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Abstract

Porous materials are used in many vibroacoustic applications. Different

available models describe their behaviors according to materials’ intrinsic

characteristics. For instance, in the case of porous material with rigid frame,

and according to the Champoux-Allard model, five parameters are employed.

In this paper, an investigation about this model sensitivity to parameters ac-

cording to frequency is conducted. Sobol and FAST algorithms are used for

sensitivity analysis. A strong parametric frequency dependent hierarchy is

shown. Sensitivity investigations confirm that resistivity is the most influent

parameter when acoustic absorption and surface impedance of porous ma-

terials with rigid frame are considered. The analysis is first performed on

a wide category of porous materials, and then restricted to a polyurethane

foam analysis in order to illustrate the impact of the reduction of the design
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space. In a second part, a sensitivity analysis is performed using the Biot-

Allard model with 9 parameters including mechanical effects of the frame

and conclusions are drawn through numerical simulations.

Keywords: Sensistivity analysis, FAST, Sobol, Hierarchy, porous

materials, Champoux-Allard model, Biot-Allard model.

1. Introduction

Porous materials are used in a variety of acoustic applications. Prediction

tools of acoustic characteristics for these materials are necessary. Zwikker

and Kosten [1], and Biot [2, 3] developed the first popular porous media

models. A thorough review of these models and further developments was

performed by Attenborough [4]. For the case of rigid frame porous media,

Allard [5, 6] developed a five parameters model, based on the idea of John-

son [7, 8]. Measurement and identification of characteristics can be difficult

and time consuming, and understanding the model sensitivity can make the

optimization of the sound packages easier and facilitate new concepts de-

velopments. Only very few papers in the open literature on porous media

deal with sensitivity of models. Some elements about first-order estima-

tion of impact of parameters are presented for instance in [9]. This gives a

useful information, which remains limited to very small variations of param-

eters without considering any coupling effect between them. To the author’s

knowledge, one of the most advanced studies on the sensitivity analysis of

porous materials models has been proposed by Bolton et al. [10, 11], in

which a singular value decomposition is performed on the so-called sensitiv-

ity matrix, which is build from first-order estimation of derivatives (finite
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differences) and concatenates effects on absorption coefficient or transmis-

sion loss factor for different frequencies. A Singular Value Decomposition is

then performed to check the coupling effects between the parameters (the

parameters being considered as independent) in order to reduce the size of

the design space for identification purpose. The aim of this contribution is

to go one step further, by applying rigorous sensitivity analysis techniques

to porous materials models. For illustration purpose, the main features of

interest are the acoustic impedance and the absorption coefficient of a sam-

ple of porous material backed by an impervious rigid wall. The model used

for the description of the acoustic performances is the Champoux-Allard one

(depending on five parameters: porosity, flow resistivity, tortuosity, viscous

and thermal characteristic lengths). It should be noticed that the method-

ology is general and can be applied to more complicated porous materials

models. For instance, the considered sensitivity approach is also applied in

this paper using the Biot-Allard poroelastic model.

In this paper we focus on global sensitivity analysis techniques. We clas-

sically distinguish two families of methods, namely the local and the global

ones. Local sensitivity techniques are low cost, very easy to implement, but

they are only able to capture the sensitivity of the model in a limited subset

of the design space. On the other hand, global sensitivity analyses, which re-

quire a larger computational cost, gives information about sensitivity which

are valid for the whole design space and can deal with interactions effects

between parameters. Sobol and FAST global sensitivity methods are consid-

ered here. The main issue is to clarify how the variability associated with the

model inputs affects the model outputs [12]. Sensitivity analysis is also ex-
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pected to (but not limited to) determine which input parameters contribute

the most to output variabilities [13]; which parameters are insignificant; and

estimate parameters interactions.

A comprehensive review of the different sensitivity analysis methods, in-

cluding their advantages and drawbacks, has been proposed by Helton et al.

[14] and Frey et al. [15]. A comparison of these methods can be found in

[16, 17, 18, 19, 20]. Among the available sensitivity analysis methods, we

propose in this paper to apply Sobol [21] and FAST [22].

The paper is structured as follows. Section 2 provides a brief survey of

the sensitivity analysis methods considered in the paper. Section 3 recalls

the porous material models used in this work. In section 4, the Champoux-

Allard model is first considered. Sensitivity results are presented and dis-

cussed. This analysis is performed considering a large design space whose

parameters represent a wide variety of porous materials. Some remarks are

drawn about agreements between Sobol and FAST results. Then, a com-

parison is performed between the first order sensitivity and total sensitivity

indexes, in order to evaluate interactions effects versus total ones. In section

5, another sensitivity analysis is performed when the design space is limited

to a specific porous material, namely a polyurethane foam. In particular,

a focus is made on the choice of the probability functions used in the sen-

sitivity analysis. Some comments related to modelling and characterization

of porous materials are given. Sections 6 and 7 are dedicated to sensitivity

analysis of materials that exhibit fluid-structure coupled behavior in the fre-

quency range of interest. To that end, the Biot-Allard model is considered,

first with a large porous materials data base, then a restriction to a given
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type of material. Finally, some recommendations and concluding remarks

are given in section 8.

2. Sensitivity analysis methods

Most engineering problems use parametric models. Sensitivity analysis

provides tools to understand the impact of each parameter on the outputs

of interest. Associated methods are classically divided in two categories,

namely the local sensitivity analysis techniques, and the global ones. The

local methods estimate the sensitivity of a given model to input parameters

using different orders of partial derivatives. This type of analysis is limited

to small variations of parameters and is not able to capture the coupling

effects between them. The most popular technique in that category is the

One-At-a-Time (OAT) technique, which basically evaluates the sensitivity

of a feature f to a parameter x using the partial derivative
∂f

∂x
which is

estimated through finite differences
∆f

∆x
. This kind of technique is widely

used and generally gives pertinent information in a local point of view.

Global sensitivity analysis [12] is required when large design space and/or

coupling effects are concerned. Among possible methods the ”importance

measure method” or ”correlation ratio technique” are capable of estimating

the contribution of each parameter to the output variance [23]. However,

whether a parameter is influential or not depends also on the interactions

and influences of all the parameters. In this paper, two global methods are

considered, namely the Fourier Amplitude Sensitivity Test (FAST) and Sobol

methods, which not only can measure the ”main effect” (also named first

order term) but can also compute the so-called ”Total Sensitivity Indexes”
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(TSI) [12]. The brief outline of global sensitivity estimation is largely inspired

from different references and cookbooks offered by Saltelli and Tarantola [24].

2.1. Sobol - variance analysis

Indeed, concerning a quantity of interest (the output of the model), the

Total Sensitivity Index of parameter i, denoted by TSI(i) , is defined as

the sum of all the sensitivity indexes (including all the interactions effects)

involving parameter i. For example, suppose that we only have three input

parameters (A, B and C) in our model. The total effect of parameter A

on the output is TSI(A) = SI(A) + SI(AB) + SI(AC) + SI(ABC). Here,

SI(A) denotes the first order sensitivity index for parameter A, SI(AX) is

the second order sensitivity index for the parameter A and X (for X 6= A),

i.e. the interaction between parameters A and X, and so on. The first order

sensitivity index does not take into account coupling effects between param-

eters, but considers variation of the parameter according to its statistical

distribution on a possibly large range, in that sense it is more general than

the classical OAT finite differences based index.

In general, a mathematical model denoted f(·) is a plant connecting a

set of n input parameters to an output y, namely y = f(x), where x is

a random vector of input parameters, characterized by a joint probability

density function p(x) = p(x1, x2, ..., xn). Statistics of the output, y, can be

computed from the rth moment, which is given by

E(yr) =

∫
Kn

f r(x1, x2, ..., xn)p(x1, x2, ..., xn)dx, (1)

where Kn is the n-dimensional space of the input parameters. The com-

putation of integral in (1) gives sensitivity measures of different types. In
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the Sobol approach, the idea for the sensitivity indexes estimation is the de-

composition of the function f(x) into summands of increasing dimensionality

[21], namely

f(x1, ..., xn) = f0+
n∑
i=1

fi(xi)+
n∑
i=1

n∑
j=i+1

fi,j(xi, xj)+...+f1,...,n(x1, ..., xn). (2)

Sobol [21] showed that the decomposition (2) is unique and that all

the terms in (2) can be evaluated via multidimensional integrals, namely

f0 =

∫
Kn

f(x)dx, fi(xi) = −f0 +

∫
Kn∼i

f(x)dx∼i and fij(xi, xj) = −f0 −

fi(xi) − fj(xj) +

∫
Kn∼{i,j}

f(x)dx∼{i,j} with the convention that

∫
Kn∼i

dx∼i

and

∫
Kn∼{i,j}

dx∼{i,j} denote the integration over all parameters except xi,

and xi and xj, respectively. Here, ”∼” means ”complementary of”. Anal-

ogous formulas can be obtained for the higher order terms. The variance

based sensitivity indexes follow naturally this concept; the total variance D

of f(x) is then defined to be:

D =

∫
Kn

f 2(x)dx− f 2
0 , (3)

while partial variances are computed from each of the terms in (2) namely

Di1,...,is =

∫ 1

0

...

∫ 1

0

f 2
i1,...,is

(x1, ..., xs)dx1...dxs. (4)

In the Sobol approach, the integrals in (3) and in (4) can be evaluated

with a Monte Carlo (MC) integral.

The sensitivity indexes can then be evaluated by
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SI(x1...xs) =
Di1,...,is

D
, (5)

and the total sensitivity index of parameter xi on output y is the sum of

all sensitivity indexes SI(κ) where κ involves xi.

2.2. The FAST technique

The Fourier Amplitude Sensitivity Test (FAST) [22, 25, 26] has first been

developed for chemical applications. It is an elegant way to estimate properly

the first-order effects (i.e. without parameters interactions) and with a low

calculation cost. It is based on the idea that the previous multidimensional

integrals can be converted in one-dimensional ones using a transformation

such as :

xi =
1

2
+

1

π
arcsin(sin(ωis+ ϕi)), (6)

for each parameter i, where s ∈ (−π, π) is a scalar variable whose evolution

is driven by the probability density function of the variable, ωi is a properly

chosen angular frequency (see [25] for details) in order to avoid interferences

between spectral components of parameters, and ϕi is a random phase-shift

which allows different realizations of the parameter space. This resampling

strategy was not considered in the initial FAST technique, it has been in-

cluded in an improved version some years later [17].

The total variance of f is then approximated by

D ≈ 2

(Ns−1)/2∑
j=1

(
A2
j +B2

j

)
, (7)
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where Ns is the number of samples, while Aj and Bj are the Fourier coeffi-

cients defined as

Aj =
1

2π

∫ π

−π
f(x1, x2, ..., xn) cos(js)ds,

Bj =
1

2π

∫ π

−π
f(x1, x2, ..., xn) sin(js)ds.

(8)

The first-order effect associated to the parameter i is obtained by

Di ≈ 2
M∑
j=1

(
A2
jωi

+B2
jωi

)
, (9)

where M is the interference order corresponding to the chosen set of frequen-

cies ωi.

The initial version was only able to capture the first order global effects

(without interactions), at a very low calculation cost, since only one set of

sample was required. This technique has been improved later [17] to include

estimation of total sensitivity indexes, but requires a set of samples for each

parameter. The total effect of a parameter on variance is then captured using

another set of frequencies, by computing difference between unity and the

variance estimated when all parameters vary but the one of interest.

3. Porous materials models

In this section, porous materials models are briefly recalled. For further

details and developments, readers are advised to check published textbooks,

in particular the one by Allard and Atalla [5]. In this paper, the analysis is

restricted to acoustic properties of porous materials as outputs for the sen-

sitivity analysis. More precisely, the acoustic impedance and corresponding

absorption coefficient at normal incidence are considered. These quantities
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are estimated for a sample of given thickness e backed by an impervious rigid

wall. The lateral dimensions are taken infinite. Both rigid and elastic frame

are considered in what follows for sensitivity purposes.

3.1. Johnson-Allard, simplified Lafarge and Champoux-Allard models

The first model considered in this paper corresponds to cases in which

the frame of the porous material remains rigid. In this context, wave propa-

gation is characterized by the effective density ρe and bulk modulus K of the

material or using the characteristic impedance Zc and wave number k such

that:

k(ω) = ω

√
ρe(ω)

K(ω)
, (10)

Zc(ω) =
√
ρe(ω)K(ω), (11)

ω being the angular frequency. The wave number and the characteristic

impedance can be used to evaluate the surface impedance (Zs) and the ab-

sorption coefficient (α) when the sample is backed by an impervious rigid

wall:

Zs = −1

φ
jZc cot(ke), (12)

α = 1−
∣∣∣∣Zs − Z0

Zs − Z0

∣∣∣∣2 , (13)

where φ is the porosity, j =
√
−1, e is the thickness of the sample, Z0 = ρ0c0

is the specific impedance of the fluid saturating the pores (typically air, ρ0

being its density and c0 the speed of sound).
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The model used in this paper is the Champoux-Allard model, which is

detailed in Appendix A. It requires the knowledge of five material param-

eters, namely the porosity φ, the flow resistivity σ, the tortuosity α∞, the

characteristic viscous and thermal lengths Λ, Λ′.

3.2. Biot-Allard model

For porous materials exhibiting mechanical resonances of the frame in

the frequency range of interest, the generalized Biot model (also called Biot-

Allard model) has to be considered. In this model, 9 parameters are as-

sociated to the fluid-structure behavior of the porous media: the porosity

φ, the flow resistivity σ, the tortuosity α∞, the characteristic viscous and

thermal lengths Λ, Λ′ for the fluid phase, and Young’s modulus E, density

ρS, Poisson coefficient ν, loss factor η for the solid phase (considered to be

isotropic). In order to improve readability of this paper, the numerous equa-

tions of this model are not recalled here. They can be found in several papers

and textbooks, in particular in reference [5].

4. Detailed sensitivity analysis of Champoux-Allard model

In this article, the models f(·) considered for sensitivity analysis are re-

spectively the real and imaginary parts of surface impedance and the acoustic

absorption coefficient. Input parameters are the five parameters according

to the Champoux-Allard model: porosity, flow resistivity, tortuosity, viscous

and thermal characteristics lengths (φ, σ, α∞, Λ, Λ′). Table 1 gives lower

and upper bounds of each parameter. The probability density functions used

in this first analysis are uniform, the impact of this choice will be discussed

later in the paper.
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Parameter Lower bound Upper bound

Porosity φ [−] 0.7 0.99

Flow resistivity σ [Nsm−4] 1500 200000

Tortuosity α∞ [−] 1 3

Viscous characteristic length Λ [m] 5 200

Thermal characteristic length Λ′ [m] 5 400

Table 1: Lower and upper bounds of input parameters

Lower and upper limits in table 1 were determined according to collected

industrial data and published works, representing a wide variety of porous

materials. The objective is to characterize the sensitivity of the model while

covering a large part of the porous materials used in practical applications.

It is well known that, for a given porous material, all the parameters are not

independant: they mainly depend on the microstructure. Several techniques

can be used to link its geometry to the parameters considered here. Never-

theless, in this first analysis, the aim is to check the impact of each parameter

separately, independently from the microstructure geometry. Clearly the link

between the parameters is changing with the geometry of the microstructure,

and considering all possible materials together in this first step can be some-

how interpreted as a decoupling between the parameters. Among all samples

that will be used in the simulations due to random sampling in the bounds

of interest, a part of them do not correspond to any existing material. This

is not an issue, since the question that we want to answer here is not related

to a specific material, but the reader has to keep this point in mind. An-

other way to understand the philosophy of this analysis is to consider a blind
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identification of the foam parameters, without knowledge of the nature of

the material: in this case the parameters can be considered as independent

from the user’s point of view, and the performed analysis gives information

about the possibility to identify a given parameter among all ones. In the

next section of this paper we will focus on a specific material.

A similar study could be conducted using microstructure related param-

eters, but it would certainly be much more restrictive in the sense that only

a finite number of geometric configurations could be considered. Neverthe-

less, for the foam of interest, it would give very pertinent information about

impact of the considered parameters.

The sensitivity analysis has been conducted using both Sobol and FAST

methods. This investigation has been conducted in the frequency band [100

Hz - 2500 Hz] with 25 Hz frequency sampling. The input parameters sen-

sitivity indexes are then estimated at each frequency step. A 25 mm thick

porous material sample was considered (influence of the thickness value will

be discussed in section 7). Sensitivity methods efficiency is closely related

to the number of samples and number of parameters, but also the number

of repetitions for Sobol. It is important to remind that Sobol method gives

all partial sensitivity indexes, while the FAST technique gives only total and

first sensitivity indexes (STI and SI) for each input parameter. The number

of samples must be as low as possible to keep a low computational cost, but

large enough to ensure the convergence of the analysis. These parameters are

closely related to the number of parameters, to their statistical properties,

and to the complexity of the outputs of interest.

In the considered case, FAST method needs 100000 data points for con-
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vergence. Sobol needs 10 repetitions of 70000 computation data points. In

this case, data points are chosen using Monte Carlo method.

4.1. Sobol vs. FAST

In this subsection, sensitivity indexes of parameters on acoustic perfor-

mances are given for some chosen frequencies (namely 500 Hz and 2000 Hz).

Comparison is done between FAST and Sobol methods, respectively between

first and total orders sensitivity indexes. Table 2 shows the results. For in-

stance, in the case of real part of impedance at 2000 Hz, the computation

with FAST method allows quantification of first order sensitivity indexes for

the five parameters. Flow resistivity is the most influencing and its index is

about 46%, then viscous characteristic length index with 42%, then tortuos-

ity, thermal characteristic length, and porosity with very low indexes which

indicates that their first-order effect is almost negligible compared to σ and

Λ considering the bounds of interest. Sensitivity indexes in table 2 show

that FAST and Sobol methods are in good agreement, with small numeri-

cal discrepancies appearing for some low values or for the total sensitivity

index. Nevertheless, the ranking of parameters influence is identical. The

information given by the total sensitivity index will be further investigated

in the next section. For the case of first order sensitivity index, Sobol and

FAST indexes are equivalent to the so-named Standardized Regression Rank

Coefficients (SRRC) defined in [23]. Obviously, FAST method takes less time

than Sobol which needs repeating computation p-times. Sensitivity indexes

obtained by FAST method are used thereafter, considering that the first

and total indexes give pertinent information for understanding the impact

of each parameter separately and to check the effects of the couplings with
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other parameters.

Output Sensitivity

Index

Frequency Sensitivity

Method

φ σ α∞ Λ Λ′

Re(ZS)

first order

sensitivity

index

500 Hz
FAST 0.004 0.926 0.003 0.039 0.028

Sobol 0.006 0.847 0.005 0.086 0.028

2000 Hz
FAST 0.031 0.465 0.079 0.418 0.007

Sobol 0.024 0.364 0.063 0.389 0.004

Total

sensitivity

index

500 Hz
FAST 0.061 0.912 0.069 0.122 0.083

Sobol 0.006 0.859 0.026 0.121 0.026

2000 Hz
FAST 0.085 0.515 0.147 0.527 0.057

Sobol 0.039 0.472 0.115 0.529 0.015

Im(ZS)

first order

sensitivity

index

500 Hz
FAST 0.317 0.197 0.030 0.180 0.275

Sobol 0.275 0.167 0.022 0.227 0.237

2000 Hz
FAST 0.001 0.925 0.044 0.021 0.009

Sobol 0.002 0.809 0.041 0.046 0.006

Total

sensitivity

index

500 Hz
FAST 0.358 0.266 0.116 0.281 0.318

Sobol 0.288 0.190 0.056 0.281 0.245

2000 Hz
FAST 0.041 0.895 0.128 0.135 0.050

Sobol 0.006 0.873 0.100 0.135 0.013

α

first order

sensitivity

index

500 Hz
FAST 0.133 0.539 0.029 0.232 0.066

Sobol 0.105 0.428 0.025 0.232 0.057

2000 Hz
FAST 0.011 0.827 0.007 0.148 0.007

Sobol 0.010 0.666 0.007 0.142 0.008

Total

sensitivity

index

500 Hz
FAST 0.165 0.617 0.098 0.372 0.132

Sobol 0.104 0.572 0.058 0.377 0.077

2000 Hz
FAST 0.044 0.803 0.136 0.310 0.041

Sobol 0.014 0.786 0.109 0.301 0.014

Table 2: Sobol and FAST sensitivity indexes of parameters on acoustic performances

(Champoux-Allard model)

4.2. SI vs TSI

In this section, the analysis concentrates on the comparison between first

order and total sensitivity indexes, of course according to frequency, obtained

with the FAST technique. Figure 1 shows sensitivity indexes evolutions for
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each parameter (5 columns concerning respectively porosity, flow resistivity,

tortuosity, viscous and thermal characteristic lengths), and for each output

of interest (3 rows concerning respectively real and imaginary parts of the

surface impedance, and the acoustic absorption coefficient).

0

0.2

0.4

0.6

0.8

1

φ

[R
e

(Z
)]

σ α
∞ Λ Λ’

 

 

S

TS

0

0.2

0.4

0.6

0.8

1

[I
m

(Z
)]

0 1000 2000
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

[α
]

0 1000 2000
Frequency (Hz)

0 1000 2000
Frequency (Hz)

0 1000 2000
Frequency (Hz)

0 1000 2000
Frequency (Hz)

Figure 1: First order (SI) and total sensitivity (TSI) indexes of porous materials parame-

ters: effects on surface impedance and acoustic absorption

Figure 1 shows that total sensitivity of flow resistivity on the real part of

surface impedance globally decreases from 90% to 40% when the frequency

increases from 100 Hz to 2500 Hz. This tendency is inverted at very low

frequency. The total sensitivities of porosity, tortuosity, and viscous char-

acteristic lengths on the real part of surface impedance, increase, roughly.

16



Up to 2000 Hz, flow resistivity is the most important parameter, and above

that frequency, viscous characteristic length takes the pole position. Thus,

the strong dependency of sensitivity indexes according to frequency does not

allow a simple hierarchy of parameters. Concerning the imaginary part of

the surface impedance, the porosity is preponderant in the low frequency

range, while flow resistivity is the most influent parameter in the whole fre-

quency range. Other parameters have relatively small indexes. Total effect

of flow resistivity on acoustic absorption coefficient varies between 60% and

80% along frequency scale, while sensitivity indexes of viscous characteris-

tic length and tortuosity vary between 20% and 50%, and other parameters

have lower indexes. Sensitivity results provided here, are in concordance

with the empirical Delany and Bazeley model [27] in which the characteristic

impedance and wave number depend only on flow resistivity and frequency.

For example, the porosity is found to have a very low impact on the acoustic

impedance. This kind of result leads to comments:

• the value of this parameter has a limited impact on the estimated ab-

sorption coefficient: approximate value can be accepted with confi-

dence. The physical reason is that the feature of interest (absorption

coefficient for normal incident waves) is a global indicator. The results

would have certainly been different if the features would have been

related to the local behavior of the material: in our case, very pre-

cise description of the local effects is not required to obtain confident

information on the global behavior of interest.

• In terms of identification procedures, this result implies that testing the

sample measuring only absorption coefficient related to plane normal
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incident waves will not allow a confident identification of this parame-

ter. In the considered case, it is expected that the flow resistivity and

the viscous characteristic length can be easily identified, while since

other parameters’ sensitivities are very small, they will require a spe-

cial attention for efficient identification: the tortuosity will be provided

by a detailed analysis around 1000 Hz, while the thermal length will

be efficiently identified only in the very low frequency range. As said

above, the precision obtained on the porosity is expected to be poor

since its indexes are almost always lower than 10%.

As already mentioned, these results are obtained considering a wide variety of

porous materials, and for a fixed thickness of the sample. The conclusions are

then restricted to this context. In particular, remarks established concerning

the identification aspects are valid if the analyst has no idea about the values

of the parameters of the sample. In the next section, we will illustrate the

sensitivity analysis using a reduced design space, i.e. the case in which the

possible variations on parameters’ values are restricted to limited ranges.

Analyzing SIs versus TSIs (Figure 1), it is clear that Total Sensitivity

Indexes (TSIs) are superior to first order Sensitivity Indexes (SIs) regardless

frequency, because of coupling effects between parameters. This is due to

the fact that total index of a parameter is the sum of first order index and

interactions (involving this parameter), and allows to appreciate over-than

order two sensitivity indexes compared with first order effects. Nevertheless,

as indicated in [17], this is only one of the ways to define the total sensitiv-

ity of a parameter. In the case of real and imaginary parts of the surface

impedance and acoustic absorption coefficient, interactions between flow re-
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sistivity and the other parameters can reach respectively 20%, 13% and 40%

of TSI(φ). Other strong interactions can appear with tortuosity and viscous

characteristic length depending on the frequency range of interest.

Previous remarks are based on the sensitivity indexes defined in part 2.

It is important to bear in mind that these indexes are related to a unit total

sensitivity, and the conclusion must be weighted by the absolute value of the

sensitivity: a parameter could be detected as the main source of sensitivity

(i.e. with a TSI close to 1), but still induce small changes on the feature

of interest. The absolute value of total sensitivity is given by the analysis.

In the considered case, since the input parameters ranges are very large, the

impact on features is also very important. This fact is illustrated in figure 2,

which shows the mean value of features, together with minimum, maximum

values, and also the mean value plus or minus the standard deviation which

can be considered as a global measure of total sensitivity.
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Figure 2: Statistics of the set of outputs: mean value, mean value ± standard deviation,

minimum and maximum values

It is then clear that the conclusion presented above must be weighted. We

propose here to do this using the normalized standard deviation for outputs
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of interest, namely the ratio of the standard deviation to the mean value:

NSD(y) =

√
E(y2)− E(y)2

E(y)
. (14)

In the considered case, this corresponds to the three curves given in fig-

ure 3, which indicates that the global sensitivity of real part of impedance is

almost constant in the frequency range of interest, while for imaginary part

it is low at low frequency and quickly grows with frequency (up to 0.9, which

corresponds to a very high sensitivity). For absorption coefficient, the nor-

malized standard deviation is high in the low frequency range and decreases

with frequency.
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Figure 3: Normalized standard deviation for outputs of interest

4.3. Parameters classification

Figures 1 and 3 can be represented in a single one to improve readability,

as illustrated in figure 4.
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This compact representation allows the refinement of the conclusions

which were made above by only considering the sensitivity indexes: for ex-

ample, for identification purpose, it was observed that, in the low frequency

range, the porosity was driving almost all the sensitivity of the imaginary part

of the impedance. As said before, this indicates that it is in this frequency

range that the identification of the porosity would be the most confident.

Nevertheless, when combining this with the normalized standard deviation

which indicates that, globally, the value of this indicator is very low at low

frequency, this indicates that even if all the sensitivity is due to the porosity,

the identification will not be easy because of the 0.1 value of NSD. Both

information are then important and must be considered for identification

purpose and global sensitivity conclusions.

A qualitative analysis of the impact of each parameter on the outputs

of interest can then be performed. These conclusions are given according to

the hypotheses made before, in particular concerning the ranges considered

for each parameter, the outputs of interest and the fixed thickness of the

material:

• the porosity has a very limited impact on the features of interest. An

exception occurs at very low frequency (under 800 Hz)for the imaginary

part of the impedance, where it drives almost all the sensitivity, even if

in this frequency range, the standard deviation of the output remains

qualitatively low;

• the flow resistivity is globally the most sensitive parameter, for each

feature and on the whole frequency range;
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• the tortuosity has a very limited impact on acoustic performances, ex-

cept around 1000 Hz where absorption coefficient is quite sensitive on

coupling effects between tortuosity, thermal characteristic lenght and

flow resistivity;

• the viscous characteristic length is almost irrelevant under 500 Hz, and

then becomes much more important above that value: it is globally the

second most important parameter in terms of sensitivity, and even the

first one after 2000 Hz for real part of surface impedance;

• the thermal characteristic length exhibits quite large sensitive effects

below 200 Hz on real part of acoustic impedance and absorption coef-

ficient, between 200 Hz and 500 Hz for imaginary part of impedance,

and around 1000 Hz on absorption coefficient. For other frequencies,

its impact on acoustic performances is very low.

5. Sensitivity analysis of Champoux-Allard model on a specific

polyurethane foam sample

The objective of this section is to show how previous results are affected

when the analysis is restricted to a given material type. This corresponds

to a reduction of the size of the design space, in accordance with the knowl-

edge of the considered material. Here a polyurethane foam which has been

used and described in reference [28] is considered. In this paper, some mate-

rial parameters identification coming from three different labs are given. A

Champoux-Allard model is used, and corresponding data are reproduced in

table 3.
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Lab.1 Lab.2 Lab.3

Porosity φ [−] 0.95 0.975 0.96

Flow resistivity σ [Nsm−4] 14750 13904 16989

Tortuosity α∞ [−] 2.3 1.648 2.01

Viscous characteristic length Λ [10−6m] 155 77 85.41

Thermal characteristic length Λ′ [10−6m] 232 240 207.13

Table 3: Identified values of the parameters of the polyurethane foam [28]

Classically, a basic finite difference analysis can be achieved to have a

rough idea about the sensitivity of the model to the parameters’ values. Re-

sults related to this preliminary investigation on absorption coefficient are

presented in figure 5. It can be observed that the ordered most sensitive

parameters seem to be the viscous characteristic length, then the tortuos-

ity, and the porosity. Other parameters changes slightly affect the value of

absorbing coefficient. This type of local approach for sensitivity analysis is

limited and is clearly unable to take into account neither coupling effects

between parameters nor non linear effects.

The global sensitivity analysis is then performed using the improved

FAST technique. The variability of the parameters are used to build the

probability density functions (pdfs) used in the sensitivity analysis. The

lack of information and databases make it difficult to built probability func-

tions with confidence, since at most 3 informations are available for each

parameter. Several solutions can then be used to estimate the pdf. Gaussian

pdfs should clearly be avoided (parameter’s values can be negative, with no

physical meaning). Figure 6 shows several possible pdfs for flow resistivity,
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identified from the database taken from literature [28]. This figure shows:

• a basic uniform pdf, which has the advantage to ensure positive values

for each parameter, but it does not allow parameters to go outside the

region defined by the available data;

• an exponential pdf, obtained using the principle of maximum entropy

[29, 30], assuming the samples are confident enough to define bounds

and mean of the random variable;

• a gamma distribution, also identified using the principle of maximum

entropy, which is more adapted since its bounds are not explicitly given

by available samples (the identification is derived by the mean of the

samples and the mean of the log of the samples);

• another gamma distribution whose shape and scale parameters can be

estimated using a maximum likelihood technique [31] associated to the

given data (only the statistical moments, without considering entropy).

It can be observed that each parameter identification leads to quite differ-

ent pdfs, and among the chosen shapes, the Gamma distribution is probably

the most physical one. Since only few samples are available, there is a large

uncertainty in the pdf identification, depending on the knowledge the user

has concerning the parameter’s uncertainties, and the confidence about given

samples.

In particular, one should take into account physical limits of parameters

when trying to identify the pdfs: for example, the porosity should obviously

be positive and lower than 1, or the tortuosity should not be lower than 1. In
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Figure 6: Examples of pdfs for flow resistivity

this context, the physical limits must clearly be considered through the use

of compact supports for the pdfs. Being given a compact support [a, b], the

mean mφ and the statistical moment of order 2 m2 (or the standard devia-

tion), the best estimate of the pdf in the sense of the principle of maximum

entropy is [32, 30]

pφ(x) = 1[a,b](x)e−λ0−xλ1−x
2λ2 , (15)

where λ0, λ1, λ2 are obtained by minimization of the convex function (λ0, λ1, λ2) 7−→

H(λ0, λ1, λ2) where

H(λ0, λ1, λ2) = λ0 + λ1mφ + λ2m2 +

∫ b

a

e−λ0−xλ1−x
2λ2dx1dx2. (16)

For the porosity, one obtains a pdf which is quite close to the gamma function,

but which ensures that any sample value is lower than 1.

The results of both analyzes considering uniform and non-uniform prob-

ability density functions are given in figures 8 and 9.

The use of uniform pdfs gives an interesting result: in this case, SIs are

almost equal to TSIs. This indicates that the coupling effects between pa-
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Figure 7: Examples of pdfs for porosity

rameters are very low, due to the small parameters possible changes. The

ranking which was deduced from the local sensitivity analysis is confirmed

for the same reason. Depending on the frequency range of interest, the most

sensitive parameters are the flow resistivity and viscous characteristic length.

The main difference with previous analysis concerns tortuosity, which has a

strong impact on imaginary part of impedance. One can also point out the

impact of this parameter on absorption coefficient around 2500 Hz: the local

sensitivity analysis seems to indicate a very low impact of the parameter,

which is confirmed by the corresponding SI index, while the TSI is around

20%, which indicates that large coupling effects occur. Nevertheless, if uni-

form pdfs are considered, the results given by the local sensitivity analysis are

in this case coherent with those provided by the global sensitivity analysis.

Trends on SIs are similar with the non-uniform pdfs. SIs obtained during

this analysis are almost equal to the ones corresponding to uniform pdfs,

except for viscous characteristic length which exhibits a strong sensitivity

under 500 Hz. Moreover in this case, the coupling effects are no longer neg-
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Figure 8: Sensitivity indexes - uniform pdfs for all variables
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ligible. In particular, tortuosity, which had a TSI of 20% above 2000 Hz for

absorption coefficient, is now close to 90%. This was not detected by the local

analysis, so even for small parameters variability, one has to take care of sim-

plified approaches if precise parameters’ impact are required. Another point

that should be emphasized is the very close behavior of porosity and flow

resistivity in terms of sensitivity when considering the absorption coefficient.

This observation can be done for both SIs and TSIs, which are all quite small

(smaller than 20%). This indicates that when observing only this output,

separation between these parameters will be difficult. In terms of identifi-

cation, this is coherent with the observation by Bolton et al. [10, 11], who

have shown that the effects of these two variables where very close and that

removing one of them (namely fixing the value of porosity) was improving

the conditioning of the identification procedure.

As a conclusion, it has been shown in this part that for reduced design

spaces, the local sensitivity analysis can give coherent trends as a first step.

However, when the ranges of parameters are growing, coupling effects rapidly

appear and the sensitivity indexes can be very badly estimated by the local

approach. In particular, the choice of the pdf has an important impact on

the results: switching from uniform pdfs to non-uniform pdfs implies that

the minimum and maximum possible values of parameters are outside of the

bounds corresponding to the uniform pdfs case, and facilitate the apparition

of coupling effects. The knowledge of the physical limits associated to each

parameter is then a key aspect of the problem, since they drive the results

of the sensitivity analysis.
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6. Sensitivity analysis of Biot-Allard model for a wide range of

materials

In this part, a global sensitivity analysis is performed using the Biot-

Allard model, for a wide range of materials. The variations of the considered

parameters are given in table 4.

Parameter Inferior limit Superior limit

Porosity φ [−] 0.7 0.99

Flow resistivity σ [Nsm−4] 1500 200000

Tortuosity α∞ [−] 1 3

Viscous characteristic length Λ [m] 5 200

Thermal characteristic length Λ′ [m] 5 400

Elastic modulus E [Pa] 1000 5000000

Poisson ratio ν [−] 0 0.44

Density ρS [kg.m−3] 8 200

Loss factor η [−] 0 1

Table 4: Input parameters for Biot-Allard model (wide range of materials)

The results of the sensitivity analysis are given in figure 10. The very

interesting result here is that the SIs and TSIs obtained in this case are very

close to those presented for the Champoux-Allard model (figure 1): the 5

parameters of the fluid phase have similar sensitivities in both Champoux-

Allard and Biot cases. The mechanical parameters have SIs which are close

to zero, but exhibit coupling effects up to 35%. In terms of material choice,

this tends to indicates that if the choice is related to either impedance or

absorbing coefficient, material’s characteristics must be chosen according to
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the fluid phase’s parameters. As it will be illustrated later, mechanical pa-

rameters are becoming important when the design space is restricted to a

reduced domain.
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Figure 10: Sensitivity analysis of Biot-Allard model for a wide range of materials

7. Sensitivity analysis on a sample of polymer foam

The previous analysis is repeated in this section considering a specific

material, namely a polymer foam, which has been described and character-

ized in [9]. Uncertainties levels given in table 5 are related to measurement,

anisotropy and heterogeneity of the sample.

Figure 11 shows the results of the sensitivity analysis when uniform pdfs

are considered for each parameter. The thickness of the sample is 25 mm.

Compared to previous analysis, the parameters ranking has been modified in
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Parameter Inferior limit Superior limit

Porosity φ [−] 0.96 0.98

Flow resistivity σ [Nsm−4] 119000 212000

Tortuosity α∞ [−] 1.5 2.1

Viscous characteristic length Λ [m] 41 79

Thermal characteristic length Λ′ [m] 137 223

Elastic modulus E [Pa] 170000 241000

Poisson ratio ν [−] 0.435 0.465

Density ρS [kg.m−3] 39.1 39.9

Loss factor η [−] 0.10 0.12

Table 5: Input parameters for polymer foam [9]

a very large scale. The frequency dependency of the sensitivity index is very

important. Globally, flow resistivity has the highest impact on the features,

but some mechanical parameters, namely Young’s modulus and Poisson ratio,

are very important, in particular in zones in which mechanical effects occur.

Coupling effects are almost negligible, except in these zones, which can be

identified in figure 12, which shows the frequency evolution of the absorption

coefficient for the mean values of parameters. In particular, even if the input

uncertainty level is higher for E (±17%) than for ν (±3%), a very large part

of the global sensitivity is associated to the Poisson ratio in the frequency

ranges in which mechanical resonances occur. This point illustrates the need

of efficient experimental methodologies to improve identification of Poisson

ratio in porous materials.

In order to understand the effect of the thickness of the sample, the
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Figure 11: Sensitivity indexes of Biot-Allard model for a polymer foam (25 mm thickness)

absorption coefficient for a sample thickness of 47 mm is also given in figure

12.

The corresponding sensitivity analysis results are shown in figure 13. It

can be observed that the global trend is a homothetic frequency shift: the

mechanical effects have strong influence at a lower frequency, due to the

higher thickness, and in the zones in which their impact is low, the flow

resistivity has the highest sensitivity indexes.

8. Conclusions

Models considered for porous materials analysis are defined according to

some parameters. The Champoux-Allard model (with five material param-

eters) and the Biot-Allard model (with nine parameters), are considered in
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Figure 13: Sensitivity indexes of Biot-Allard model for a polymer foam (47 mm thickness)
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this work for sensitivity purposes, as examples. The work presented in this

paper quantifies the sensitivity of parameters for these models in the case of

a 25 mm thick porous material sample with rigid frame, considering surface

impedance and acoustic absorption indicators.

The sensitivity analysis is frequency dependent and uses two methods:

Sobol and extended FAST. As expected, both sensitivity methods are in

good agreement when comparing first order and total sensitivity indexes,

including coupling effects. Both techniques lead to similar results concerning

the first-order and total sensitivity indexes, even if the FAST technique is

faster, but provides only mean first-order and total sensitivity indexes (which

are often sufficient in practical cases). The results are presented together with

the normalized standard deviation to improve readability and interpretation

of results.

The studies performed on porous materials illustrate the preponderant

impact of flow resistivity on acoustic performances. Nevertheless, some other

parameters can have a strong impact on the vibroacoustic behavior. The

sensitivity of these parameters is strongly frequency dependent, since some

of them can be irrelevant in a frequency band, and becoming very important

for other frequency ranges. It appears that no general hierarchy of parameters

for porous materials can be drawn. For the cases which have been studied,

all acoustic parameters (i.e. those related to the fluid phase) have exhibited

an important participation to the total sensitivity for one of the considered

outputs (real, imaginary part of impedance, absorption coefficient) for a given

frequency range. Mechanical parameters are generally less influent, except in

the zones in which strong couplings between fluid and solid phases appear. In
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these zones, elastic parameters are very important, in particular the Poisson

ratio. This can lead to drastic change in the material vibroacoustic behavior

even for limited fluctuation of the parameter.

One of the key aspects for the sensitivity analysis is the designer’s knowl-

edge concerning parameters variabilities: consequences in terms of hierarchy

and quantification of coupling effects can strongly depend on the upper and

lower bounds defined for the parameters, or by the probability density func-

tions which are chosen.

It has been shown that global sensitivity analysis can help the designer to

choose a material, since it allows one to focus on the most influent parameters

of the material for the desired vibroacoustic output. It is also very useful for

parameter identification purposes, since it helps the analyst to mostly devote

effort on observable and influent parameters only.

The first drawback of the global sensitivity analysis in this context is the

large number of model evaluations which are required, due to the number of

considered parameters and of the model non-linearity. Practically, this is not

a drastic limitation since outputs of interest are accessible through analytical

expressions, as it is the case in this paper. For more general case studies where

sensitivity evaluation is expected to be time consuming, model reduction can

be a solution to render this kind of analysis feasible. The second drawback in

the analysis proposed here is that all material parameters are considered as

independent. When the analyst has some knowledge about the relationships

between the parameters, they should be taken into account in the sensitivity

analysis.
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Appendix A. Johnson-Allard, simplified Lafarge and Champoux-

Allard models

The effective density (including viscous and inertial effects) is given by

the Johnson-Allard model [7, 8]:

ρe(ω) = ρ0

(
α∞ +

ν0φ

jωq0

G(ω)

)
, (A.1)

where α∞ is the tortuosity, ν0 =
η

ρ0

, η being the viscosity, q0 =
η

σ
is the

static viscous permeability, σ being the flow resistivity, and:

G(ω) =

√
1 +

(
2α∞q0

φΛ

)2
jω

ν0

, (A.2)

where Λ is the viscous characteristic length.

The bulk modulus (related to thermal effects) is given by the simplified

Lafarge model [33]:

K =
γP0

γ − γ − 1

1 +
ν ′φ

jωq′0
G′(ω)

, (A.3)

where P0 is the static pressure, γ is the heat capacity ratio, ν ′ =
ν0

B2
, B2

being the Prandtl number, q′0 is the static thermal permeability and:

G′(ω) =

√
1 +

(
2q′0
φΛ′

)2
jω

ν ′
, (A.4)

where Λ′ is the thermal characteristic length.
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This model requires the knowledge of 6 material parameters, namely the

porosity φ, the flow resistivity σ, the tortuosity α∞, the characteristic viscous

and thermal lengths Λ, Λ′ and the static thermal permeability q′0.

The Champoux-Allard model [34] is obtained by approximating the bulk

modulus to the one of a material with circular cross-sectional shaped pores,

yielding

q′0 =
φΛ′2

8
. (A.5)

This model exhibits only 5 parameters.
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