=−∞ Gn (t)einΩM t can simply be recovered

as

Gn =

√

2

τd
Fn . (12)

The spectra of the three optical fields E(t), F(t), and G(t) have
been schematically represented in Fig. 1.

The optical power at the input of the photodiode is equal to

P0 |G(t)|2 = P0

∣

∣

∣

∣

∣

+∞
∑

n=−∞
Gn (t)einΩM t

∣

∣

∣

∣

∣

2

=
1

2
C0(t) +

+∞
∑

k=1

{1

2
Ck (t)eikΩM t + c.c.

}

(13)

where the slowly varying Fourier coefficients Ck express the

multifrequency nature of the input optical power. The photo-

diode has an inbuilt filter that rejects the harmonics at kΩM

with k ≥ 2. On the other hand, the dc component is rejected by
the RF bandpass filter. Hence, only the spectral component at

frequency ΩM (that is, C±1(t)) is allowed to pass through. The
slowly varying amplitude V of the voltage at the output of the
photodiode is, therefore, SC1(t), where S stands for the pho-
todiode sensitivity. We can multiply this output by the overall

gain G = GeGo and the overall losses κ to obtain the slowly
varying voltage at the input of the modulator as

V(t) = κGSeiςC1(t) = κGSP0

+∞
∑

n=−∞
2Gn+1G∗

n (14)

where the phase factor eiς accounts for the effect of the mi-

crowave round-trip phase shift ς . If necessary, it can be tuned to
any desired value (modulo 2π) using an RF phase shifter.
We define the dimensionless microwave voltage as

A(t) =
π

2VπR F

V(t) (15)
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and the optoelectronic gain as

β =
πκGSP0

2VπR F

. (16)

It is very important to note that since the loss parameter κ does
not consider the losses associated with the WGM resonator, the

gain coefficient β is not a loop-gain parameter as it is the case

for fiber-based OEO studies, where κ also takes into account
the losses induced by the fiber.

We, therefore, have the following three-step model for nu-

merical simulation:

En = ǫn (φ) Jcn [|A|]An (17)

Ġn = −
[

1

τ
+ iσ

]

Gn +
2√
τeτd

En (18)

A = 2βeiς
+∞
∑

n=−∞
Gn+1G∗

n (19)

where the overdot stands for time derivative. Note that in (17),

we introduced the Bessel cardinal functions to simplify the ex-

pression. Their definition and properties are further developed

in the Appendix.

This model describes the following phenomenology. Small

noise in A generates the fields En , which are fed in the WGM

resonator and yield the output fieldsGn . The photodiode extracts

the intermodal frequency and the bandpass RF filter outputs a

microwave of complex envelopeA, which is plugged back to the
modulator to generate new fields En , and the previous sequence

of events takes place again.

It is interesting to note that fiber-based OEOs have an optical

delay line that performs the optical energy storage, and an RF

filter to select the microwave oscillation frequency. On the other

hand,WGM-basedOEOs rather have aWGMdisk that performs

at the same time the optical storage and filtering functions. The

physics is intrinsically different, and so are the corresponding

models: this explains why the former models built for fiber-

based OEOs are not valid anymore in this context. Fiber-based

OEOmodels relied on delay-differential equations, with the de-

lay being induced by the fiber delay line, and the dynamics (i.e.,

the derivative term) was on the microwave variable A(t). For
WGM-based OEOs, we rather have a modal expansion model,

in the sense that we have one equation per optical mode, and the

dynamics is on the optical modes Gn (t). It is also important to
note that this model is nonlinear and continuous. Hence, we can

analytically and numerically determine the various dynamical

behaviors of the system, and investigate their stability.

V. STATIONARY STATES

The equilibria (or fixed points) of autonomous oscillators are

obtained by setting all the derivatives to zero. In the complex

envelope formalism, a trivial equilibrium corresponds to the

absence of oscillation, while nontrivial equilibria correspond to

a steady-state oscillation (because the amplitudes are constant

and not null). The aim of this section is to determine the fixed

points of the OEO.

The stationarity conditions Ġn ≡ 0 yield

Gn = T En (20)

where

T =

2√
τe τd

1
τ + iσ

(21)

is the transmission coefficient of theWGM resonator at the drop

port. It is interesting to note that we always have |T | ≤ 1, and
ideal transmission (T = 1) only occurs when a resonant laser
radiation (σ = 0) is coupled to a lossless resonator (τi → +∞)
with coupling photon lifetimes that are matched (τe = τd ).

According to (19) and (20), we have

Ast = 2βeiς
+∞
∑

n=−∞
Gn+1G∗

n = 2βeiς |T |2
+∞
∑

n=−∞
En+1E∗

n .

(22)

Hence, using (17), the stationary amplitude Ast = |Ast | obeys

Ast = −β sin 2φ |T |2eiς
+∞
∑

n=−∞
(−1)nJn+1(Ast)Jn (Ast)

(23)

and using successively the Bessel equalities

J−n (x) = (−1)nJn (x) (24)

Jm (x + y) =

+∞
∑

n=−∞
Jn (x)Jm−n (y) (25)

we are finally led to the transcendental equation

Ast = ΓJ1(2Ast) (26)

where

Γ = −β sin 2φ |T |2eiς (27)

is the overall loop gain, which is essentially the product of

the optoelectronic gain and the power transmission factor of

the coupled WGM resonator. Existence of a stationary state re-

quires the phase factor eiς to be real, and equal to±1 such that Γ
is real and positive. Effectively, this round-trip phase matching

condition corresponds to the necessity of a constructive interfer-

ence between successive round-trip replicas of the microwave

(Barkhausen condition for the phase).

The possible solutions of the transcendental equation (26)

are, therefore,

Ast =

{

Atr = 0, valid for all Γ

Aosc = 1
2 Jc−1

1

[

1
2Γ

]

, valid for all Γ ≥ 1
(28)

where Jc−1
1 is the inverse Bessel–Cardinal function. The trivial

equilibriumAtr is, therefore, a solution for all values of Γ, while
nontrivial (oscillatory) solutions Aosc can only exist for Γ ≥ 1.
As explained in Fig. 2, the stationary solutions of the tran-

scendental equation (26) are given by the intersection of the

functions J1(2Ast) and Ast/Γ. When Γ < 1, there is only one
solution (the trivial one), while for Γ > 1, both functions will
intersect for other points than 0, thereby generating nontrivial
equilibria. When 1 < Γ < 15.52, there is only one oscillatory
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Fig. 2. Geometrical interpretation of the stationary statesAst , which are given
by the intersection of the functions J1 (2Ast ) and Ast/Γ. When Γ = 0.8, both
curves only intersect for Ast = 0, which is, therefore, the unique fixed point.
This will be the case whenever Γ < 1. For Γ > 1, both functions will intersect
for other points than 0, thereby generating nontrivial equilibria. For Γ2 = 1.4,
the nontrivial solution is Ast2 = 0.79, and it will be equal to Ast3 = 1.46 for
Γ3 = 4. When the gain is increased to Γ4 = 15.52, the same branch yields
a nontrivial solution Ast4 = 1.77, while a pair of new solutions are created
around 4.21. An infinity of other pairs of solutions are sequentially created as
Γ increases to infinity.

solution. However, at Γ = 15.52, a new pair of nontrivial solu-

tions emerges and coexists with the previous oscillatory state.

As Γ increases to infinity, an infinity of branches generating
paired solutions are created; it appears very clearly that all of

them are converging to the zeros of the Bessel function J1(2x)
when Γ → +∞.
It is important to note that realistic values for the normalized

gain Γ are generally not as high as 15. That is why in all the
experiments of OEOs, the oscillator is generally operated in the

first branch of nontrivial solutions, whose maximal value is the

first zero of J1(2Ast), yielding Amax1
st = 1.91. This asymptotic

saturation can be observed in Fig. 3. In this paper, we will refer

to this branch of nontrivial solution as the primary branch of

oscillatory solutions. Fig. 3 also displays the emergence of the

secondary branch of paired solutions above Γ = 15.52.

After the determination of the various stationary states of the

system, we will perform in the next two sections their stability

analysis.

VI. STABILITY OF THE TRIVIAL EQUILIBRIUM

The onset of oscillations generally occurs when the trivial

fixed pointAtr = 0 loses its stability. In this section, we perform
the stability analysis of this fixed point in order to determine the

conditions leading to oscillations.

Let us consider a perturbation δA around the trivial equilib-

riumAtr = 0. If that perturbation decreases with time, the triv-
ial equilibrium is stable; otherwise, if it increases, the rest point

is unstable and oscillations are triggered. The optical spectral

components En excited by the perturbation δA explicitly read

En ≃ ǫn (φ) ×



















1

2nn!
(δA)n , if n ≥ 0

(−1)−n

2−n (−n)!
(δA−n )∗, if n < 0.

(29)

Fig. 3. Variation of the nontrivial solutions of (26) as Γ is increased. Only
the trivial solution exists for Γ < 1. Then, the primary branch is the unique
nontrivial solution for 1 < Γ < 15.52. This primary branch of solutions, which
exists for all Γ > 1, increases monotonously but has a horizontal asymptote
Amax1

st = 1.91. New nontrivial solutions (secondary branch) emerge for Γ >
15.52. The bifurcation analysis shows that the microwave envelopeA undergoes
a pitchfork bifurcation atΓ = 1, which corresponds to a Hopf bifurcation for the
microwave voltage variable V . The same analysis also shows thatA undergoes
a saddle-node bifurcation at Γ = 15.52 (emergence of two new fixed points, one
being stable and the other one unstable). The system, therefore, starts in that case
to evidence hysteresis, with two stable solutions (lowest and highest amplitudes)
and an unstable solution (corresponding to the intermediate amplitude). As Γ
is further increased, the system undergoes saddle-node bifurcations any time a
new branch of paired solutions emerges.

It appears that whenever |n| > 1, the fields En are of higher

order of perturbation, and can, therefore, be neglected in a linear

stability analysis. On the other hand, the induced fields at orders

n = 0,±1 are explicitly given by

E1 = −1

2
sinφ δA (30)

E0 = cos φ (31)

E−1 = −1

2
sinφ δA∗. (32)

In other words, the mode n = 0 is of zeroth order and is not
influenced by the microwave perturbation δA in the linear ap-

proximation, while the modes n = ±1 are of first order and
are directly proportional to |δA|. For the sake of mathematical
clarity, we will then rewrite the fields E±1 as δE±1 since they

are first-order perturbations. It straightforwardly appears that

the modal output variables related to G will have the same order
of magnitude as their input counterpart E . Hence, we will have
to consider only the variables G0 and δG±1 , and neglect all the

remaining ones.

Using (19), the microwave perturbation can be rewritten as

δA = 2βeiς [G0δG∗
−1 + G∗

0δG1 ] (33)

while according to (18), the output field perturbations G±1 obey

δĠ1 = −
[

1

τ
+ iσ

]

δG1 +
2√
τeτd

δE1 (34)

δĠ−1 = −
[

1

τ
+ iσ

]

δG−1 +
2√
τeτd

δE−1 . (35)
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In thematrix form, the aforementioned equation can be rewritten

as
[

δĠ1

δĠ∗
−1

]

= [Str ]

[

δG1

δG∗
−1

]

(36)

where

[Str ] =
2√
τeτd

[

1
T

(

Γ
2 − 1

)

, Γ
2T ∗

Γ
2T , 1

T ∗

(

Γ
2 − 1

)

]

(37)

is a 2 × 2 matrix ruling the dynamics of the perturbation flow
(Jacobian). The trivial fixed point will be stable whenever the

eigenvalues of this Jacobian matrix have strictly negative real

parts. The determination of these eigenvalues is straightforward

and it is found that the trivial equilibrium is stable only when

Γ < 1, and unstable otherwise.
We will show in the next section that crossing that threshold

value triggers unconditionally stable microwave oscillations in

the primary branch of nontrivial equilibria, while for the higher

order branches of paired solutions, some solutions are stable

while others are not.

VII. STABILITY OF THE OSCILLATORY SOLUTION

So far, the theoretical analysis has shown that there are two

types of stationary solutions. The trivial equilibrium exists for

all Γ but is stable only for Γ < 1. The oscillatory solutions
only exists for Γ > 1, and the purpose of this section is to
demonstrate that they might be stable or unstable. Once again,

to demonstrate that this solution is stable, we have to show that

any perturbation δA of the oscillatory solution Aosc of interest

exponentially decays to zero. Otherwise, the oscillatory solution

is unstable.

According to (19), the perturbation of the steady state mi-

crowave solution Aosc obeys

δA = 2βeiς
+∞
∑

n=−∞
Gn+1 δG∗

n + G∗
n δGn+1 . (38)

On the other hand, the steady-state input and output electric

fields obey

En = ǫn (φ) Jn (Aosc) (39)

Gn = T En . (40)

In the demonstration, we havemade to investigate the stability

of the trivial fixed point, it appeared that the Jacobian matrix

[Str ] had to be expressed relatively to the variables δG1 and

δG∗
−1 . In the case of the nontrivial solutions, (38) shows that we

have an infinity of perturbations to consider, but however, we

will decompose by analogy the microwave perturbation as

δA = δA
+

+ δA− (41)

where

δA
+

= 2βeiς
+∞
∑

n=−∞
T ∗E∗

n−1 δGn (42)

δA− = 2βeiς
+∞
∑

n=−∞
T E1−n δG∗

−n (43)

are global variables associated to the output field perturbations

δGn and their counterparts δG∗
−n (complex conjugate, opposite

sidemode), respectively. We will, hereafter, use these variables

to obtain a Jacobian matrix whose eigenvalues will decide the

stability of the nontrivial stationary states.

In the feedback loop, the perturbation δA will first induce

perturbations δEn . The first-order Taylor expansion of a pertur-

bation of the amplitude can be determined as

|Aosc + δA| ≃ Aosc +
1

2
[δA + δA∗] . (44)

Hence, using (39), the input field perturbations can be calculated

as

δEn =
1

2
ǫn (φ)J′n (Aosc) [δA + δA∗] (45)

where the prime denotes the derivative of the Bessel function

relatively to its argumentAosc . The input field perturbations δEn

do induce output field perturbations δGn , which obey

δĠn = −
[

1

τ
+ iσ

]

δGn +
2√
τeτd

δEn . (46)

By multiplying the aforementioned equation by 2βeiςT ∗E∗
n−1

and summing over all modal indices n, we are led to the follow-
ing equation for δA

+

δȦ
+

= −
[

1

τ
+ iσ

]

δA
+

+
4βeiςT ∗
√

τeτd

+∞
∑

n=−∞
E∗

n−1 δEn (47)

and analogously, it can be found that δA− obeys

δȦ− = −
[

1

τ
− iσ

]

δA− +
4βeiςT√

τeτd

+∞
∑

n=−∞
E1−n δE∗

−n . (48)

We demonstrate in the Appendix that the perturbation equa-

tions (47) and (48) can be rewritten as

δȦ
+

= −
[

1

τ
+ iσ

]

{δA
+
− R[δA + δA∗]} (49)

δȦ− = −
[

1

τ
− iσ

]

{δA− − R[δA + δA∗]} (50)

where R is a function of the gain Γ:

R =
1

4
Γ[J0(2Aosc) − J2(2Aosc)] . (51)

Since δA = δA
+

+ δA− , we can finally rewrite (49) and (50)

under the form of a 4-D autonomous flow










δȦ+

δȦ−

δȦ∗
+

δȦ∗
−











= [Sosc ]











δA+

δA−

δA∗
+

δA∗
−











(52)

where the Jacobian matrix [Sosc ] can be written under the syn-
thetic block matrix form

[Sosc ] =

[

[U] [V]

[V∗] [U∗]

]

(53)
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Fig. 4. Variations of the functionR expressed in (51). This function is inferior
to 1/4 for the primary branch of nontrivial solutions (starting at Γ = 1). For
the secondary branch (starting at Γ = 15.52), one solution is stable (R < 1/4)
while the other one is unstable (R > 1/4).

with

[U] =
2√
τeτd







R − 1

T
R

T
R

T ∗
R − 1

T ∗






(54)

[V] =
2√
τeτd







R

T
R

T
R

T ∗
R

T ∗






. (55)

The oscillatory solution Aosc is therefore stable if all the

eigenvalues of the constant and complex-valued matrix [Sosc ]
have a strictly negative real part. A straightforward method

would be to actually compute the eigenvalues of this 4-D matrix

and evaluate the sign of their respective real parts. However, we

can circumvent that tedious task by noting due to the partic-

ular structure of [Sosc ], the set of its eigenvalues is the union
of the eigenvalues of the 2-D matrices [U + V] and [U − V].
Hence, the stability of the oscillations is guaranteed as long as

the eigenvalues of the 2 × 2matrices [U ± V] have strictly neg-
ative real parts. This stability condition is trivially satisfied for

[U − V] which is a diagonal matrix whose diagonal elements
(i.e., eigenvalues) are −1/τ ± iσ. On the other hand, as far as
the matrix [U + V] is concerned, the stability condition yields
R < 1

4 . According to Fig. 4, this inequality is indeed satisfied

whenever Γ > 1 for the branch of primary solutions, since R
has an absolute maximum value equal to 1

4 for Γ = 1, and de-
creases monotonously afterward. On the other hand, the higher

order branches of paired solutions have the typical stability pat-

tern of saddle-node fixed points, as one solution remains stable

while the other is unstable.

We recall again that experimentally, it is extremely difficult

to reach Γ values of the order of 15. Most experimental studies
can in fact hardly achieve gain values superior to 3. Therefore,
the solution of practical interest belongs to the primary branch:

our analysis has demonstrated that this oscillating solution is

unique in the range 1 < Γ < 15.52, and is always exponentially

stable for any Γ > 1. It is interesting to note that in the case
of fiber-based OEOs, we proved that the microwave oscillation

was stable only at up to Γ = 2.31, in agreement with experi-

Fig. 5. Cavity ring-down measurement. The thick gray curve is the experi-
mental optical power at the output of the “through” port of the resonator when
the input wavelength is rapidly swept. The optical signal at resonance decays
exponentially and interferes with the next wavelengths coming from the input
laser. The theoretical fit that enables us to extract the intrinsic and excitation
photon lifetimes is derived in [29]. Here, the intrinsic and excitation photon
lifetimes are measured at 0.65 and 2.9 µs, respectively.

ments [21], [22]. Here, we prove that the oscillator is uncon-

ditionally stable at up to a much higher value (15.52), thereby

demonstrating that this WGM-based OEO is significantly more

stable than its fiber-based counterpart.

VIII. COMPARISON BETWEEN NUMERICAL

AND EXPERIMENTAL RESULTS

The experimental setup is presented in detail in Fig. 1.

A preliminary measurement is the evaluation of the intrinsic

and coupling Q factors of the cavity. This measure, presented

in Fig. 5 is performed in the open-loop configuration and is

mathematically explained in [29]. It enables us to confirm that

all our quality factors are of the order of 108 , yielding charac-

teristic time scales of the order of 1 µs. When the oscillation
loop is closed, we can monitor different optical and microwave

variables of interest.

The optical output of the coupled resonator’s through-port

is used to control the detuning σ between the input laser and
the resonance. Once the detuning is set and the gain is above

threshold, oscillations are sustained in the optical branch. Fig. 6

shows the optical spectrum taken at the “through” output of

the resonator (as drawn in Fig. 1). The spectral line due to the

laser is in the center at fL = 193276.6 GHz, and two pairs

of sidemodes are visible in this case, separated by the FSR

fM = 10.4 GHz. As we can see on this 75-dB dynamic-range

figure, the amplitude of these sidemodes decreases very rapidly

with their order |n|.
In the RF branch, the spectrum of the microwave oscillation

is measured using a 22-GHz RF spectrum analyzer. A typical

RF spectrum is presented in Fig. 7 and demonstrates that the

oscillation arises at a fixed frequency given by the FSR fM of

the resonator. A plateau is visible below the oscillation spectral

line and is due to the noise of the RF amplifier filtered between

10 and 11 GHz.

Simultaneously, the temporal dynamics of themicrowave sig-

nal is monitored using a 40-GHz-bandwidth oscilloscope. To
investigate this time-domain dynamics, another MZ modulator
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Fig. 6. Optical spectrum of the signal at the throughport of the resonator. The
central frequency fL = 193276.6 GHz is the optical frequency of the input
laser. The sidemodes created by the MZ intensity modulator driven by the
microwave oscillation are clearly visible on each side of the input frequency.
Themicrowave noise from the amplifier is visible as a plateau on each sidemode,
on top of which the oscillation at the FSR frequency stands. It is apparent on
this figure that the amplitudes of the sidemodes decrease very rapidly, so that
only few of them are necessary to describe the behavior of the oscillator in the
numerical simulations.

Fig. 7. RF spectrum of the generated microwave. The 10.41-GHz oscillation
corresponding to the FSR of the resonator. This microwave signal is strong, and
stands 50 dB above the filtered noise of the RF amplifier.

driven by a square signal is used to switch the input laser light

ON and OFF. Therefore, the gain Γ of the oscillator is abruptly
changed from 0 to a value that is higher than 1, and the transient
dynamics can be monitored using a photodiode and a fast oscil-

loscope. The resulting signal is displayed in Fig. 8. The actual

signal V (t) is shown in light gray while the envelope amplitude
|V(t)| is the thick blue curve. The inset of this figure is provided
to show the oscillation occurring at a faster time scale (in the

range of 100 ps, which corresponds to the period TM = 1/fM ),

while the envelope time scale is in the microsecond range. It

is worth noting that the apparent amplitude noise in this inset

is an artefact due to the barely sufficient sampling rate of the

oscilloscope (30 GHz) compared to the oscillation frequency

(10 GHz).

The envelope curve of Fig. 8 can be compared to the nu-

merical simulations presented in Fig. 9. These simulations were

obtained using a fourth-order Runge–Kutta algorithm for (17)–

(19). The initial conditions where random complex value forA,
taken in a Gaussian distribution centered around 0.01 with stan-

dard deviation of 0.01. Both numerical and experimental curves

feature the same characteristics, and the transition from the ini-

Fig. 8. Experimental time-domain dynamics. The (light gray) experimental
trace of the microwave signal is obtained with an ultrafast oscilloscope, just
after abruptly switching-on the laser. At the very beginning, the signal consists
of noise from the RF amplifier. The RF oscillation at the FSR frequency rapidly
grows above the noise level, and its amplitude reaches the stationary state with
a time scale in the µs range. The inset is a zoom-in presenting the fast-scale
dynamics of the same curve. It shows that the microwave frequency is indeed
around 10 GHz. The apparent amplitude noise is due on the one hand to the
detection photodiode, and on the other to an artefact originating from the fact
that albeit ultrafast, the 30 GHz sampling rate only provides six points for every
period of our 10 GHz signal. The experimental microwave envelope signal
(thick blue line) is in very good agreement with the normalized envelope A(t)
obtained numerically like in Fig. 9.

Fig. 9. Numerical simulation of the microwave envelope dynamics, and com-
parison with experiments. The continuous black (down) and dashed blue (top)
curves are numerical simulations obtained for Γ = 1.18 and 1.55, respectively.
The other parameters are τi = 0.65 µs, τe = 2.9 µs (same as the experimental
values), τd = 0.1 µs, σ = 0 (at resonance), and φ = π/4. The initial condition
is a random value taken in a Gaussian distribution with average value and stan-
dard deviation of 0.01. The envelopes of experimental time traces are plotted in
thick lighter lines on top of the continuous black and dashed blue curves (the
photodiode and artefact noise have been subtracted).

tial state to the stationary solution occurs in similar duration, of

the order of 1 µs. This very good agreement between the sim-
ulation and the experimental result validates the experimental

interest of this model.

It is interesting to note that from a purely theoretical point

of view, the model is infinite dimensional because there is an

infinity of fields Gn to consider. However, only a few of them are

necessary to yield accurate results, as foreshadowed by the ex-

perimental spectrum of Fig. 6. In practice, our simulations were

performed with ten pairs of sidemodes, even though considering

five pairs would have already been very accurate.
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IX. CONCLUSION

In this paper, we have proposed a nonlinear dynamics ap-

proach to study WGM-Based OEOs. We have used a complex

microwave envelope variable to investigate the time-domain

behavior and stability properties of this oscillator. Our study

has enabled us to determine the various stationary states and

their stability. It was shown that above threshold, the principal

branch of the oscillations, which is the only one experimentally

accessible so far, is always exponentially stable regardless of

the gain. However, the analysis has also evidenced higher or-

der branches of solutions whose stability properties are more

complex, with some states being stable while the others are not.

Both the analytical and numerical analysis have been confirmed

by the experimental measurements.

Future work will consist in using the model to optimize the

metrics of the oscillator. In particular, we aim to investigate the

phase noise performance of this WGM-based OEO by adding

calibrated noise terms in our dynamical equations. We would

then obtain stochastic differential equations that would enable

us to predict the phase noise spectra and the Allan deviation of

the oscillator.

It is already known that very high microwave frequencies,

at the edge of the millimeter-waves band (≃100 GHz), can be
generated by selecting a higher harmonic of the beat-note signal

detected by the photodetector. Our model enables us to analyze

the microwave envelope of such harmonics kΩM by summing

the quadratic terms Gn+kG∗
n in (14).

Another prospective work would be to extend this formal-

ism in order to account for nonlinear phenomena in the WGM

resonator. Some research works (see e.g., [30]) have already

demonstrated that scattering has a measurable effect on the

phase noise performance of OEOs, particularly when the op-

tical cavity has a high Q factor. Various nonlinear phenomena

(Kerr, Raman, and Brillouin) have an effect on the phase noise

performance, as well as the chromatic dispersion which con-

verts laser frequency noise into phase fluctuations. We expect

this theoretical approach to be able to give both a quantitative

and qualitative insight into all into these phenomenologies.

APPENDIX

A. Bessel-Cardinal Functions

We define the Bessel-cardinal function of order n as

Jcn (x) =
Jn (x)

xn
with x ∈ R and n ∈ Z (56)

where Jn is the nth order Bessel function of the first kind.
From a qualitative point of view, Bessel-cardinal functions look

like the sine-cardinal function sinc(x) = sinx/x when n > 0,
with an absolute maximum centered at x = 0, and an oscillatory
behavior converging to zero as x → ±∞. On the other hand,
the Bessel-cardinal function diverges to infinity as x → ±∞
with an oscillatory behavior when n < 0. Since Jn (r)einθ can

be rewitten under the analytical form znJcn (|z|)with z = reiθ ,

the Bessel-cardinal formalism is very useful to carry out some

of the mathematical calculations.

B. Demonstration of (49) and (50)

This demonstration relies on the explicit calculation of the

infinite sums in the right-hand side of (47) and (48).

Let us first calculate the sum in (49). Using (39) and (44) and

the recurrence relationship

J′n (x) =
1

2
[Jn−1(x) − Jn+1(x)] (57)

we explicitly have

+∞
∑

n=−∞
E∗

n−1 δEn =
1

4
[δA + δA∗]

×
+∞
∑

n=−∞
{ǫn (φ)ǫn−1(φ) Jn−1(Aosc)

× [Jn−1(Aosc) − Jn+1(Aosc)]} . (58)

However, we have ǫn (φ)ǫn−1(φ) = (−1)n sin φ cos φ, while
(24) and (25) yield the following Bessel relationships

+∞
∑

n=−∞
(−1)nJ2

n−1(x) = −
+∞
∑

n=−∞
J1−n (x)Jn−1(x)

= −J0(2x) (59)

+∞
∑

n=−∞
(−1)nJn−1(x)Jn+1(x) = −

+∞
∑

n=−∞
J1−n (x)Jn+1(x)

= −J2(2x) . (60)

Hence, (59) can be finally simplified to

+∞
∑

n=−∞
E∗

n−1 δEn = −1

4
sin φ cos φ (δA + δA∗)

×[J0(2Aosc) − J2(2Aosc)] . (61)

Since ǫ−n (φ) = (−1)n ǫn (φ), it can also be shown that in the
nontrivial stationary states, E∗

−n = En and δE∗
−n = δEn , so that

the infinite sums in the right-hand sides of (47) and (48) are

identical. Then, using (27) and (61) the demonstration of (49)

and (50) is straightforward.
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Mécanique, Thermique et Optique–Sciences et Technologies (FEMTO-ST) In-
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as an Associate Professor. His research interests
include whispering-gallery mode micro-resonators,
photo-refractive solitons, pyrolitons, two-photon

sources, and frequency bin entanglement.



6000112 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2013

Laurent Larger (SM’11) received the Degree in
electronic engineering from the University of Paris
XI, Orsay, France, in 1988, the Agrégation degree
in applied physics from École Normale Supérieure
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