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Abstract. Based on recent works on application of Floquet-Bloch theorem to
periodical mechanical systems including frequency-dependent parameters [1], we
propose in this paper an extension to vibroacoustic behavior analysis of smart
structures. The objective is to optimize electronic circuits used to shunt some
piezoelectric patches distributed on the structure, in order to minimize the acoustic
radiation of the structure. The proposed approach is based on the computation of the
multi-modal wave dispersion curves into the whole first Brillouin zone of the structure,
and associated propagation characteristics in the acoustic fluid. The impedance of the
shunt circuit is then optimized in order to render the acoustic waves evanescent. This
work is a collaborative effort supported by the French Research Agency under grant
number NT09− 617542.
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1. Introduction

The concept of metacomposite is presented in this paper, based on the coupling
of two strategies for vibroacoustic control. The first one is related to periodic
structures theories usually connected to metamaterial developments. In this case,
it is well known that the dynamic behavior is fully connected to periodicity ratios,
while corresponding pass bands and blocked bands can be of real use in vibration
control. The second concept is associated to vibration control through piezoelectric and
smart materials. Specifically, shunted piezoelectric smart materials are employed for
the metacomposite achievement by integrating into the metamaterial electronics and
numerical components allowing implementation of adaptive and controlled behavior.
The notion of programmable matter within the meaning of work presented in [2] is
extended to vibroacoustic programming. The paper main novelty is then the design
through full numerical analyses of a smart structure [1] with broad band control abilities.
Wave based methods and numerical simulation tools are adapted to the proposed
concept. The metacomposite efficiency is illustrated from the low frequency range
to the mid frequency band as well. Development of a wave trap metacomposite can be
the ultimate goal of the reported research and results.

2. Piezo-elasto-dynamical application of the Floquet-Bloch theorem

The metacomposite considered in this paper are illustrated in figure 1. The generic
piezocomposite cell is first used for the optimization of electrical shunt Z(ω) by
considering an infinite periodic distribution of the cells, and finally validated in the
context of the integration of a finite structure.
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Figure 1: Generic 3D piezocomposite periodic cell (left); Integration of the smart
interface in finite structure (right)

2.1. Numerical Computation of the Bloch’s waves

The Floquet-Bloch approach [3, 4] has been widely used for developing homogenization
techniques and spectral asymptotic analyses like in the work of [5]. Nevertheless these
approaches have been only developed for undamped or lightly damped mechanical
systems. In these cases, most of the published works present techniques based on the
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mesh of a real k-space following the boundary of the first Brillouin zone for obtaining
the corresponding dispersion curves and the associated Floquet vectors. For undamped
systems, only propagative or evanescent waves exist corresponding to a family of eigen
solutions purely real or imaginary. Discrimination between each class of waves is easy.
If a highly damped system (whose FE matrices are complex and frequency dependent)
and a frequency-dependent electrical shunt impedance are considered, the obtained
eigenvalue problem is not quadratic and a complex specific numerical methodology has
to be implemented. Furthermore, evanescent parts of propagating waves appear as the
imaginary part of pulsation. It then becomes much more difficult to distinguish the
propagative and evanescent waves as all solution appear complex.

Another much more suitable possibility for computing damped system, dedicated
for time/space deconvolution and for computation of diffusion properties as defined in
[1, 6, 7], is to transform the discretized form of the weak formulation into the following
generalized eigenvalue problem [1]:

0 = [ K (Z (ω))− ω2M + λn(ω, φ)L(φ, Z(ω))

−λ2
n(ω, φ)H(φ, Z(ω)) ]un(ω, φ),

(1)

where λ = ik, (k being the wave number),M andK(Z(ω)) are respectively the standard
symmetric semi-definite mass and stiffness matrices (the mass matrix is semi definite
because electrostatic equation are condensed [8, 9]), Z is the impedance of the shunt
circuit, L(φ, Z(ω)) is a skew-symmetric matrix, φ represents the direction angle into
the reciprocal 2D lattice domain and H(φ, Z(ω)) is a symmetric semi-definite positive
matrix. un is the generalized eigen vector defined on all degrees of freedom of the used
finite element model.

In this problem, the pulsation ω is a real parameter corresponding to the harmonic
frequency. Wave’s numbers and Floquet vectors are then computed. An inverse Fourier
transformation in the k-space domain can be used to evaluate the physical wave’s
displacements and energy diffusion operator when the periodic distribution is connected
to another system [6]. Another temporal inverse Fourier transformation can furnish a
way to access spatio-temporal response for non-homogeneous initial conditions. As L
is skew-symmetric, the obtained eigen values are quadruple (λ, λ̄,−λ,−λ̄) collapsing
into real or imaginary pairs (or a single zero) when all matrices are real (i.e. for an
undamped system). In this case a real pair of eigen values correspond to evanescent
modes oriented in two opposite directions in the k-space and imaginary values to two
traveling waves propagating in opposite directions [10].

2.2. Computation of the evanescence and damped power flow criteria

One aim of this paper is to provide a numerical methodology for optimizing the
piezoelectric shunt impedance Z(ω) for controlling energy flow into the periodically
distributed piezo-composite structure. Suitable criteria are then required.
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The first criterion which is considered for describing the ability of the
metacomposite to transmit structural energy is based on the computation of the wave
group velocities. Indeed, they indicate how energy is transported into the considered
system and allow to distinguish the ’propagative’ and ’evanescent’ waves. If a Bloch
eigen solution is considered, the associated group velocity vector [11] is given by:

Cgn(ω, φ) = ∇kω =
〈〈S〉〉
〈〈etot〉〉

=
〈I〉
〈Etot〉

(2)

where 〈〈:〉〉 is the spatial and time average respectivelly on one cell and one period, S is
the density of energy flux, I the mean intensity and etot, Etot the total piezomechanical
energy and its time average on a period (see [11] for details). In this problem,
only mechanical energy transportation is considered as the electrostatic coupling is
decentralized on each cell and can not induce spatial energy transportation. The
intensity vector I is computed by:

〈I〉 = −ω
2
Re(

∫
Ωx

C(εn(x, ω, φ) + ikΞn(x, ω, φ)).(w∗
n(x, ω, φ)))

dΩ

Vol
(3)

where .∗ is the complex conjugate and Vol the domain volume. The group velocity
vectors Cgn(ω, φ) is computed for all wave numbers at each frequency. In order to
focus the analysis only on flexural modes (S and SH ones), an index Ind(n, ω, φ) is
computed for each mode, frequency and angle value, quantifying the ratio of the kinetic
energy associated to transverse displacement to the total energy of the structure. The
optimization of the shunt impedance Z(iω) is based on the following criterion:

Crit1(Z(iω), φ) = maxn/Ind(n,ω,φ)>0.8(Cgn(ω, φ).Φ). (4)

The second criterion which is considered is based on the maximization of the
damped electric power Pelec(n, ω, φ). In order to increase damping effect inside the
smart metamaterial, this term needs to be sufficiently large. The corresponding criteria
is

Crit2(Z(iω), φ) = maxn/Ind(n,ω,φ)>0.8
1

Pelec(n, ω, φ)
. (5)

2.3. Computation of the sound radiation efficiency

The sound radiation efficiency of a plate depends on the coupling of sound waves in the
air and flexural waves (vibration) in the plate. Optimal efficiency (maximum energy
transfer from vibration to sound or vice versa) is achieved when the plate vibrates such
that the wavelength of flexural waves in the plate is equal to the wavelength of acoustic
waves in the air. This is more commonly known as the coincidence frequency of radiation
[12]. The corresponding frequency value can be obtained through the computation of
the kzn value of the induced acoustic wave number. If one considers an infinite plate in
which an harmonic plane wave is propagating with a wave number kxn at pulsation ω,
as the acoustic pressure radiated from this infinite system is a solution of the Helmholtz
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equation, coupled by considering interface continuous normal velocity, the expression
of kzn is:

kzn =

√
(
ω

c
)2 − kx2

n, (6)

where c is the speed of sound in the acoustic medium. This expression is classical for
the analysis of radiation of infinite plates and is used to define the coincidence frequency
that distinguishes evanescent and propagative acoustic waves [12].

3. Optimization of the Flexural energy flow inside the shunted periodic
piezo-composite

The considered piezo-composite cell is presented in figure 1. The supporting plate
material is standard aluminum with 0.1 % of hysteretic damping ratio.

3.1. Optimization of the waves goup velocities by using Crit1

In this part, optimization of the transmission capability of the designed adaptive
metacomposite is considered by using Crit1 (4). The objective is to avoid any
energy transportation when flexural waves are excited into the periodically distributed
shunted piezocomposite cells. The numerical optimization procedure is based on a
multidimensional unconstrained nonlinear minimization algorithm. The optimization
is done by considering an active/reactive electronic circuit through a complex impedance
Z(ω).

The analysis is initialized with an arbitrary complex value of the shunt impedance.
Optimization steps are then proceeded using criterion Crit1 by considering any
frequency dependent complex impedance for describing the circuit behavior.

Figure 2 shows the dispersion curves of the wave numbers along x axis for φ = 0,
and z component of acoustic wave number, for both initial and optimal impedance
shunts.

It must be underlined that the procedure has the ability to catch all Bloch’s
solutions including evanescent ones that generally do not appear in literature because
of their imaginary character. In the context of structural dynamics, including damping
effects is mandatory for real-life applications and all wave numbers become complex,
which constitutes a key point in the analysis [1, 10]. For a sake of clarity, the following
results are presented by exhibiting only propagative waves responsible for energy
transport, using a suitable wave filter based on the group velocity. It then becomes
easy to observe branches similar to standard S0, A0, A1, TH waves. It can immediately
be observed that the optimization of the shunt impedance leads to a large decrease of
the group velocity of the A0 mode while the A1 wave, which becomes propagative at 8.8

kHz, is not controlled by the optimal configuration. The bending waves also propagate
energy with a very low velocity and can be considered as evanescent. Flexural energy
is, then, only transported by the A1 mode after the cutting frequency.



Optimization of 2D wave’s dispersion for controlling acoustic interaction 6

0 0.5 1 1.5 2

x 10
4

0

50

100

150

200

250

300

350

400

(a) Propagative part of k
x

R
e

a
l(
k

x
) 

[m
−

1
]

Freq. [Hz]

 

 

Init − Flex

Init − Other

Opt − Flex

Opt − Other

Acous

0 0.5 1 1.5 2

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) Evanescent part of k
x

Im
a

g
(k

x
) 

[m
−

1
]

Freq. [Hz]

0 0.5 1 1.5 2

x 10
4

0

50

100

150

200

250

300

350

400

(c) Propagative part of k
z

R
e

a
l(
k

z
) 

[m
−

1
]

Freq. [Hz]

0 0.5 1 1.5 2

x 10
4

0

50

100

150

(d) Evanescent part of k
z

Im
a

g
(k

z
) 

[m
−

1
]

Freq. [Hz]

Figure 2: On the left, Real (a) and imaginary (b) parts of the wave number kxn(iω)

of plane waves propagating into the smart plate along (Ox) axis and, on the right, the
corresponding real (a) and imaginary (b) parts of the acoustic out plane wave number
kzn.
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Figure 3: Real and imaginary parts of the optimal impedance

The propagative part of the controlled wave is strongly modified: from two complex
conjugated solutions, the A0 wave changes after control to 4 solutions (2 complex
conjugates and their opposites). This situation is described in [10], it corresponds to
high order evanescent waves solutions. On the same figure, the acoustic performance of
the system is also presented. The acoustic dispersion curve is represented in red, and it
can be observed that the first flexural mode, in the initial configuration, is propagative
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above the coincidence frequency, which is a classical behavior. The interesting point
here is that the optimized configuration cancels the radiation of this wave, since it
becomes fully evanescent after optimal choice of the shunt impedance.

The real and imaginary parts of the optimal impedance are plotted in figure 3 for
all angles. The optimal impedance values almost correspond to a constant negative
capacitance in all directions. The corresponding average value is −233.66 pC/V .
Equivalent resistances corresponding to the active part of the shunt impedance are
negative which indicates that the optimization leads to provide energy to the system
for controlling mechanical damping effects introduced by hysteretic damping in the
model. The optimized configuration tends to converge towards a fully conservative
system. The mean value of the resistance is −1.5319 Ω, and the electrical dissipated
energy appears negative when the optimal shunt is connected to the patch.

3.2. Optimization of damped power flow inside the electric shunts by using Crit2

Another strategy for optimizing the adaptive metacomposite consists in focusing on the
damped power flow inside the electric shunts by using the criterion Crit2. In this case
the objective is to improve the absorption ability of the smart structure. Figure 4 shows
the dispersion curves of the wave numbers along x axis for φ = 0, and z component
of acoustic wave number, for both initial and optimal impedance shunts. The optimal
impedances of the electric shunts are plotted in figure 5 for various values of φ.

The first observation is that the optimization of the shunt impedance for improving
the absorption characteristics of the system induces modifications of the group velocities
of the controlled waves, while the propagative part of the wave numbers remain
unchanged. This can be explained by a large improvement of the ratio between the real
and imaginary parts of the waves numbers, which physically corresponds to the forcing
of propagating effects to increase damping effects: energy can propagate inside the
periodically distributed set of active cells for allowing electrical energy conversion. The
dissipated power is largely increased when optimal shunt is connected to the patch. On
the same figure, the acoustic performance of the system is also presented. The acoustic
dispersion curve is represented in red, and the behavior of the initial configuration is
unchanged. Contrarily to the optimization using Crit1, the first flexural mode still
propagates in the optimized system. The main difference with the initial configuration
lies in the fact that the evanescent part of the acoustic wave number is much higher,
which indicates that the acoustic wave is damped, exhibiting a decay rate which is
related to the imaginary part of the wave number. This is in accordance with the
objective, which tends to add damping in the system, instead of changing the nature
of the flexural mode.

The optimal impedance values (figure 5) correspond to an almost constant negative
capacitance in all directions. The average value is −237.43 pC/V . Equivalent
resistances corresponding to the active part of the shunt impedance are positive, which
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Figure 4: On the left, real (a) and imaginary (b) parts of the wave number kxn(iω) of
plane waves propagating into the smart plate along (Ox) axis and, on the right, the
corresponding real (a) and imaginary (b) parts of the acoustic out plane wave number
kzn.
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Figure 5: Real and imaginary parts of the optimal impedance

is in accordance with the fact that a damping effect is awaited.
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4. Validation on a periodically semi-distributed set of adaptive cells

4.1. Mechanical interface characterization

Up to that point, the optimizations of the smart metacomposite which have been
proposed were performed by considering infinite periodic structures. The objective
of this section is to illustrate the applicability of the designs for integration into real-life
finite structures. The optimal impedance is then applied on a finite set of shunted
piezo-composite cells distributed on a part of a totally free plate system submitted to
a point force in one corner, as described in figure 1. Material damping is introduced
throughout a constant imaginary part of the elasticity tensor of 0.1%. The harmonic
response of this system is then computed on the [500, 10000] Hz frequency band when
optimal impedances, obtained by criteria Crit1 or Crit2, are connected or not to each
patches.

From the observation of figures 6, the main particularities of the synthesized
optimal impedances can be emphasized. The first configuration, obtained by using
Crit1, leads the adaptive interface to avoid any flexural energy transfer. The mechanical
response of the system is strongly modified, and the resonance peaks are moved far from
the open circuit response, which indicates a modification of the internal dynamics.
The second configuration, based on Crit2 optimal shunt, forces energy dissipation into
the resistive part of the electric shunt. In that case, the conservation of the modal
architecture into the energy spectrum can be observed, even if some damping effects
limit the peak’s amplitudes.

The minimization of the flexural wave group velocity Crit1 leads to decrease the
part of kinetic energy transmitted to the non-excited part of the plate located behind
the adaptive interface as shown in figure 7 while the maximization of the damped energy
Crit2 only slightly modify this distribution. The modification of the energy distribution
into the system is very important after 6 kHz and increase with the frequency when the
energy is globally transported by A0 mode. This is not the case in the lower frequency
band when the interface works in the near field domain of the applied point force.

Finally these results indicate that the smart metacomposite interface changes the
system admittance and filter wave diffusion by increasing its reflexivity properties. The
energy diffusion is also clearly condensed into the left part of the system with a large
decrease of the amplitude compared to the one obtained with open circuit and Crit2
optimal shunt. With this type of shunt something similar to a wave trap effect can be
observed. With Crit2 optimal shunt, an improvement of the damping effect leading to
vibration attenuation can be observed, without wave trap behaviour.

4.2. Acoustical radiated power flow

Figure 8 shows the acoustic power radiated by right end part of the system Ωt, in terms
of power levels, for the initial configuration and for both optimal shunts. The global
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Figure 8: Acoustic power flow radiated by the right free part of the composite plate Ωt

acoustic level reduction is almost the same for the two optimal shunts (17 dB), and it
is mostly due to a high reduction in the 1260Hz third octave band where is located one
emitted mode. For other frequency bands before 5040 Hz, the reduction is generally
small (maximum 3 dB), or even negative in some cases. The reduction of vibration level
does not always lead to reduction of acoustic power since it reorganizes the distribution
of the displacement field on the structure, which means that the optimal configuration
can correspond to a more efficient field in terms of acoustic radiation in frequency band
initially dominated by non emitted response. In the high frequency bands, we observe
a strong reduction up to 15 dB when the metacomposite interface is controlled by using
optimal shunt obtained with Crit1. This behavior is induced by the strong reduction in
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the vibration transmissibility already observed in figure 7. The next part of this work
will consider an acoustic-based criteria for optimization of the electric shunts, in order
to reach higher acoustic efficiency.

5. Conclusions

This paper presents a numerical procedure able to compute the damped wave’s
dispersion functions in the whole first Brillouin domain of multi dimensionnal piezo-
elastodynamical wave guides. The method is applied for determining the optimal
impedance allowing to minimize the group velocities of the flexural waves. Based on
this approach, some numerical tests on a finite dimension system incorporating a semi-
distributed set of shunted piezo-composite cells have been performed. A strong influence
of the designed shunt circuits in the vibroacoustic response of the system is underlined.
The proposed numerical procedures can be used for optimizing the energy diffusion
operator of adaptive mechanical interface, even if additional work has to be done for
optimizing the complete interface scattering and for controlling the evanescent waves
playing an important role in the dynamical response of a finite system incorporating
semi-distributed interface. Another part of this future developments should deal with
the full vibroacoustic optimization incorporating a strong fluid-structure coupling effect.
The proposed methodology can also be used for the analysis of particular dissipation
phenomenon such as those induced by complex shunted piezoelectric patches [13, 14],
or even foams or complex polymers behaviors.
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