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Abstract

Ce travail concerne le controle d’un moteur en présence de retards.



Abstract

This work considers control of a motor in presence of delays. Design equations are derived based
on polynomial design. The design depends on the designer’s choices, i.e. desired closed-loop
behaviour, expected delay, observer poles and sampling period.

The main part of this work studies the influence of these choices on the stability of the system
: stability domains in terms of delays are computed, a gain scheduling controller is simulated
and a trade off between robustness to delays and load disturbance cancellation is found when
placing the observer poles.
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1 Introduction

In computer control the sampling time is an important notion. As a computer is a discrete
system, the signals coming from (resp. going to) a continuous system have to be sampled (resp.
digitalized). This is done at determined instants via sensors (resp. actuators). Usually, the
sampling is done periodically, and then we talk of sampling period or sampling interval.

The problem we deal with in this work is called jitter. What does it mean 7 Well, there can
be some time varying phenomena in the computer. A good illustration of such processes is the
example of a buffer in a distributed architecture. The queuing in the buffer is such that if an
information comes in (from a sensor, for instance), it can not be decided when it will be treated.
This will create a delay between the sensor and the computer. There are many other sources to
time varying delays between the sensors and the computers and similarly between the computer
and the actuators.

The problem with these time varying delays is that they deteriorate the behaviour of the
closed loop system (response to a control signal, stability). Our goal is to investigate the influ-
ence of jitter and to try to compensate for these delays. To achieve our task, we will control a
DC-motor and we will collect all the delays in a unique one between the motor and the controller.

This report contains 10 parts including introduction and conclusion. In section 2, the formu-
las used to design the various controllers are derived. In section 3, we present how the simulations
were done and stochastic models for the delays. Sections 4-9 contain the results of these sim-
ulations. Specifically, section 4 deals with the behaviour of the uncompensated controller. In
section 5 are introduced the first compensated controllers. Then, section 6 repeats the simula-
tions of section 4 for a controller which compensates for a constant delay. Section 7 presents
a gain scheduling controller. Robustness is discussed in section 8. Finally, in section 9, we
investigate the influence of the sampling period on the sensitivity to delays.
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Figure 1: Block diagram of the system we study

2 System characteristics

In this section, we define the system to be studied. The system consists of a motor to be
controlled by a controller in presence of delays (see Figure 1).
First, consider the case when there is no delay, § = 0.

2.1 In absence of delay

We here define the characteristics of the motor and give the equations needed to design an
RST controller to control it.

2.1.1 Motor

The motor has a continuous time transfer function of the form :
K

G(s) = ———

(s) s(1+ sT,)

where K and 7, are constant.
The continuous-time state-space representation of the motor can be written as :

(1) = Ax(t) + Bu(t)
{ y{t) = Ca(t) @)

where A, B and C are defined by :
0 1 0
A:[O _L],B:[K],C:{l 0] (3)
T, T

As a discrete-time RST controller will be designed, the pulse-transfer function has to be deter-
mined. Discretizing the system with a constant period h, we obtain the following results.

x(kh + h) = ®z(kh) + Du(kh) A
y(kh) = Cz(kh) ()

where ® and I' are defined by :

@:lé “‘a“)TC] ,F:lh_(l_“m] with a = ¢™ 7 (5)



Hence, the pulse-transfer function is given by :

= B(z) K[h-(1-a)T.)z+ ((1-a)T.— ah)]
HE =30 = C-D(-a) ©)

2.1.2 RST design

We will now determine the controller via an RST design. It means that the control law can
be written in the polynomial form (Astrém-Wittenmark(1990), chapter 10) :

R(q)u(k) = T(q)uc(k) — S(q)y(k) (M)

As the controller is chosen to handle the load disturbances, the polynomial R must be of the
form R = (z — 1) Ry, i.e. there is an integrator in the controller.
The desired closed-loop pulse-transfer function is then defined :

B, (2) _ 1+ p1+p2 B(z)

Hin(z) = A (z) B(1) 224 piz+p2

(8)

Using the same notations as in Ast1’61(1r1—VVittenm:&u’k(1990)7 we determine the following equations
to be solved.

degA, > 2 (9)
T =A,B,,
{ (= AR, + BS = A, A, (10)

where A, can be interpreted as an observer polynomial, which is a stable polynomial chosen by
the designer.

2.2 In presence of delays

When there are delays between the sampler and the controller, the dynamics of the system
change. The pulse-transfer function has to be recomputed. Then the controller will be redesigned,
taking into account the modifications.

2.2.1 Motor and delay

This section presents the dynamics of the sub-system containing the motor and the delay
element (i.e. everything but the controller).

Consider the case of a delay § of the form :
d=dh+1 d>0,0<7<h

where & is the sampling period.
Note y, the delayed output signal. (y, is the signal received by the controller instead of the
motor output signal)



Then, using a new state 24 which corresponds to the delayed state x (see (4)), the discrete-
time state-space representation of the sub-system can be written as :

zq(kh + h) = ®ay(kh) 4+ Tou(kh — dh 4+ h) + Tyu(kh — dh) (11)
yr(kh) = Czq(kh)

where @ is the same as in (5) and ['g, 'y are defined as :

T _-701-__I({h—T—Tc(l—aeTLc)}
o | Y02 | B K (1—aeTLc)
(12)
S T [ K [r+al (1-¢%)]
L | V12 | - —Ka (1—eTLc)

Hence, we obtain the pulse-transfer operator between the control signal and the delayed output
signal y,. :

Hs(z) =50
(13)
_ o122+ (11 —ayo1 +Te(1—a)vo2)z+(—ayi1 +Te(1—a)vi2)
241 (z—1)(z—a)

Remark : If 7 = 0, there is a common factor zin As and Bs. Bjs is actually equal to zB.

2.2.2 RST design

We would like to keep the same observer and the same closed-loop pulse-transfer function as
in the no-delay case. But, Theorem 10.2 in Ast1’61(1r1—VVittenm:&u’k(1990)7 requires the following
condition to be fullfilled :

degA,, —degB,, > degAs — degBs

This can not be done, because
degA,, —degB,, =1

and

degAs — degBs = d + 1.

The degree of A,, must therefore be increased by d. The closed-loop pulse-transfer operator is
then chosen of the form :
Bra(z)  Bn(2)

H,, = = 14
d(Z) Amd(Z) ZdAm (Z) ( )
The second condition of Theorem 10.2 gives thus :
degA,g>d+4 if7#0 (15)
degAo,g >d+3 if =0 (16)



As the polynomials R, S and T should be adapted to any unknown delay, the new observer
is taken as :

Agg = ALA, (17)

where both A, and A, are stable polynomials.
Relations (15) and (16) become then

degA. >d+2 ifT#0 (18)
degA. >d+1 if T=0. (19)
Equations (6) and (13) give
As = 241 A. (20)
With this, the input-output relationship for the closed-loop system is
BT
= .. 21
YT IHTAR T BsS (21
Notice that this is the discrete-time pulse transfer function from u. to .
The following relationship is thus obtained.
ZTIBT Bupg  BradoA; (22)
VAR + BsS  Apa ApadAcAL
Using
By,q = B,, = BB, ,
and equating the numerators (resp. denominators) in (22), we get
2T = B AA, (23)
and
ZTVAR 4 BsS = AngAlA,. (24)

As A, has a variable degree according to the delay, the easiest is to choose it as
A =2"

where n is minimal and satisfies (18)—(19). From (14),(20),(23),(24) and the latter, as well as
from the fact that the controller contains an integrator, we finally derive the system of equations
which determines the polynomials R, S and 7.

if 740 (25)

T=B Az
zd"'lA(z — )R+ BsS = Ay Ayz20t2

Furthermore, the remark about (13) solves the case of a delay equal to a multiple of the sampling
period :

T =B, A, e
{ AA(z = 1)Ry + BS = A A2 it =0 (26)



3 Simulations

This section first describes the simulation that have been made, then defines the system pa-
rameters, and finally, models the stochastic delays.

3.1 Organization of the simulations

The simulation part begins by a study of the behaviour of the system in presence of (constant
or stochastic) delays and without any attempt to cancel them.

Then section 2.2.2 was used to design an RST-controller which could treat the problem of a
constant delay. It was used in the different cases. First, we verified that our design was correct
by testing several constant delays. Then, using a controller which was designed for a constant
delay equal to 10% of the sampling interval, constant and stochastic delays were introduced into
the system.

As the design method works for any delay, why not use it to design a controller which will
adapt itself to the actual delay 7 This means that the design method will not be used once
and for all, but at every sampling interval. This seems particularly useful if the delays can be
measured or if there is a method to estimate their value (e.g. periodic delays). In the case of
the simulation, the delays are generated and therefore known by the program. They can then
be considered as measured. The efficiency of the design can thus be tested.

Later, robustness methods have been used. By varying the observer poles, the sensitivity of
the system to the delays can be modified. This characteristic was used on both the controller
without delay compensation and the controller which compensates for a delay equal to 10% of
the sampling interval.

Finally, the influence of the sampling interval on the sensitivity to the delays was investigated.

3.2 Parameters

Below is a list of the various parameters that define the system. The numerical values are
those we used in the first part of this study.

T. time constant of the motor : 0.5 s,

K gain factor of the motor : 1000,

h sampling period : 0.01 s,

p1, p2 coefficients of A,, : are defined from w and £ (see below),
w natural frequency : 190 rad/s (~ 30Hz),

& relative damping : 0.707.

Furthermore, we chose to have the observer poles at the origin.



3.3 Modelling the stochastic delays

As we will study the case of stochastic delays, we have to determine how to model the stochas-
tic variations. We used two models.

The first one is of the form :
My o §(t) = 26rect(t)

where rect(t) is the realization at time ¢ of a uniformly distributed stochastic variable in the
interval [0,1]. Notice that &(¢) takes its values in [0, 25] and that its mean value is . Notice also
that the delay is changing every sampling period. This model can represent the case when we
know that the delay is bounded but we don’t know which value it actually takes.

We can also model the delays in the following way :
My @ 8(t) =8+ ad(2rect(t) — 1)

where ¢ is the mean value of the delay and « is a parameter that gives the amplitude around
the mean value as a factor of the mean value. In this case, § takes its values in [§ — ad,§ + ad].
Notice again that the delay is changing every sampling period. This model can represent the
case when we know the value of the delay with some uncertainty (ex: 0.001s+ 10%).



4 Controller without delay compensation

Using section 2.1.2, an RST controller has been designed to control the motor. This was done
leaving aside the delays. In the following, this controller will be called the ordinary controller.
Figure 4 shows the step response of the system without any delay in this case.
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Figure 4 : Step response of the system without any delay

4.1 Case of a constant delay
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Figure 4.1 : Simulation of the ordinary controller
in the case of a constant delay &

a) 6=0.05h, b) §=0.1h, ¢) §=0.12h, d) 6=0.25h, e) 6=0.5h, f) 6=h.

The results of the simulation of the ordinary controller in presence of constant delays are
shown in Figure 4.1. They show that the system is stable for delays lower than 0.12h. This
corresponds to the theoretical bounds to the stability domain computed via Matlab. Those are :

e Lower bound : 0 s,

e Upper bound : 0.0013 s.

The upper bound corresponds to 0.13h. In the rest of the report, we will consider delays as
percentages of the sampling period. This an abuse of language because there is no constant ratio



between the stability bounds and the sampling interval. Though, as we will work for a while with
a constant sampling interval, it seems to be easier to interpret the delays in term of percentage
of the sampling interval than in terms of absolute time.

4.2 Case of a stochastic delay

In the stochastic case, it is difficult to determine any analytical stability bound. However,
the mean value of the delay can be used to get an idea of the system behaviour.
4.2.1 Model M;

A delay following model M has been generated with several mean values and introduced into
the system (Figure 4.2.1). In each case, five realizations of the stochastic simulation are shown.
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Figure 4.2.1 : Simulation of the ordinary controller
in the case of a stochastic delay following model Mj.

a) 6=0.05h, b) §=0.12h, c) §=0.25k, d) §=0.5h.

When the system is well inside the stability domain, the system has a behaviour close to the
one it would have in presence of a constant delay equal to the mean value (case a)).

But if the system is to close to the stability bound, there can be some trouble (case b)). The
system may loose its stability. Actually it does not loose its stability on a statistical point of view
: after an infinite time, it will converge to the reference value. But we will consider it unstable
because, meanwhile, it will have taken unacceptably high values; or because the statistical infinite
time which can be finite from the physical point of vue is really too long.

On the opposite, the system can gain stability in the instable area (cases ¢) and d)). And in
this case, the system is really stable. Indeed, if the delays remain long enough below the stability
bound, the output signal will come close enough to the reference value to be unsensitive to the
delays.

Conclusion : The mean value of the delay gives an idea of what the step response of the
system would be. But one must be careful with it : the maximal reachable delay must not be
too far over the upper stability bound.



4.2.2 Model M,

Model M5 contains the opportunity to change the maximal value of the delay without chang-
ing its mean value. This allows to see what happens when the mean value is fixed (Figure 4.2.2).
Here also, five realizations of the stochastic simulation are shown.
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.0

1 ~— 1

0 T T 1 0
0 0.05 0.1 0.15 0

T T
0.05 0.1 0.15

Figure 4.2.2 : Simulation of the ordinary controller
in the case of a stochastic delay following model M.
when 6=0.05h (left) and §=0.12k (right) in the following cases :
a) a=0, b) a=10%, ¢) a=50%.

As expected the mean value gives the overall behaviour of the system. The amplitude makes
the signal oscillate more and more around the ground signal as the the parameter o grows (i.e.
as the maximal value grows) and can even make the system unstable.

This can be related to the previous model. Indeed, model M is a special case of model M. It
is the case when the parameter « is maximal and therefore, the maximal value is twice the mean
value. That explains that with the same mean value, model M; is less stable than model M.

Conclusion : To get an idea of the behaviour of the system, one must think both in terms

of mean value and maximal value. The first one gives an idea of the overall behaviour and the

value of the second compared to the stability bound determines the stability characteristics.

10



5 Controllers with compensation

5.1 Testing our design

In this section, the results from section 2.2.2 are used to design an RST controller which is
able to cancel a constant delay. The controller is determined before every simulation and is kept
constant over the simulation. The polynomials R, .S, and T can be computed algebraically via
Maple if the delay to be cancelled is less than the sampling period. The solution can then be
translated from Maple to Simnon. If the delay is greater than one sampling period, the system
to solve grows in order and it becomes too complicated with Maple. The best thing to do should
then be to compute numerically the polynomials via Matlab and modify manually the control
law in Simnon.

In Figure 5.1 can the results of several designs be found.

a) d)
1 1
0.5 ; 0.5 -
O T T T T 1 O T T T T 1
0 0.02 0.06 0.1 0 0.02 0.06 0.1
b) e)
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05 0.5
O T T T T 1 O T T T T 1
0 0.02 0.06 0.1 0 0.02 0.06 0.1
c) f)
1 1
0.5 ; 0.5 -
O T T T T 1 O T T T T 1
0 0.02 0.06 0.1 0 0.02 0.06 0.1

Figure 5.1 : Simulation of several modified controllers
in the case of an actual delay equal to the expected one.

a) 6=0.05h, b) §=0.1h, ¢) §=0.25h, d) 6=0.5h, e) §=0.99k, £) 6=1.5h.

The five first cases use the algebraic solution obtained from Maple. The last one uses co-
efficients that have been computed via Matlab. As Matlab and Simnon do not have the same
numerical precision, it explains why the step response does not look "nice”.

The conclusion of this is that our design cancels pretty well the constant delay which it is
supposed to cancel (sic).
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5.2 Stability domain

The stability bounds of several controllers with compensation of a constant delay é are given

as percentages of the sampling interval in the next table :

1) Lower Bound | Upper Bound | Width
0.05h 0 18 18
0.1h 4 24 20
0.25h 18 40 22
0.5h 31 66 35
0.75h 69 81 12
h 97 103 6
1.2h 116 125 9
1.5h 145 159 14
1.7h 166 175 9
2h 199 202 3
5h 500 501 1

Note: the precision of the computation is 1% of the sampling period.

The stability domain moves up along the real axes as § grows. It is always more or less
centered in 6. The width of the domain has a noticeable behaviour : it seems to follow a damped
wave with local minima around the integer multiples of the sampling period and local maxima
around the middle of each of the intervals between these multiples.

The explanation of the damping lies certainly in a degradation of the computation when the
delays increase : the values of the coefficients grows, the signals reach higher values, etc.
The problem of the wave seems harder to explain. It may come from the existence of a zero
located in the origin for delays equal to a multiple of the sampling period and only then.

Conclusion : We created controllers that cancel an expected constant delay, however long
it can be (in principle). Yet, as the delay to cancel grows, the stability domain decreases.
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6 Modified controller

In this section, we will use the controller which is designed for the expected
delay 7 = 0.1h.
It will be called the modified controller. And it will be used to compare controllers with delay
compensation to the ordinary one.

6.1 Case of a constant delay

The theoretical bounds to the stability domain (computed via Matlab) are :

e Lower bound: 4% of h,

e Upper bound: 24% of h .

Simnon simulations (Figure 6.1) verify these results.

_a) ,d) .
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0 0.05 0.1 0.15 0 0.05 0.1 0.15
c) 10, P
: o=\ /
/N IRV
0 0.05 0.1 0.15 0 0.05 0.1 0.15

Figure 6.1 : Simulation of the modified controller
for an expected delay equal to 0.1k in the case

of a constant delay ¢
a) 0=0h, b) 6=0.05h, ¢) §=0.1h, d) 6=0.25h, e) 6=0.5h, f) 5=h.
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6.2 Case of a stochastic delay

6.2.1

Model M;

Figure 6.2.1 shows a simulation of the system when the delays are modelled by M.

15, a) 15- c)
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0 0.05 0.1 0.15 0 0.05 0.1 0.15

Figure 6.2.1 : Simulation of the modified controller
for an expected delay equal to 0.1k in the case
of a stochastic delay following model M.

a) 6=0.05h, b) §=0.12h, c) §=0.25k, d) §=0.5h.

The modified controller has a behaviour similar to the one of the ordinary controller. There
are some differences though.

The first one concerns the area where the controller best compensates the delays : the modified
controller is efficient on a larger range of delays. However, delays with a low mean value but still
inside the stability range of a fixed delay can create instability (similarly to delays with a mean
value close to the upper bound). Both of those two phenomena depends on the fact that the
stability domain in the constant case has moved : it has enlarged and does not cover any more
the area close to the origin.
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6.2.2 Model M,

If the delays follow model Mg, then the system has the behaviour shown in Figure 6.2.2.

)

1 1 P
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0 0.05 0.1 0.15 0 0.05 0.1 0.15
.0
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Figure 6.2.2 : Simulation of the modified controller
for an expected delay equal to 0.1k in the case
of a stochastic delay following model M.
when 6=0.05h (left) and §=0.12k (right) in the following cases :
a) a=0, b) a=10%, ¢) a=50%.

Here again, the modified controller behaves as the ordinary one. But if we compare the
response of the ordinary controller when § = 0.05% and the response of the modified controller
when & = 0.12h (the mean values are both larger but still close to the value used in the design),
the modified controller seems to be a bit more sensitive to the amplitude around the mean value.

Conclusion : A modified controller compensates in an acceptable manner for delays that
are close enough to the expected delay. But a trade-off between larger stability domain and
increased risk of unstable low delays has to be found. A way to avoid the trade-off should be to
try to decide if the delay at time ¢ is under the lower stability bound and then use an ordinary
controller or even better to use a controller that will compensate for this precise delay. This
leads us to the idea of a controller that will adapt itself to the current delay.

15



7 Controller based on gain scheduling

In this section, the modified controller is left aside. Instead a controller based on gain schedul-
ing will be studied. It uses a Simnon translation of the formulas we obtained from Maple. It is
therefore limited to the cancellation of delays less than one sampling period.

To test this controller, stochastic delays following model My have been used. Figure 7 shows
the simulations that have been done.

15,3 15,0
1 P 1 —
0.5 0.5
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Figure 7.a : Simulation of the controller based on gain scheduling
In each case, 3 simulations of a stochastic delay
following model My with o = 0.1
a) 6 =0.05h b) § =0.1h ¢) § = 0.25h d) § = 0.5h
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Figure 7.b : Simulation of the controller based on gain scheduling
In each case, 3 simulations of a stochastic delay
following model My with ov = 0.5
a) 6 =0.05h b) § =0.1h ¢) § = 0.25h d) § = 0.5h

The behaviour is not exactly what was expected. It was supposed to be perfect. In fact, it

cannot work so well because, although it is the same system order, as long as the delay is less
than a sampling period, the stored values do not correspond to the values that the control law

16



is supposed to use. Indeed, when the control law is determined at a certain time kh, according
to delay d(kh), the system is supposed as having run before this time kh with this delay §(kh);
and, therefore, as having gone through certain states. However, as the delays at previous times
were different, the states the system went through are also different.

Though, for short delays, the step response is better than the one of the ordinary controller or
the modified controller (see Figure 4.2.2 and Figure 6.2.2).

When the delay is short, the system remains stable even if it has a rather bad step response,
but if the delay grows then it can become unstable (see Figure 7.b, case d)). Actually, the
simulation should last longer to see if it is really unstable, but the behaviour (and my knowledge
on this subject) is bad enough to make us abandon the idea of the controller based on gain
scheduling for large delays.

Conclusion : The controller based on gain scheduling may be a solution in case of short

delays (less than 20% of the sampling period in our case), as long as we accept strange step
responses.
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8 Robustness

8.1 Robustness for the ordinary controller

The robustness properties of the ordinary controller will be discussed in this section. We
will therefore vary the observer poles during the design. Actually, it will not result in the same
controller as the one designed in section 4, but as the design is also done leaving aside any delay,
we will consider the controllers of this section as one unique ordinary controller with variable
poles.

8.1.1 Stability domain and observer poles

For an easier discussion, and even though this has no link to a physical representation, we
chose to have our observer poles real and double. The observer polynomial can thus be written
as A,(q) = (¢ — a,)*. Figure 8.1.1 shows the stability domain as function of the observer pole a,.

5min <d< 5ma1’
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Figure 8.1.1 : Stability domain of the system
as function of the double real observer pole
Note: we diplayed the bounds in seconds

The stability domain is increasing with the value of the observer poles. It is therefore attrac-
tive from a stability point of view to place the observer poles as close as possible to 1.
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8.1.2 Observer poles and load disturbances

The problem when placing the observer poles, is that as a, increases, the observer becomes
slower. It means that the load disturbances will not be detected as fast as desired. Figure 8.1.2
shows this phenomenon.

2. Case 1 2. Case 2
1.5 1.5
1. 1.
0.5 0.5
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0] 0.05 0.1 0.15 (o) 0.05 0.1 0.15
> Case 3 > Case 4
1.5 1.5
1. 1
0.5 0.5
o . T ! o T T |
(0] 0.05 0.1 0.15 (0] 0.05 0.1 0.15

Figure 8.1.2 : Simulation of the ordinary controller with load
disturbances occuring at t=0.075 and for different observer pole placements.
a, is equal to : a) 0, b) 0.5, ¢) 0.75, d) 0.95.

Conclusion : The observer poles should be taken lower than 0.75 if we want the integrator
contained by the controller to be of some use.

8.1.3 Observer poles and step response

Figure 8.1.3 shows the step response of the system with the ordinary controller for some
observer pole placements.
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o 0.05 0.1 0.15 o 0.05 0.1 0.15

Figure 8.1.3 : Step response of the ordinary controller
with different observers. «, is equal to :
a) 0, b) 0.5, ¢) 0.75,d) 0.95.
3 simulations have been done : § = 0h,0.1h,0.2h.
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Here are the stability domains in each of these cases :

Pole | Stability Range (in % of h)
0 0-13

0.5 0-34

0.75 0-65

0.95 0-132

The system has not only a larger stability domain for slower observers but also an improved
step response. Of course, the slowest observer gives, as expected, the smallest sensitivity to
delays; but, according to previous section, it should not be used unless we are sure to be in a
disturbanceless case.

Conclusion : The observer poles influence the stability of the system but also its ability to
cancel load disturbances. As these two objectives are contradictory, a trade-off has to be found.
A reasonable choice would be in our case to choose the poles between 0.5 and 0.75.

8.2 Robustness for the modified controller

Consider again the controller designed to compensate for a constant delay 7 = 0.1A.

8.2.1 Stability domain

As for the ordinary controller, we chose to have a double real observer pole a,. Figure 8.2.1
shows the stability bounds as functions of the observer pole.

5min <d< 5ma1’
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Figure 8.2.1 : Stability domain of the system
as function of the double real observer pole
Note: we diplayed the bounds in seconds

Moving the poles eliminates the unstable interval around 0 we had with the deadbeat solution.
This will be of a big help : the delays are now allowed to be over-estimated if the observer poles
are placed far enough from the origin.
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The poles should be given here a higher value than 0.25. It is noticeable that this is not a
too restrictive condition in term of load disturbance cancellation.

8.2.2 Step response

A quick look on the step response (Figure 8.2.2) confirms the improved response of the system
when the observer becomes slower and the elimination of the unstable short delays.
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Figure 8.2.2 : Step response of the modified controller
with different observers. The poles are located in:
a) 0, b) 0.5, ¢) 0.75,d) 0.95.

3 simulations have been done : § = 0h,0.1h,0.2h.

Here are the stability domains in each of these cases :

Pole | Stability Range (in % of h)
0 4-24

0.5 0-45

0.75 0-76

0.95 0-148

Conclusion : The main thing to be noticed is that the modified controller lost its drawback :
it can now be considered as much better than the ordinary one since the stability range is larger.
But sensitivity to delays and load disturbance cancellation still have to be balanced.
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8.3 Robustness and delay compensation

If the delay is known well enough (i.e. its mean value is known), then the following require-
ments can be made. The controller has to cancel a constant delay 7 as close as possible to the
mean value § of the real delay, to have its observer pole a, as close as possible to the origin
and to have the largest achievable stability range [d,,in (T, @0), dpmas(T, a,)]. This problem can be
considered as a minimization problem of the form :

min J(T7 ao) = Ql(T — 5)2 + QQQE - QS [5max(77 ao) - 5mm (7_7 ao)]2 (27)

T@o

where ()1, ()2 and ()3 are non negative weights.

On the opposite, if the delay has an unknown mean value, two ways can be followed. The
first one is to estimate the mean value and then to use the previous paragraph. The other one
is to determine a controller which will compensate for a delay as long as possible while keeping
a good protection against the load disturbances.
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Figure 8.3.a : Stability bounds as function of the delay
used in the design for several observers a,.

Without any calculation and only refering to Figure 8.3.a, it is tempting to choose a controller
designed to cancel a delay close to 0.007s (70% of the present sampling period) with both the
observer poles around 0.7 since it compensates for all the delays that are shorter than the sam-
pling period. However, this can only be done if the only requirement is to have a large stability
domain. And if we do not need to have a good step response for this controller does not clear
the step very well (Figure 8.3.b).
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Figure 8.3.b : Step response of the controller with :
7 = 0.007s, a, = 0.7 and a constant delay § equal to:
a) 0, b) 0.3h, ¢) 0.5k, d) 0,7h, e) 0.9k and f) h.

Conclusion : We have to add a constraint to the problem above, which is to get a nice step
response (this can be quantified by an adequate norm). And that can become rather difficult
and perhaps not satisfying enough.
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9 Changing the sampling period

As delays are not dependent of the sampling period, this one may have some influence on the
sensitivity of the system to delays. This will be discussed in this section.

9.1 Stability domain

The sampling period was initially chosen as A = 0.01s. The wiseness of this choice can be
decided by computing the stability bounds for the uncompensated system when the sampling
period belongs to an interval [h/10,10.h] (Figure 9.1). The stability bound is defined as the
largest delay for which the closed loop system is stable when the controller is designed for a
delay 7 = 0 and when the sampling interval is h. The observer pole is a, = 0.
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Figure 9.1 : Stability bounds of the uncompensated system
in function of the sampling period.

Note : The axes are scaled in seconds.

It appears that the stability range (in terms of delays) grows with the sampling interval.
Thus, our choice may have been unaccurate from the design point of view but it is quite good
from the educative one.

9.2 Step response

Anyhow, the size of the stability range is not the only thing we should use to choose our
sampling interval. Otherwise, we would choose an infinite period which would be completely
unsensitive to delays but uncontrollable !
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We must therefore consider the step response of the system (Figure 9.2).
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Figure 9.2 : Step response of the uncompensated system
with and without a delay 6=0.001s when sampled at :
a) 0.001s, b) 0.002s, ¢) 0.005s, d) 0.01s, e) 0.02s, f) 0.05s.

These simulations confirm that a too large sampling interval is to avoid because then the
closed loop is different from the one we desire (cases e) and f)). On the opposite, a too short
sampling period makes the system too sensitive to delays (case a). Moreover, the existence of
a local maximum in the previous graph (Figure 9.1) appears also here : compare the first four
cases.

Conclusion : A good choice of the sampling period when taking into account delay com-

pensation and desired closed loop behaviour would be here 0.002 which corresponds to the usual
rule of thumb wh =~ 0.2 — 0.5.
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10 Conclusion

In section 2, the equations to solve in order to design a discrete-time RST controller have been
derived. The stability to delays of the uncompensated controller has been studied in section 4.
By designing a controller which cancels a constant delay, we have increased the stability domain
(sections 5 and 6). Meanwhile this domain has been shifted and short delays have become
unstable. In order to try to avoid this, a gain scheduling controller has been designed (section 7).
As this was not satisfying, the robustness of the system to delays has been increased by moving the
observer poles. That lead to a trade-off between robustness to delays and disturbance cancellation
(section 8). Finally, studying the influence of the sampling period on the robustness to delays, we
found out that the usual rule of thumb for choosing the sampling interval gives the best results.

Even if the design for compensation has been done for any delay, the results in this report
concern mainly delays that are lower than the sampling period. If they become larger, then the
problem of the missing sample can appear. Solving it should be a continuation to this work.
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