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Abstract

Floquet-Bloch theorem is widely applied for computing the dispersion properties of peri-

odic structures, and for estimating their wave modes and group velocities. The theorem

allows reducing computational costs through modeling of a representative cell, while

providing a rigorous and well-posed spectral problem representing wave dispersion in

undamped media. Most studies employ the Floquet-Bloch approach for the analysis of

undamped systems, or for systems with simple damping models such as viscous or pro-

portional damping. In this paper, an alternative formulation is proposed whereby wave

heading and frequency are used to scan the k-space and estimate the dispersion prop-

erties. The considered approach lends itself to the analysis of periodic structures with

complex damping configurations, resulting for example from active control schemes, the

presence of damping materials, or the use of shunted piezoelectric patches. Examples

on waveguides with various levels of damping illustrate the performance and the char-

acteristics of the proposed approach, and provide insights into the properties of the

obtained eigensolutions.
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1. Introduction

Tailoring the dynamical behavior of one or two-dimensional waveguides can provide

efficient and physically elegant means to optimize mechanical structures with regards

to vibration and acoustic criteria, among others. However, achieving this objective

may lead to different outcomes depending on the context of the optimization. In the

preliminary stages of a product’s development, one mainly needs optimization tools

capable of rapidly providing global design directions. Such optimization will also depend

on the frequency range of interest. One usually discriminates between the low frequency

(LF) range and the medium frequency (MF) range, especially if vibration and noise are

considered. However, it should be noted that LF optimization of vibration is more

common in the literature than MF optimization. For example, piezoelectric materials

and other adaptive and smart systems are employed to improve the vibroacoustic quality

of structural components, especially in the LF range (see references Preumont (1997),

P.A. Nelson (1992) or Banks and R.C. Smith (1996) among many others).

Recently, much effort has been spent on developing new multi-functional structures

integrating electro-mechanical systems in order to optimize their vibroacoustic behav-

ior over a larger frequency band of interest, among which Thorp et al. (2001) or Collet

et al. (2009). However, there is still a lack of studies in the literature for MF op-

timization of structural vibration. To that end, the aim of this study is to provide

a suitable numerical tool for computing wave dispersion in two-dimensional periodic

systems incorporating damping and/or active devices (visco-, poro-elastic materials,

controlling electronics devices...). The final aim is to allow their optimization in terms

of vibroacoustic diffusion in two-dimensional waveguides.

The two most popular numerical approaches that can be distinguished for computing

dispersion are the Semi-Analytical Finite Element method (SAFE) and the wave finite

element (WFE) method. In the former approach, the displacement field is modeled

exactly in the direction of wave propagation by using a harmonic function and approxi-

mately in the directions perpendicular by using finite elements. An eigenvalue problem

is then formulated by introducing the displacement field into the governing equations.

Solving the eigenvalue problem for a given frequency gives the wave numbers of all the
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propagating modes. The main disadvantage of the SAFE method is that FE used are

not standard so they must be specifically defined for each application. Nevertheless,

many specific finite elements have been developed since 1975, among which those dedi-

cated to computation of different types of structures. Gavrić (1994) used this technique

to calculate the dispersion relationship in a free rail by using triangular and quadrilat-

eral elements, with those elements obtained from Hamilton’s principle. Hayashi et al.

(2003) derived the SAFE formulation for the waveguides of complex cross-sectional

shape through virtual work principles. By using Lagrange’s equations Damljanovic

and Weaver (2004) developed the linear triangular elements for SAFE method to in-

vestigate the elastic waves in waveguides of arbitrary cross-section. The wave mode

characteristics in damped waveguides were examined by Bartoli et al. (2006), with the

elements derived also from Hamilton’s principle. The SAFE technique has also been

adopted to investigate the wave propagation characteristics for thin-walled structures

in Finnveden (2004). In order to avoid development of specific FE, the WFE method

considers the structures as periodic in order to model, with standard FE, a period

of the structure. By using the periodic structure theory (PST) introduced by Mead

(1996), an eigenvalue problem can be formulated from the stiffness and mass matrices

of the FE model to find wave numbers of all the propagating waves. Contrary to SAFE

method, the displacement field is approximated in the direction of propagation. Thus,

some numerical issues can arise when the size of FE are too coarse. As recommended

by Mace and Manconi (2008), a minimum of six elements per wavelength is a good rule

of thumb to ensure a reliable analysis. The WFE method has been successfully used to

deal with wave propagation in two dimensional structures by Manconi (2008), Ichchou

et al. (2008) or Akrout (2005).

One of the main problems of these two approaches is the difficulty to deal with

complex mechanical wave propagation specifically of multi-modal nature. Indeed, the

existence at each frequency step of a number of wavemodes that potentially exchange

energy make the computation and characterization of wave attenuation a delicate task.

This task is of fundamental interest in the optimization process of energy dissipation

features. This paper will then concentrates in the computation of the damped wave
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numbers in the whole Brillouin domain defined in Brillouin (1953) that are necessary

for vibroacoustic optimization behavior of such periodic structures. By using WFE

technique, one can introduce structural or viscous damping, as indicated in Duhamel

(2007) or Mace and Manconi (2008). Such computations involve resolution of complex

polynomial or transcendental eigenvalue problem as underlined in Mace and Manconi

(2008). The treatment of the obtained damped wave numbers also necessitates specific

tools for defining and estimating the wave loss factors as in Manconi and Mace (2010).

In this paper, after recalling the Floquet and the Bloch theorems, a new numer-

ical formulation is introduced for computing the multi-modal damped wave numbers

in the whole first Brillouin domain of periodical structures with non homogeneous and

generic frequency dependent damping terms. Then a bi-dimensional numerical appli-

cation is presented in order to validate the method and to use it for estimating the

bi-dimensional band gaps as well as a suitable evanescence’s indicator in the context of

strongly damped systems. The validated methodology can also be used for optimizing

damping layers or active/semi-active elements to control vibroacoustic power flow into

mechanical systems. The paper is precisely structured as follows. Section 2 reminds

The Floquet-Bloch theorem for elasto-dynamical system and offers the mathematical

and physical context of its application. Section 3 deals with a two-dimensional appli-

cation of section 2 main finding. The considered example corresponds to a periodic

distributed passive means. Section 4 concludes the paper.

2. Floquet and Bloch theorems for elasto-dynamic dispersion analysis

This section summarizes Floquet and Bloch theorems and their application to elasto-

dynamics. The well-known formulations of Floquet (1883) and Bloch (1928) respectively

for one dimensional (1D) and two dimensional (2D) systems governed by differential

equations with periodic coefficients are here specifically revisited in light of their appli-

cation to the analysis of damped periodic mechanical systems.
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2.1. The Floquet theorem

The Floquet theory is a methodology to solve ordinary differential equations of the

form:
dw(x)

dx
= A(x)w(x), ∀x ∈ R, (1)

wherew(x) : R→ Cn is the unknown function, andA(x) is a given matrix of continuous

periodic functions with period r1, i.e. A(x + r1) = A(x). Floquet Theorem dictates

that any solution of this system of equations can be expressed as a linear combination of

functions v(x)ekx, where v(x) is r1-periodic, while k ∈ C is a scalar complex quantity.

The theory provides a way to evaluate v and k from the solution of an eigenvalue

problem.

Among the many mathematical aspects of the theory, some points should be men-

tioned for proper understanding. First, for any given basisW (x) ∈ Cn×n of fundamen-

tal solutions of (1), a new basis P0(x) of solutions normalized so that P0(0) = In can

be defined:

P0(x) = W (x)W−1(0), (2)

where In denotes the n×n identity matrix. It is possible to search forW (x+ r1) from

the expression:

W (x+ r1) = P0(x)W (r1) = W (x)W−1(0)W (r1), (3)

where P0 is the Floquet propagator which allows the evaluation of W (x + r1) from

knowledge of W (r1). The estimation of P0 is based on its diagonalization performed

for x = r1:

P0(r1) = ZΛZ−1, (4)

where Λ and Z contain the solutions of the following eigenvalue problem:

P0(r1)zj = λjzj, (5)

so that Λ is a diagonal matrix with λj terms, and Z is the matrix grouping eigenvectors

zj as columns. The eigenvalues can also be written as:

Λ = eKr1 , (6)
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where K is a diagonal matrix whose generic element is kj such that λj = ekjr1 . The

parameter kj is the j-th Floquet (characteristic) exponent, while λj is the corresponding

Floquet multiplier. The computation of the eigenvalues is not performed directly on P0,

since a more convenient identifies Y as the Floquet propagation of basis Z such that:

Y (x) = P0(x)Z.

Also, It may be shown that:

Y (x+ r1) = Y (x)eKr1 . (7)

The vectors included as columns in Y (x) are solutions of the initial periodic problem

(1) restricted to the elementary cell [0, r1], with fixed boundary conditions at x = 0

and x = r1. Accordingly, the eigenvectors zj and eigenvalues λj = ekjr1 are solutions of

the generalized eigenvalue problem:


dY (x)

dx
= A(x)Y (x) ∀x ∈ [0, r1],

Y (0) = Z,

Y (r1) = ZΛ.

(8)

The Floquet propagators are then obtained from:

P0(x) = Y (x)Z−1, (9)

and a basis of solutions is given by:

W (x) = Y (x)W (0). (10)

An alternative way computes the Floquet propagators by considering the undamped

Floquet vectors vj defined from the following relation:

V (x) = Y (x)e−Kx, (11)

where V is the matrix containing the vectors vj as columns. It can be shown that these

function are r1-periodic, and they are solutions of the following problem:
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
dV (x)

dx
= A(x)V (x)− V (x)K ∀x ∈ [0, r1],

V (0) = Z,

V (r1) = Z.

(12)

The generalized eigenvalue problem (12) is equivalent to (8) and gives eigenvectors zj

and eigenvalues kj. The solution in terms of Floquet propagator can then be expressed

as:

P0(x) = V (x)eKxZ−1, (13)

while a basis of solutions is given by:

W (x) = V (x)eKxW (0). (14)

Equation (14) is the Floquet normal form of the fundamental basisW (x). The charac-

teristic multipliers in equation (14) are also the eigenvalues of the linear Poincaré maps

defined as the function w(x)→ w(x+ r1), where w(x) is a solution of (1).

Based on the above discussion, it is clear that two different approaches for the

calculation of wave solution are possible: the Floquet propagators can be obtained

by solving the eigenvalue problem (8) or by estimating the Floquet vectors from (12).

The two resulting eigensolutions are related to each other and permit the computation

of wave solutions for (1). However, they are obtained from two different eigenvalue

problems. The first approach computing the Floquet propagators (8) leads to compute

non standard eigen solutions of a problem where the eigenvalues (i.e. the Floquet

multipliers) appear in the expression of the applied boundary conditions, while the

second approach considers only standard Dirichlet periodic boundary conditions and

computes the eigenvalues (i.e. the Floquet exponents) by solving a standard eigenvalue

problem by introducing another expression of the used operator inside the cell domain

(1). The distinction between these two approaches is essential to the understanding of

the numerical implementation presented in what follows. Of note and relevant to the

upcoming discussion is that Floquet exponents are not unique since e(kj+i
2mπ
r1

)r1 = ekjr1

where m is an integer. Also, Floquet vectors are periodic, and therefore bounded on

R. The stability of homogeneous solutions of (1) are also given by the value of the
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Lyapunov exponents, which are the real parts of the Floquet exponents: the solutions

are asymptotically stable if all Lyapunov exponents are negative, Lyapunov stable if the

Lyapunov exponents are nonpositive and unstable otherwise. These properties remain

valid when multi-dimensional problems are considered.

2.2. The Bloch theorem

Bloch theorem was originally introduced to represent the form of homogeneous states

of Schrödinger equation with periodic potential. This theorem can be considered as a

multidimensional application of the Floquet theorem, as indicated by Joannopoulos

et al. (1995).

For illustration purposes, we consider a medium whose generic property M satisfies

the periodicity condition:

M(x+Rm) = M(x),

where m ∈ Z3, and R = [r1, r2, r3] ∈ R3×3 is a matrix containing the three lattice

vectors rj, j = 1, .., 3, as illustrated in figure 1. The primitive cell is defined as a convex

polyhedron of R3 called ΩR. The reciprocal unit cell, denoted by ΩG is defined by the

reciprocal lattice vector basis gk for which the following holds:

rj · gk = 2πδjk,

where δjk the Kronecker delta. Also, G = [g1, g2, g3] is the reciprocal lattice matrix in

the later. If ΩR is the irreductible primitive cell, ΩG corresponds to the first Brillouin

zone of the lattice (see Kittel (1986) for details).

The Bloch theorem stipulates that any functions u(x) ∈ L2(R3,Cn) can be ex-

pressed as

u(x) =

∫
ΩG

ũ(x,k)eik·xdk, (15)

where the Bloch amplitude ũ(x,k) is ΩG-periodic in k and can be represented as:

ũ(x,k) =
∑
n∈Z3

û(k +Gn)eiGn·x,

=
|ΩR|
(2π)3

∑
n∈Z3

u(x+Rn)e−ik·(x+Rn), (16)
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Figure 1: Generic 3D periodic cells

(a) (b)

Figure 2: (a) Rectangular parallelepiped primitive lattice (b) Corresponding rectangular

parallelepiped reciprocal lattice
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where û(k) stands for the Fourier transform of u(x). It can also be demonstrated

that the mean value of the Bloch amplitude is the Fourier amplitude of u(x) for the

corresponding wave vector:

〈ũ(.,k)〉Ωx = û(k)

where 〈̃.〉Ωx denotes for the spatial mean value computed on domain Ωx.

The application of Bloch theorem for the representation of solutions of partial dif-

ferential equations with periodic coefficients allows for all derivatives to be shifted by k

in the sense given by the considered spatial operator. Consider for example the second

order elliptic operator:

A(x) = −
N∑

p,q=1

∂

∂xp
(Apq(x)

∂

∂xq
) +W (x) (17)

defined on smooth functions of RN (i.e. C∞(RN)) where Apq(x) is a symmetric, smooth

and uniformly positive matrix with ΩR-periodic coefficients. Indices p and q denote each

basis vector of the considered RN domain. Also, W (x) ≥ 0 is a real smooth function

ΩR-periodic. A spectral resolution of the closure of this operator can be found in

L2(RN), and can be expressed in terms of Bloch waves associated with A(x). Indeed,

let k ∈ ΩG, and define:

A(x,k) = −
N∑

p,q=1

(
∂

∂xp
+ ikp)(apq(x)

∂

∂xq
+ ikq) +W (x). (18)

The shifted cell eigenvalue problem is then considered:

A(x,k)vj(x,k) = ω2
jvj(x,k), (19)

for k ∈ Ωk with v(x,k) in H1(ΩR) and ΩR-periodic.

The essentially self-adjoint operator A(x,k) is non negative and the eigenvalue

problem (19) has a discrete sequence of eigenvalues ω2
j , with j ∈ N whose corresponding

eigenfunctions are the Bloch waves vj(x,k). These eigenvalues are smooth functions of

x and are complete in L2(ΩR). More details in mathematical properties of this eigen

solution can be found in Bensoussan et al. (1978) and Wilcox (1978). Based on these

results, the Bloch expansion of any function u(x) ∈ L2(R3,Cn) can be expressed as:

10



u(x) =

∫
ΩG

+∞∑
j=1

uj(k)eikxvj(x,k)dk (20)

and

uj(k) =

∫
RN
u(x)e−ikxv̄j(x,k)dx, (21)

where v̄j is the complex conjugate of vj. Moreover, Parseval’s identity holds∫
RN
|u(x)|2 dx =

∫
ΩG

+∞∑
j=1

|uj(k)|2 dk. (22)

The spectral resolution of operator A can also be expressed as:

A(x)u(x) =

∫
ΩG

+∞∑
j=1

uj(k)eikxω2
j (k)vj(x,k)dk. (23)

Examples of applications of these results can be found in Bensoussan et al. (1978).

2.3. Application to elastodynamic

Let us consider an infinite periodic elastodynamic problem as presented in figure 1.

The harmonic homogeneous dynamical equilibrium of system is driven by the following

partial derivative equation:

ρ(x)ω2w(x) +∇C(x)∇sym(w(x)) = 0 ∀x ∈ R3 (24)

where w(x) ∈ R3 is the displacement vector, C(x) stands for the Hook elasticity tensor

and ε(x) = ∇sym(w(x)) = 1
2
(∇wT (x)+w(x)∇T ) is the strain tensor. By considering a

primitive cell of the periodic problem ΩR and by using the Bloch theorem, the associated

Bloch eigenmodes (19) and the dispersion functions can be found by searching the eigen

solutions of the homogeneous problem (24) as:

w(x) = wn,k(x,k)eik.x, (25)

where wn,k(x,k) are ΩR-periodic functions. In that case wn,k(x,k) and ωn(k) are the

solutions of the following generalized eigenvalues problem:

ρ(x)ωn(k)2wn,k(x) +∇C(x)∇sym(wn,k(x))

−iC(x)∇sym(wn,k(x)).k − i∇C(x)
1

2
(wn,k(x).kT + k.wT

n,k(x))

+C(x)
1

2
(wn,k(x).kT + k.wT

n,k(x)).k = 0 ∀x ∈ ΩR,(26)

wn,k(x−R.n)−wn,k(x) = 0 ∀x ∈ ΓR.(27)
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The first equation is simply obtained by introducing equation (25) into elastody-

namic equation (24). The second equation represents the symmetrical boundary condi-

tions expressed on boundary faces of the lattice polyhedron as described in figure 2(a)

for a rectangular parallelepiped cell. In this equation n stands for the outpointing uni-

tary normal vector. It corresponds to a complex Quadratic Eigenvalue Problem (QEP)

that can be solved by fixing two of the constants ω, |k| (the complex amplitude) or

cosine directions of k and compute the last one.

The proposed formulation is based on the computation of the Floquet vectors from

equation (26), instead of computing the Floquet propagators commonly used for elas-

todynamic applications. The methodology allows the computation of the full complex

map of the dispersion curves incorporating computation of evanescent waves and allow-

ing the introduction of damping operator if any.

2.3.1. Weak Formulation and computation of waves dispersion curves in periodical lat-

tice

Let us consider the partial derivative equations (26) on a unit cell ΩR. It stands for

a generalized eigenvalue problem leading to computation of the dispersion curves ωn(k)

and corresponding Floquet eigenvectors wn,k(x).

For 3D applications, the wave vectors are supposed to be complex if damping terms

are added into equation (26), they can be written as k = k


sin(θ) cos(φ)

sin(θ) sin(φ)

cos(θ)

 where

θ and φ represent the direction angles into the reciprocal lattice domain as shown in

figure 2(b). This decomposition assumes that real and imaginary parts of vector k are

co-linear. In the following, Φ =


sin(θ) cos(φ)

sin(θ) sin(φ)

cos(θ)

 indicates that direction vector.
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2.3.2. Weak Formulation

If wn,k(x) is a solution of equation (26), then:

∀w̃n,k(x) ∈ {H1(ΩR,C
3)/w̃n,k(x−Rn) = w̃n,k(x) ∀x ∈ ΓR},∫

ΩR

ρ(x)ω2
n(k)w̃n,k(x)wn,k(x)− ε̃n,k(x)C(x)εn,k(x)

+ikκ̃n,k(x)C(x)εn,k(x)− ikε̃n,k(x)C(x)κn,k(x)

+k2κ̃n,k(x)C(x)κn,k(x)dΩ

+

∫
ΓR

w̃n,k(x)(C(x)(εn,k(x) + ikκn,k(x))).ndΓ = 0, (28)

where εn,k(x) = ∇sym(wn,k(x)) is the strain tensor, κn,k(x) = 1
2
(wn,k(x).ΦT+Φ.wT

n,k(x))

is the symmetric dyadic tensor or the dyadic product of the displacement wn,k(x) and

the direction vectorΦ. ˜means that the specified operator is applied to the test functions

and n is the unit outpointing normal vector on the considered boundary.

This weak formulation is simply obtained by integrating equation (26) projected

onto any test function w̃n,k(x). The boundary integral vanishes as the test func-

tions are chosen so that w̃n,k(x −Rn) = w̃n,k(x) on ΓR that implies C(x)(εn,k(x −
Rn) + ikκn,k(x − Rn)).n(x−Rn) = −C(x)(εn,k(x) + ikκn,k(x)).n(x). That cor-

responds to the exact compensation of the boundary applied generalized constraints

C(x)(εn,k(x) + ikκn,k(x)). For a polyhedron cell, each boundary is a polyhedral plane

sub-domain that can be associated with a parallel opposite one. The symmetry condi-

tions wn,k(x −Rn) = wn,k(x) explicitly link these associated surfaces. As the corre-

sponding normal vector n are opposite, κn,k(x−Rn) = κn,k(x) and the stress condition

can be restricted to C(x)(εn,k(x −Rn)).n(x−Rn) = −C(x)(εn,k(x)).n(x) on the

two opposite surfaces. Thus, all boundary integrations vanish and the weak formulation

can be written as:

∀w̃n,k(x) ∈
{
H1(ΩR,C

3)/w̃n,k(x−Rn) = w̃n,k(x) ∀x ∈ ΓR
}
,∫

ΩR

ρ(x)ω2
n(k)w̃n,k(x)wn,k(x)− ε̃n,k(x)C(x)εn,k(x)

+ikκ̃n,k(x)C(x), εn,k(x)− ikε̃n,k(x)C(x)κn,k(x) + k2κ̃n,k(x)C(x)κn,k(x)dΩ = 0.

(29)
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2.3.3. Numerical Computation

The numerical implementation is obtained by using a standard finite elements

method to discretize the weak formulation (29). The assembled matrix equation is

given by:

(K + λL(Φ)− λ2H(Φ)− ω2
n(λ,Φ)M )wn,k(Φ) = 0, (30)

where λ = ik, M and K are respectively the standard symmetric definite mass and

symmetric semi-definite stiffness matrices, L is a skew-symmetric matrix and H is a

symmetric semi-definite positive matrix:

M →
∫

ΩR

ρ(x)ω2
n(k)w̃n,k(x)wn,k(x)dΩ,

K →
∫

ΩR

ε̃n,k(x)C(x)εn,k(x)dΩ,

L →
∫

ΩR

−κ̃n,k(x)C(x)εn,k(x) + ε̃n,k(x)C(x)κn,k(x)dΩ,

H →
∫

ΩR

κ̃n,k(x)C(x)κn,k(x)dΩ.

(31)

When k and Φ are fixed, the system (30) is a linear eigen value problem allowing

us to compute the dispersion functions ω2
n(k,Φ) and the associated Bloch eigenvector

wn,k(Φ).

This approach has been widely used for developing homogenization techniques and

spectral asymptotic analyses like in the work of Allaire and Congas (1998). It can also

be applied for computing wave’s dispersion even if Floquet propagators are preferred for

1D or quasi 1D computation, as indicated by Ichchou et al. (2007), Houillon et al. (2005)

or Mencik and Ichchou (2005). Nevertheless these approaches have been only developed

for undamped mechanical systems that is to say represented by a set of real matrices.

In this case, most of the previously published works present techniques based on the

mesh of a real k-space (i.e k or λ and Φ) inside the first Brillouin zone for obtaining

the corresponding frequency dispersion diagrams and the associated Floquet vectors.

For undamped systems, only propagative or evanescent waves exist, corresponding to

families of eigen solutions purely real or imaginary. Discrimination between each class

of waves is easy. If a damped system is considered, that is to say if matrices K,L,H
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are complex, evanescent part of propagating waves appear as the imaginary part of

ω2
n(λ,Φ) and vice versa. It then becomes very difficult to distinguish the two families

of waves but also to compute the corresponding physical wave’s movements by applying

spatial deconvolution.

Another possibility much more suitable for computing damped system, dedicated

for time/space deconvolution and for computation of diffusion properties as defined

by (Collet et al., 2009) or Mencik and Ichchou (2005), is to consider the following

generalized eigen value problem:

(K − ω2M) + λn(ω,Φ)L(Φ)− λ2
n(ω,Φ)H(Φ))wn,k(Φ) = 0. (32)

In this problem, the pulsation ω and the propagative angle Φ are fixed real param-

eters. Wave’s numbers λn = ikn and associated Floquet vectors wn,k are then com-

puted by solving the quadratic eigen problem. This approach allows introduction of

frequency dependent matrices corresponding to generalized damping terms (viscoelas-

ticity), multiphysic coupling (especially electromechanical with electronic ordinary dif-

ferential equation), foam (Biot-Allard model) or open domain boundary conditions

(Sommerfeld condition).

Based on this approach, an inverse Fourier transformation in the k-space domain can

lead us to evaluate the physical wave’s displacements and energy diffusion operator

when the periodic distribution is connected to another system, like in the work by

Collet et al. (2009). Another temporal inverse Fourier transformation can furnish a

way to access spatio-temporal response for non-homogeneous initial conditions. As L

is skew-symmetric, the obtained eigen values are quadruple (λ, λ̄,−λ,−λ̄) collapsing

into real or imaginary pairs (or a single zero) when all matrices are real (i.e. for an

undamped system). In this case a real pair of eigen values correspond to evanescent

modes oriented in two opposite directions on the k-space and imaginary values to two

traveling waves propagating in opposite direction. The obtained eigen solutions are

similar in 1D to those given by SAFE method and additional important properties can

be extrapolated from Gavrić (1995).

As previously mentioned, the real part of k = kΦ vector is restricted to stand inside

the first Brillouin zone (see figure 2(b)). In the quadratic eigen value problem (2.3.3)
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nothing restricts computation to only find eigen values satisfying this condition. For

direction vector Φ orthogonal to the lattice facelets (i.e. for Φp1 = [1, 0]T and Φp2 =

[0, 1]T in bi-dimensional rectangular cell), the periodical conditions expressed for one

dimensional waveguide are still valid: if λj(Φp) is an eigen value associated to wj,k(Φp)

then ∀m ∈ Z3, λ+i.ΦT
p (G.m) is also an eigen value associated towj,k(Φp)e

−i.ΦTp (G.m)x.

Thus, for undamped systems, all obtained eigenvalues are periodically distributed in

the k-space along its principal directions.

3. Applications for computing bi-dimensional waves dispersion

Illustrations in this paper are limited to bi-dimensional waveguide applications.

Thus, it can easily be found in literature comparative works to validate this new com-

putational methodology. Two different systems are considered in this section. The

first one corresponds to the undamped system used by Wu et al. (2009) to validate

our computation and the second one corresponds to the damped version of the same

system.

3.1. Undamped wave dispersion and band-gap computation in thin plate with periodic

stubbed surfaces

The system is presented in the work of Wu et al. (2009). It consists of an infinite

periodic bi-dimensional waveguide shown in figure 3(a). The system is made of a 1

mm thick aluminum plate with periodic cylindrical stubs on one of its faces as shown

in figure 3(b). The whole system is made of isotropic Aluminum 6063-T83 (ν = 0.33,

E = 69e9[Pa], ρ = 2700[kg/m3]).

By using symmetry of the unit cell, the corresponding first Brillouin zone is de-

scribed in figure 4 where the irreducible zone is the shaded area. The method allows

us to compute eigen frequencies corresponding to any k vector described in cylindric

coordinates system by its radius k and its angle φ.
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(a) (b)

Figure 3: (a) Schematic of the considered bi-dimensional waveguide (b) Description of

the unit cell with periodic stubbed surface

Figure 4: bi-dimensional physical cell and corresponding first Brillouin zone. Shaded

area is its irreducible part
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3.1.1. Numerical implementation

The numerical implementation is based on the 3D weak formulation (29), using a

bi-dimensional orientation in the k-space by imposing Φ =


cos(φ)

sin(φ)

0

. The applied

boundary conditions are equalities of all 3D displacements on the two pairs of lateral

faces Γr+1 Γr−1 and Γr+2 Γr−2 as depicted in figure 3(b). To impose such Dirichlet boundary

conditions an extrusion coupling variable maps of displacements from the source face

is exported to the destination face corresponding to the opposite one (i.e. from Γr+1

to Γr−1 ). As the domains are of the same space dimension, we typically use a point-

wise mapping. The exported mapping is also coupled to the destination displacement

by using dedicated Lagrange multipliers. The implementation is made with COMSOL

Multiphysics© platform and parametric computation to obtain k(ω, φ) is carried out

with Matlab© routines.

For each parameters ω and φ, the quadratic eigenvalue problem can be reformulated

as a first order one by doubling the state dimension. After constraint handling, it

is possible to write the system in the form Ax = λBx. The algorithm computes

the largest eigenvalues of the matrix C = A−1B. To do this, the solver uses the

ARPACK FORTRAN routines for large-scale eigenvalue problems which is described

by Lehoucq et al. (1998). This code is based on a variant of the Arnoldi algorithm:

the implicitly restarted Arnoldi method (IRAM). The ARPACK routines must perform

several matrix-vector multiplications Cv, which are accomplished here by solving the

linear system Ax = Bv using the PARDISO solver developed by Schenk and Gärtner

(2004). This procedure uses double precision floating point numbers and is implemented

using out of core memory management in order to avoid any out-of-memory problem

even when dense (and converged) mesh is considered as shown in the following.

For all presented examples, computations have been carried out with ω = 2π.[1000 :

1000 : 200000] (frequency between 1 and 200 kHz) and φ = [0 : π
20

: π
2
].

The mesh of the cell is shown in figure 5. The first mesh case consists of 296

tetrahedral Lagrange quadratic elements for 1947 degrees of freedom and the refined
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(a) (b)

Figure 5: Unrefined (a) and refined (b) Mesh cases

one of 1550 tetrahedral Lagrange quadratic elements for 23913 degrees of freedom.

3.1.2. Dispersion along Γ−X direction of the undamped system

A first computation has been made to compare our results with those presented by

Wu et al. (2009). The proposed method is applied for computing the wave’s dispersion

curves of the undamped system along the Γ − X direction (i.e for φ = 0, see figure

4). Figure 6 shows three different computations of the same dispersion curves. The

first one (plain red line) corresponds to the direct simulation of the undamped system

by fixing k along the Γ − X segment in the Brillouin zone and computing the corre-

sponding eigenfrequencies ω by using a standard numerical method based on equation

(26) (Aberg and Gudmundson, 1997; Mace and Manconi, 2008). The second and third

dispersion curves (in dotted and crossed lines in figure 6) show, respectively, the results

obtained with the unrefined and refined meshes cases. The results show a really good

agreement between the standard computation method used to obtain the reference re-

sults as proposed by Wu et al. (2009) and the proposed method with the refined mesh.

It can be pointed out that the evanescent modes are included into the computation

and are represented by crosses points with a null imaginary parts located along the
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frequency axis. It also shows the convergence of the refined model compared to the

unrefined one. The running time for the refined mesh case is 13.897 s and 0.621 s for

the unrefined one by using an Intel Core i7 CPU running at 2.67 GHz with a RAM of

8 Go. The convergence of the proposed method is also obtained by using 12 time more

degrees of freedom for 22 time more computing time which 3 more ARPACK iterations.

These computations validate the numerical implementation of the proposed method.
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Figure 6: Dispersion curves for undamped system (imaginary part of λn(ω)). plain

lines: standard method, dot: unrefined modeling of the proposed procedure, cross:

refined modeling of the proposed procedure

For evaluating the band-gap of the periodic system, an indicator of minimal evanes-

cence ratio of all the computed waves for each considered frequency can be used, defined

as:

Ind(ω, φ) = min
n

∣∣∣∣Real(λn)

|(λn)|

∣∣∣∣ . (33)

Figure 7 shows the plot of this indicator for both mesh cases. The location of the first
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two stop bands of the system can be observed: the first one is from 40 to 50 kHz and

the second from 156 to 176 kHz. Precision of these results depends on the frequency

discretization rate. The obtained band-gap is totally comparable with those computed

by Wu et al. (2009). Figure 7 allows us to observe convergence of the obtained results

when refined mesh density is improved.
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Figure 7: Evanescence ratio Ind(ω). plain lines: refined mesh, dashed line: unrefined

mesh

As previously mentioned, the Bloch theorem only allows computation of waves dis-

persion into the first irreductible Brillouin zone, here for k cos(φ) and k sin(φ) inside

the shaded area in figure 4. The obtained wavenumbers are symmetrical according

to the boundary conditions of the corresponding polyhedral surface. This property is

observed in figure 8 where the whole set of obtained wavenumbers (i.e the imaginary

parts of λn(ω)) is plotted. It can be observed that they are symmetrical with respect

to the vertical axes on ± π
r1

= 100π when φ = 0.

3.2. Dispersion of the damped system in the whole bi-dimensional k-space

The proposed computational method allows us to compute multi modal wave’s prop-

agations in the complete bi-dimensional k-space in the first Brillouin zone. The pro-

posed methodology is based on the computation of complex wave numbers as a function

of frequency. The Bloch theorem is expended in the case of damped systems and the

obtained values become complex integrating phase velocity and evanescent part for
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Figure 8: Whole propagative wave numbers (imag(λn(ω)) when φ = 0

each computed wave number associated to the real and imaginary parts of the obtained

eigenvalues of equation (2.3.3). The damping behavior is introduced by assuming a

complex Hook elasticity tensor. The same methodology could have been realized by

introducing any kind of linear viscoelastic modeling such as viscous behavior or any

other complex frequency-dependent terms.

The first calculations have been done considering a 1% damping ratio on the same

structure as the one presented before. A specific procedure has been developed to track

the waves from one frequency to another in the dispersion curve, in order to follow the

characteristic propagating waves: starting from a set of waves which are considered as

propagative (typically such that the ratio of the real part of eigenvalue to its modulus

is lower than 5%), a MAC-based correlation criteria is computed to associate the waves

from one frequency step to another:

MAC(u,v) =
|uHv|2
|u|2|v|2 , (34)

where uH is the hermitian of u. Even if this criteria does not constitute a scalar

product for the considered basis, it nevertheless gives a good estimation of the closest
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shape to a given reference vector. The use of a correlation indicator to track the

waves between two calculation steps gives the opportunity to plot confident dispersion

diagrams, in particular when curves are crossing together that is to say when veering or

bifurcation phenomena occur in dispersion curves. Moreover, in particular situations

like apparition of a new wave, loosing of correlation, or even for vanishing of group

velocity, the frequency step is adapted in order to enhance the ability to follow the

waves.
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Figure 9: Propagative wave numbers of damped system (imag(λn(ω)) when φ = 0 (left)

and φ = 18o

Figure 9 illustrates the typical results of the analysis. Propagative wave numbers

of the damped system are shown for φ = 0 and φ = 18o. It can be observed that if

φ = 0, the symmetry illustrated in figure 8 still exists, while as soon as other directions

are considered, the symmetry in the dispersion diagram does not exist anymore. This

can be explained by the fact that the periodicity of the initial pattern is lost when

the orientation is not parallel to one of the sides of the initial cell. Concerning the

correlation, some surprising results can be observed: in some cases the correlation

indicator fails to follow a given mode, even for small frequency steps. It is not yet

clear if this is a numerical artefact or if this can be explained physically. One should

emphasized that the MAC-based correlation is not mathematically justified since it

does not constitute a scalar product for the considered basis. This point is currently
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under investigation.

Figure 10: Directivity of damped system using evanescence indicator (33) saturated at

unit value in the case of 1% of damping ratio

Figure 10 illustrates the stop bands directivity of the damped system using the

evanescence indicator saturated at unit value for a sake of visualization. The full dark

areas correspond to stop bands in which only evanescent waves can exist. The stop

bands can exist even in the case of lightly damped system. These bands can be angle-

dependent and exist only for particular directions.

A second computation has been made using a damping ratio of 10%. It can be

observed in figure 11 that the evanescence ratio is modified and that larger band gaps

can be observed. In that case, the existence of specific frequencies for which wave

propagation is only possible along the main system axis (Ox) and (Oy) is observed. This

particular behavior is reinforced by the damping effect smoothing the stop wave domains

as observed in figure 10. The high frequency behavior is almost always ’evanescent’ and

cancels all wave transmissibility inside the system.
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Figure 11: Directivity of damped system using evanescence indicator (33) saturated at

unit value in the case of 10% of damping ratio
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Figure 12: Directivity of damped system using wave numbers in the first Brillouin zone

in the case of 1% of damping ratio: each mark indicates a computed solution, the size

of the mark is a measure of the propagative nature of the wave ("evanescent" waves

correspond to small radius, "propagative" waves correspond to large radius)
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These results can also be interpreted visually by using directivity diagrams in which

the solutions are plotted in terms of wave numbers, for a given set of frequency points.

This graphical representation is shown in figure 12 for a damping ratio of 1%. One can

observe in particular that for frequencies in pass-bands several propagative solutions

can be found, while for frequencies in stop-bands, all solutions correspond to evanescent

waves. This can clearly be observed at 49 kHz for example. For particular frequen-

cies like 179 kHz, the directivity is strong: waves traveling along x and y axes are

propagative, while when φ belongs to [30°,60°], the corresponding waves are becoming

evanescent.
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Figure 13: Directivity of damped system using wave numbers in the first Brillouin zone

in the case of 10% of damping ratio: each mark indicates a computed solution, the size

of the mark is a measure of the propagative nature of the wave ("evanescent" waves

correspond to small radius, "propagative" waves correspond to large radius)

When the damping ratio becomes larger, the real part of the solutions are increasing

in amplitude and the waves tend to be attenuated, as it can be observed in figure 13.

The directive effect observed at 179 kHz for a lower value of damping does no longer

appear for that particular frequency since the former "propagative" waves have been
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changed in evanescent ones.

All these aspects constitute interesting results that will be confronted to experimen-

tal results in the next part of this work.

4. Concluding remarks

This paper presents a validated numerical procedure able to compute the damped

wave’s dispersion functions in the whole first Brillouin domain of multi dimension-

nal elastodynamical wave’s guides. The method has been applied for determining the

bi-dimensional band-gaps of the well known periodic structures studied by Wu et al.

(2009) when damping effect is considered. Based on this approach, a suitable criterion

indicating the evanescence ratio of computed waves is proposed. It can be used for

optimizing structured damping layers or electronics circuits and transducers for con-

trolling vibroacoustic behavior of the systems. The damping operator introduced in

the formulation can be frequency dependent as viscous one but can also be much more

complicated. It can compass specific dissipation phenomenon such as those induced by

distributed shunted piezoelectric patches as proposed by Beck et al. (2008) and Casadei

et al. (2009), or even foams or complex polymers behaviors. The proposed method fur-

nishes an efficient tool for future optimization of distributed smart cells as proposed in

the case of 1D waveguides by Collet et al. (2009).
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