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AbstractCe travail concerne le contrôle d'un moteur en pr�esence de retards.



AbstractThis work considers control of a motor in presence of delays. Design equations are derived basedon polynomial design. The design depends on the designer's choices, i.e. desired closed-loopbehaviour, expected delay, observer poles and sampling period.The main part of this work studies the in
uence of these choices on the stability of the system: stability domains in terms of delays are computed, a gain scheduling controller is simulatedand a trade o� between robustness to delays and load disturbance cancellation is found whenplacing the observer poles.
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1 IntroductionIn computer control the sampling time is an important notion. As a computer is a discretesystem, the signals coming from (resp. going to) a continuous system have to be sampled (resp.digitalized). This is done at determined instants via sensors (resp. actuators). Usually, thesampling is done periodically, and then we talk of sampling period or sampling interval.The problem we deal with in this work is called jitter. What does it mean ? Well, there canbe some time varying phenomena in the computer. A good illustration of such processes is theexample of a bu�er in a distributed architecture. The queuing in the bu�er is such that if aninformation comes in (from a sensor, for instance), it can not be decided when it will be treated.This will create a delay between the sensor and the computer. There are many other sources totime varying delays between the sensors and the computers and similarly between the computerand the actuators.The problem with these time varying delays is that they deteriorate the behaviour of theclosed loop system (response to a control signal, stability). Our goal is to investigate the in
u-ence of jitter and to try to compensate for these delays. To achieve our task, we will control aDC-motor and we will collect all the delays in a unique one between the motor and the controller.This report contains 10 parts including introduction and conclusion. In section 2, the formu-las used to design the various controllers are derived. In section 3, we present how the simulationswere done and stochastic models for the delays. Sections 4{9 contain the results of these sim-ulations. Speci�cally, section 4 deals with the behaviour of the uncompensated controller. Insection 5 are introduced the �rst compensated controllers. Then, section 6 repeats the simula-tions of section 4 for a controller which compensates for a constant delay. Section 7 presentsa gain scheduling controller. Robustness is discussed in section 8. Finally, in section 9, weinvestigate the in
uence of the sampling period on the sensitivity to delays.
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Controller Motore�s�-- - -�ucyr yuFigure 1: Block diagram of the system we study2 System characteristicsIn this section, we de�ne the system to be studied. The system consists of a motor to becontrolled by a controller in presence of delays (see Figure 1).First, consider the case when there is no delay, � = 0.2.1 In absence of delayWe here de�ne the characteristics of the motor and give the equations needed to design anRST controller to control it.2.1.1 MotorThe motor has a continuous time transfer function of the form :G(s) = Ks(1 + sTc) (1)where K and Tc are constant.The continuous-time state-space representation of the motor can be written as :( dxdt (t) = Ax(t) + Bu(t)y(t) = Cx(t) (2)where A, B and C are de�ned by :A = " 0 10 � 1Tc # ; B = " 0KTc # ; C = h 1 0 i (3)As a discrete-time RST controller will be designed, the pulse-transfer function has to be deter-mined. Discretizing the system with a constant period h, we obtain the following results.( x(kh+ h) = �x(kh) + �u(kh)y(kh) = Cx(kh) (4)where � and � are de�ned by :� = " 1 (1� a)Tc0 a # ; � = " h� (1� a)Tc1� a # with a = e� hTc (5)2



Hence, the pulse-transfer function is given by :H(z) = B(z)A(z) = K [(h� (1� a)Tc) z + ((1� a)Tc � ah)](z � 1)(z � a) (6)2.1.2 RST designWe will now determine the controller via an RST design. It means that the control law canbe written in the polynomial form (�Astr�om-Wittenmark(1990), chapter 10) :R(q)u(k) = T (q)uc(k)� S(q)y(k) (7)As the controller is chosen to handle the load disturbances, the polynomial R must be of theform R = (z � 1)R1, i.e. there is an integrator in the controller.The desired closed-loop pulse-transfer function is then de�ned :Hm(z) = Bm(z)Am(z) = 1 + p1 + p2B(1) B(z)z2 + p1z + p2 (8)Using the same notations as in �Astr�om-Wittenmark(1990), we determine the following equationsto be solved. degAo � 2 (9)( T = AoB0m(z � 1)AR1 +BS = AoAm (10)where Ao can be interpreted as an observer polynomial, which is a stable polynomial chosen bythe designer.2.2 In presence of delaysWhen there are delays between the sampler and the controller, the dynamics of the systemchange. The pulse-transfer function has to be recomputed. Then the controller will be redesigned,taking into account the modi�cations.2.2.1 Motor and delayThis section presents the dynamics of the sub-system containing the motor and the delayelement (i.e. everything but the controller).Consider the case of a delay � of the form :� = dh+ � d � 0 ; 0 � � < hwhere h is the sampling period.Note yr the delayed output signal. (yr is the signal received by the controller instead of themotor output signal) 3



Then, using a new state xd which corresponds to the delayed state x (see (4)), the discrete-time state-space representation of the sub-system can be written as :( xd(kh+ h) = �xd(kh) + �0u(kh� dh+ h) + �1u(kh� dh)yr(kh) = Cxd(kh) (11)where � is the same as in (5) and �0;�1 are de�ned as :�0 = " 
01
02 # = 24 K hh� � � Tc �1� ae �Tc �iK �1� ae �Tc � 35�1 = " 
11
12 # = 24 K h� + aTc �1� e �Tc �i�Ka �1� e �Tc � 35 (12)Hence, we obtain the pulse-transfer operator between the control signal and the delayed outputsignal yr : H�(z) = B�(z)A�(z)= 
01z2+(
11�a
01+Tc(1�a)
02)z+(�a
11+Tc(1�a)
12)zd+1(z�1)(z�a) (13)Remark : If � = 0, there is a common factor z in A� and B�. B� is actually equal to zB.2.2.2 RST designWe would like to keep the same observer and the same closed-loop pulse-transfer function asin the no-delay case. But, Theorem 10.2 in �Astr�om-Wittenmark(1990), requires the followingcondition to be full�lled : degAm � degBm � degA� � degB�This can not be done, because degAm � degBm = 1and degA� � degB� = d+ 1:The degree of Am must therefore be increased by d. The closed-loop pulse-transfer operator isthen chosen of the form : Hmd(z) = Bmd(z)Amd(z) = Bm(z)zdAm(z) (14)The second condition of Theorem 10.2 gives thus :degAod � d+ 4 if � 6= 0 (15)degAod � d+ 3 if � = 0 (16)4



As the polynomials R, S and T should be adapted to any unknown delay, the new observeris taken as : Aod = AoA� (17)where both Ao and A� are stable polynomials.Relations (15) and (16) become thendegA� � d+ 2 if � 6= 0 (18)degA� � d+ 1 if � = 0: (19)Equations (6) and (13) give A� = zd+1A: (20)With this, the input-output relationship for the closed-loop system isy = zd+1BTzd+1AR+ B�Suc: (21)Notice that this is the discrete-time pulse transfer function from uc to y.The following relationship is thus obtained.zd+1BTzd+1AR+B�S = BmdAmd = BmdAoA�AmdAoA� : (22)Using Bmd = Bm = BB0m;and equating the numerators (resp. denominators) in (22), we getzd+1T = B0mAoA� (23)and zd+1AR+B�S = AmdAoA� : (24)As A� has a variable degree according to the delay, the easiest is to choose it asA� = znwhere n is minimal and satis�es (18){(19). From (14),(20),(23),(24) and the latter, as well asfrom the fact that the controller contains an integrator, we �nally derive the system of equationswhich determines the polynomials R, S and T .( T = B0mAozzd+1A(z � 1)R1+ B�S = AmAoz2d+2 if � 6= 0 (25)Furthermore, the remark about (13) solves the case of a delay equal to a multiple of the samplingperiod : ( T = B0mAozdA(z � 1)R1 +BS = AmAoz2d if � = 0 (26)5



3 SimulationsThis section �rst describes the simulation that have been made, then de�nes the system pa-rameters, and �nally, models the stochastic delays.3.1 Organization of the simulationsThe simulation part begins by a study of the behaviour of the system in presence of (constantor stochastic) delays and without any attempt to cancel them.Then section 2.2.2 was used to design an RST-controller which could treat the problem of aconstant delay. It was used in the di�erent cases. First, we veri�ed that our design was correctby testing several constant delays. Then, using a controller which was designed for a constantdelay equal to 10% of the sampling interval, constant and stochastic delays were introduced intothe system.As the design method works for any delay, why not use it to design a controller which willadapt itself to the actual delay ? This means that the design method will not be used onceand for all, but at every sampling interval. This seems particularly useful if the delays can bemeasured or if there is a method to estimate their value (e.g. periodic delays). In the case ofthe simulation, the delays are generated and therefore known by the program. They can thenbe considered as measured. The e�ciency of the design can thus be tested.Later, robustness methods have been used. By varying the observer poles, the sensitivity ofthe system to the delays can be modi�ed. This characteristic was used on both the controllerwithout delay compensation and the controller which compensates for a delay equal to 10% ofthe sampling interval.Finally, the in
uence of the sampling interval on the sensitivity to the delays was investigated.3.2 ParametersBelow is a list of the various parameters that de�ne the system. The numerical values arethose we used in the �rst part of this study.Tc time constant of the motor : 0.5 s,K gain factor of the motor : 1000,h sampling period : 0.01 s,p1; p2 coe�cients of Am : are de�ned from ! and � (see below),! natural frequency : 190 rad/s (' 30Hz),� relative damping : 0.707.Furthermore, we chose to have the observer poles at the origin.6



3.3 Modelling the stochastic delaysAs we will study the case of stochastic delays, we have to determine how to model the stochas-tic variations. We used two models.The �rst one is of the form : M1 : �(t) = 2��rect(t)where rect(t) is the realization at time t of a uniformly distributed stochastic variable in theinterval [0,1]. Notice that �(t) takes its values in [0; 2��] and that its mean value is ��. Notice alsothat the delay is changing every sampling period. This model can represent the case when weknow that the delay is bounded but we don't know which value it actually takes.We can also model the delays in the following way :M2 : �(t) = �� + ���(2rect(t)� 1)where �� is the mean value of the delay and � is a parameter that gives the amplitude aroundthe mean value as a factor of the mean value. In this case, � takes its values in [�� � ���; �� + ���].Notice again that the delay is changing every sampling period. This model can represent thecase when we know the value of the delay with some uncertainty (ex: 0:001s� 10%).
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4 Controller without delay compensationUsing section 2.1.2, an RST controller has been designed to control the motor. This was doneleaving aside the delays. In the following, this controller will be called the ordinary controller.Figure 4 shows the step response of the system without any delay in this case.
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between the stability bounds and the sampling interval. Though, as we will work for a while witha constant sampling interval, it seems to be easier to interpret the delays in term of percentageof the sampling interval than in terms of absolute time.4.2 Case of a stochastic delayIn the stochastic case, it is di�cult to determine any analytical stability bound. However,the mean value of the delay can be used to get an idea of the system behaviour.4.2.1 Model M1A delay following modelM1 has been generated with several mean values and introduced intothe system (Figure 4.2.1). In each case, �ve realizations of the stochastic simulation are shown.
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d)Figure 4.2.1 : Simulation of the ordinary controllerin the case of a stochastic delay following modelM1.a) ��=0.05h, b) ��=0.12h, c) ��=0.25h, d) ��=0.5h.When the system is well inside the stability domain, the system has a behaviour close to theone it would have in presence of a constant delay equal to the mean value (case a)).But if the system is to close to the stability bound, there can be some trouble (case b)). Thesystem may loose its stability. Actually it does not loose its stability on a statistical point of view: after an in�nite time, it will converge to the reference value. But we will consider it unstablebecause, meanwhile, it will have taken unacceptably high values; or because the statistical in�nitetime which can be �nite from the physical point of vue is really too long.On the opposite, the system can gain stability in the instable area (cases c) and d)). And inthis case, the system is really stable. Indeed, if the delays remain long enough below the stabilitybound, the output signal will come close enough to the reference value to be unsensitive to thedelays.Conclusion : The mean value of the delay gives an idea of what the step response of thesystem would be. But one must be careful with it : the maximal reachable delay must not betoo far over the upper stability bound. 9



4.2.2 Model M2ModelM2 contains the opportunity to change the maximal value of the delay without chang-ing its mean value. This allows to see what happens when the mean value is �xed (Figure 4.2.2).Here also, �ve realizations of the stochastic simulation are shown.
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Figure 4.2.2 : Simulation of the ordinary controllerin the case of a stochastic delay following modelM2.when ��=0.05h (left) and ��=0.12h (right) in the following cases :a) �=0, b) �=10%, c) �=50%.As expected the mean value gives the overall behaviour of the system. The amplitude makesthe signal oscillate more and more around the ground signal as the the parameter � grows (i.e.as the maximal value grows) and can even make the system unstable.This can be related to the previous model. Indeed, modelM1 is a special case of modelM2. Itis the case when the parameter � is maximal and therefore, the maximal value is twice the meanvalue. That explains that with the same mean value, modelM1 is less stable than modelM2.Conclusion : To get an idea of the behaviour of the system, one must think both in termsof mean value and maximal value. The �rst one gives an idea of the overall behaviour and thevalue of the second compared to the stability bound determines the stability characteristics.
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5 Controllers with compensation5.1 Testing our designIn this section, the results from section 2.2.2 are used to design an RST controller which isable to cancel a constant delay. The controller is determined before every simulation and is keptconstant over the simulation. The polynomials R, S, and T can be computed algebraically viaMaple if the delay to be cancelled is less than the sampling period. The solution can then betranslated from Maple to Simnon. If the delay is greater than one sampling period, the systemto solve grows in order and it becomes too complicated with Maple. The best thing to do shouldthen be to compute numerically the polynomials via Matlab and modify manually the controllaw in Simnon.In Figure 5.1 can the results of several designs be found.
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5.2 Stability domainThe stability bounds of several controllers with compensation of a constant delay � are givenas percentages of the sampling interval in the next table :� Lower Bound Upper Bound Width0.05h 0 18 180.1h 4 24 200.25h 18 40 220.5h 31 66 350.75h 69 81 12h 97 103 61.2h 116 125 91.5h 145 159 141.7h 166 175 92h 199 202 35h 500 501 1Note: the precision of the computation is 1% of the sampling period.The stability domain moves up along the real axes as � grows. It is always more or lesscentered in �. The width of the domain has a noticeable behaviour : it seems to follow a dampedwave with local minima around the integer multiples of the sampling period and local maximaaround the middle of each of the intervals between these multiples.The explanation of the damping lies certainly in a degradation of the computation when thedelays increase : the values of the coe�cients grows, the signals reach higher values, etc.The problem of the wave seems harder to explain. It may come from the existence of a zerolocated in the origin for delays equal to a multiple of the sampling period and only then.Conclusion : We created controllers that cancel an expected constant delay, however longit can be (in principle). Yet, as the delay to cancel grows, the stability domain decreases.
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6 Modi�ed controllerIn this section, we will use the controller which is designed for the expecteddelay � = 0:1h.It will be called the modi�ed controller. And it will be used to compare controllers with delaycompensation to the ordinary one.6.1 Case of a constant delayThe theoretical bounds to the stability domain (computed via Matlab) are :� Lower bound: 4% of h,� Upper bound: 24% of h .Simnon simulations (Figure 6.1) verify these results.
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6.2 Case of a stochastic delay6.2.1 Model M1Figure 6.2.1 shows a simulation of the system when the delays are modelled byM1.
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Figure 6.2.1 : Simulation of the modi�ed controllerfor an expected delay equal to 0.1h in the caseof a stochastic delay following modelM1.a) ��=0.05h, b) ��=0.12h, c) ��=0.25h, d) ��=0.5h.The modi�ed controller has a behaviour similar to the one of the ordinary controller. Thereare some di�erences though.The �rst one concerns the area where the controller best compensates the delays : the modi�edcontroller is e�cient on a larger range of delays. However, delays with a low mean value but stillinside the stability range of a �xed delay can create instability (similarly to delays with a meanvalue close to the upper bound). Both of those two phenomena depends on the fact that thestability domain in the constant case has moved : it has enlarged and does not cover any morethe area close to the origin.
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6.2.2 Model M2If the delays follow modelM2, then the system has the behaviour shown in Figure 6.2.2.
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7 Controller based on gain schedulingIn this section, the modi�ed controller is left aside. Instead a controller based on gain schedul-ing will be studied. It uses a Simnon translation of the formulas we obtained from Maple. It istherefore limited to the cancellation of delays less than one sampling period.To test this controller, stochastic delays following modelM2 have been used. Figure 7 showsthe simulations that have been done.
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is supposed to use. Indeed, when the control law is determined at a certain time kh, accordingto delay �(kh), the system is supposed as having run before this time kh with this delay �(kh);and, therefore, as having gone through certain states. However, as the delays at previous timeswere di�erent, the states the system went through are also di�erent.Though, for short delays, the step response is better than the one of the ordinary controller orthe modi�ed controller (see Figure 4.2.2 and Figure 6.2.2).When the delay is short, the system remains stable even if it has a rather bad step response,but if the delay grows then it can become unstable (see Figure 7.b, case d)). Actually, thesimulation should last longer to see if it is really unstable, but the behaviour (and my knowledgeon this subject) is bad enough to make us abandon the idea of the controller based on gainscheduling for large delays.Conclusion : The controller based on gain scheduling may be a solution in case of shortdelays (less than 20% of the sampling period in our case), as long as we accept strange stepresponses.
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8 Robustness8.1 Robustness for the ordinary controllerThe robustness properties of the ordinary controller will be discussed in this section. Wewill therefore vary the observer poles during the design. Actually, it will not result in the samecontroller as the one designed in section 4, but as the design is also done leaving aside any delay,we will consider the controllers of this section as one unique ordinary controller with variablepoles.8.1.1 Stability domain and observer polesFor an easier discussion, and even though this has no link to a physical representation, wechose to have our observer poles real and double. The observer polynomial can thus be writtenas Ao(q) = (q�ao)2. Figure 8.1.1 shows the stability domain as function of the observer pole ao.�min < � < �max
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8.1.2 Observer poles and load disturbancesThe problem when placing the observer poles, is that as ao increases, the observer becomesslower. It means that the load disturbances will not be detected as fast as desired. Figure 8.1.2shows this phenomenon.
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Here are the stability domains in each of these cases :Pole Stability Range (in % of h)0 0{130.5 0{340.75 0{650.95 0{132The system has not only a larger stability domain for slower observers but also an improvedstep response. Of course, the slowest observer gives, as expected, the smallest sensitivity todelays; but, according to previous section, it should not be used unless we are sure to be in adisturbanceless case.Conclusion : The observer poles in
uence the stability of the system but also its ability tocancel load disturbances. As these two objectives are contradictory, a trade-o� has to be found.A reasonable choice would be in our case to choose the poles between 0.5 and 0.75.8.2 Robustness for the modi�ed controllerConsider again the controller designed to compensate for a constant delay � = 0:1h.8.2.1 Stability domainAs for the ordinary controller, we chose to have a double real observer pole ao. Figure 8.2.1shows the stability bounds as functions of the observer pole.�min < � < �max
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The poles should be given here a higher value than 0.25. It is noticeable that this is not atoo restrictive condition in term of load disturbance cancellation.8.2.2 Step responseA quick look on the step response (Figure 8.2.2) con�rms the improved response of the systemwhen the observer becomes slower and the elimination of the unstable short delays.
0 0.05 0.1 0.15

0

0.5

1

1.5

2 a)

0 0.05 0.1 0.15
0

0.5

1

1.5

2 b)

0 0.05 0.1 0.15
0

0.5

1

1.5

2 c)

0 0.05 0.1 0.15
0

0.5

1

1.5

2 d)Figure 8.2.2 : Step response of the modi�ed controllerwith di�erent observers. The poles are located in:a) 0, b) 0.5, c) 0.75, d) 0.95.3 simulations have been done : � = 0h; 0:1h; 0:2h.Here are the stability domains in each of these cases :Pole Stability Range (in % of h)0 4{240.5 0{450.75 0{760.95 0{148Conclusion : The main thing to be noticed is that the modi�ed controller lost its drawback :it can now be considered as much better than the ordinary one since the stability range is larger.But sensitivity to delays and load disturbance cancellation still have to be balanced.21



8.3 Robustness and delay compensationIf the delay is known well enough (i.e. its mean value is known), then the following require-ments can be made. The controller has to cancel a constant delay � as close as possible to themean value �� of the real delay, to have its observer pole ao as close as possible to the originand to have the largest achievable stability range [�min(�; ao); �max(�; ao)]. This problem can beconsidered as a minimization problem of the form :min�;ao J(�; ao) = Q1(� � ��)2 +Q2a2o �Q3 [�max(�; ao)� �min(�; ao)]2 (27)where Q1, Q2 and Q3 are non negative weights.On the opposite, if the delay has an unknown mean value, two ways can be followed. The�rst one is to estimate the mean value and then to use the previous paragraph. The other oneis to determine a controller which will compensate for a delay as long as possible while keepinga good protection against the load disturbances.�max; �min
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9 Changing the sampling periodAs delays are not dependent of the sampling period, this one may have some in
uence on thesensitivity of the system to delays. This will be discussed in this section.9.1 Stability domainThe sampling period was initially chosen as h = 0:01s. The wiseness of this choice can bedecided by computing the stability bounds for the uncompensated system when the samplingperiod belongs to an interval [h=10; 10:h] (Figure 9.1). The stability bound is de�ned as thelargest delay for which the closed loop system is stable when the controller is designed for adelay � = 0 and when the sampling interval is h. The observer pole is ao = 0.
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We must therefore consider the step response of the system (Figure 9.2).
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10 ConclusionIn section 2, the equations to solve in order to design a discrete-time RST controller have beenderived. The stability to delays of the uncompensated controller has been studied in section 4.By designing a controller which cancels a constant delay, we have increased the stability domain(sections 5 and 6). Meanwhile this domain has been shifted and short delays have becomeunstable. In order to try to avoid this, a gain scheduling controller has been designed (section 7).As this was not satisfying, the robustness of the system to delays has been increased by moving theobserver poles. That lead to a trade-o� between robustness to delays and disturbance cancellation(section 8). Finally, studying the in
uence of the sampling period on the robustness to delays, wefound out that the usual rule of thumb for choosing the sampling interval gives the best results.Even if the design for compensation has been done for any delay, the results in this reportconcern mainly delays that are lower than the sampling period. If they become larger, then theproblem of the missing sample can appear. Solving it should be a continuation to this work.11 References�Astr�om,K.J and B.Wittenmark (1990): Computer Controlled Systems : Theory and design,Prentice Hall, Englewood Cli�s, N.J.
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