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FRANCE

E-mail: manuel.collet@univ-fcomte.fr

Morvan OUISSE

E-mail: morvan.ouisse@univ-fcomte.fr

Emmanuel FOLTÊTE
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Abstract. A numerical implementation of the Raniecky Lexcellent (RL) [1, 2, 3]
model for shape memory alloys (SMA) coupled with heat equation is presented in the
paper, adapted to high strain rate loading. The objective is to predict the time response
of a 2D SMA structure subjected to an impulse force and induced free vibration with
a decreasing amplitude for isothermal and anisothermal conditions. The choice of the
material mechanical properties has been done in order to have phases transformations
during the oscillations. The apparent damping and stiffness effects due to these phase
changes is clearly identified when the results are compared with a linear model without
induced martensite. The thermomechanical constitutive relation of the SMA has been
fullfiled to be able to take into account time reaction when the strain rate is very high.
The full model has been implemented in a finite element code and tested on a 2D
sample.
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1. Introduction

Smart materials such as shape memory alloys (SMA) are used in different areas of

engineering science. These materials, discovered around the 1930’s are nowadays the

source of unique and innovative applications. Using the framework of the beam theory,

the one-dimensional structures (bars, springs...) can be designed empirically [4, 5]. In

many cases, volumetric structures or plates, shells are made by using 3D or 2D models.

A special numerical processing will be devoted to thin structures.

SMA modeling implies the introduction of the strongly nonlinear thermomechanical

behavior associated with abrupt changes in their lattice structures called martensitic

phase transformation [6]. Two common manifestations are: first, the shape memory

effect corresponding to the reorientation of martensite platelets under external stress

and second, the pseudoelasticity under stress associated to a recoverable phase

transformation between a mother phase A called austenite and a product phase M

called martensite.

The various applications of shape memory alloys have motivated a variety of

constitutive models, see [7, 8] and the references therein.

When modeling these materials, the challenge is to find a balance between simplicity

and adequate description of the underlying microstructure and its evolution.

Most of SMA models or solid-solid phase change ones lie within the framework of

standard materials with internal variables [9].

It is well known that the macroscopic behavior of such materials can be described

with two potentials: a free energy potential (Helmholtz or Gibbs) for the reversible

aspects and a dissipation potential for the dissipative ones [10]. Moreover for these

models, the choice of internal variables with physical meaning is important for physical

characterization and updating processes. For instance, the choice of the volume fraction

of martensite as an internal variable in a two-phases system is a natural one. Moreover

the equations of conservation like the Euler-Cauchy equations of motion and energy

related ones are needed if one wants to describe the dynamical behavior of such materials,

because the Cauchy equation contains the acceleration, while the local temperature

change is driven by the energy equation and its initial and boundary conditions, in a

structure.

In the low range of temperature of use of SMA [-100◦C, 150◦C], the non linear SMA

behavior is time independent (as it is the case for classical plasticity). The apparent

time effect in SMA comes from the loading rate of the structure and the yield conditions.

The behavior is always between isothermal for very low loading rate and adiabatic for

very quick loading.

The problem of impact on a SMA device will tend near the second case.

In practical, impact can induce phase transformation. For instance, Escobar and

Clifton [11] have conducted impact loading on a Cu Al Ni single crystal to induce

a transformation from cubic austenite to monoclinic martensite. A thin plate was

subjected to impact loading on one face with the resulting particle velocity measured
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on the opposite face. In order to determine the kinetic law, Abeyaratne and Knowles

[12, 13] have determined the driving force and the propagation speed of the phase

boundary. Some experimental works related to damage behavior of shape memory alloy

composites can be found in [14], and people are trying to integrate SMA-based devices

in pre-crash systems or absorbing devices [15, 16]. The first approach is clearly fully

experimental and the design is based on very simple considerations on the behavior

of the SMA device. Nevertheless, precise models are required in order to be able to

evaluate the ability of the designed devices to respond to all constraints in an industrial

domain, and also to be able to perform some parametric studies in order to find the best

compromise among the many available materials and designs. As far as the modeling

dedicated to impact on SMA structures is concerned, no dedicated paper seems to have

been published. One can note that some works on impact behavior exist [17], but no

structural effect is considered. Including macroscopic SMA constitutive laws in finite

elements (FE) models is clearly one of the most pertinent ways to exhibit physical

behavior or SMA-based structures in the time domain. Several works on this topic can

be found in the literature, among which the works presented in [18], [19], [20]. Among the

models which are available for transient calculations, none of them has been explicitely

applied in the context of structural response to impact including thermal effects. The

specificity of the fast transient analysis of SMA-based structures is that the constitutive

laws of the materials are highly non linear, which induces numerical troubles during

time integration. In this paper, the Raniecky-Lexcellent RL model [1, 2, 3], which has

already been successfully applied in a ”low frequency” application [18], is extended and

adapted to the case of structural response to impact.

2. Partial Differential Equations Defining the Shape Memory Alloy

Dynamical Equilibrium

In order to present a complete and rigorous implementation of the mechanical behavior,

let us start by considering the generic dynamical equilibrium of a structure made of

Shape Memory Alloy material like illustrated in figure 1. The thermomechanical system

covers the closed domain Ω with a boundary named Γ = Γu ∪ Γt = Γq ∪ ΓT where

the boundary partition surfaces are Γu, Γt, Γq and ΓT , associated to borders on which

displacement U0, force F0, thermal flux q0 and temperature T0 are respectively imposed.

The thermomechanical forces applied inside the domain include mechanical and thermal

loads, respectively called fm and fT . U represents the unknown vector of displacements

and T the unknown temperature. In figure 1, n stands for the outpointing normal

vector.

Unless indicated, all physical variables are functions of space (M is the generic

point) and time t, and all parameters are constant. The time interval of interest is

denoted by T .
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Figure 1. Thermodynamic problem - mechanical and thermal domain description and
boundary conditions

2.1. Statement of thermomechanical dynamical problem

Under the assumptions of small strain and displacements, the thermomechanical

dynamical problem satisfies the following fundamental equations:

• The mechanical dynamical equilibrium

ρÜ−∇· � = fm ∀(M, t) ∈ Ω× T , (1)

where ρ represents the material density and � the Cauchy stress tensor.

• The first thermodynamic principle (energy conservation)

ρu̇−∇·q = � : �̇ + fT ∀(M, t) ∈ Ω× T , (2)

where u is the total energy, q the vector of thermal flux and � the Green-Lagrange

strain tensor:

� =
1

2
(∇·UT + U·∇T ), (3)

which is dual to the Cauchy stress tensor �. The constitutive equations will be

given in section 2.3.

• The second thermodynamic principle

ρT ṡ− ρfT + ∇·q− 1

T
q·∇T ≥ 0 ∀(M, t) ∈ Ω× T , (4)

where s represents the specific entropy of the material.

The boundary conditions on Γu, Γt, Γq and ΓT can be written:
U = U0 ∀(M, t) ∈ Γu × T ,
�·n = F0 ∀(M, t) ∈ Γt × T ,
T = T0 ∀(M, t) ∈ ΓT × T ,
q·n = q0 ∀(M, t) ∈ Γq × T .

(5)

Finally, the problem is closed by the initial conditions at t = t0:
U(M, t0) = Ui(M) ∀M ∈ Ω,

U̇(M, t0) = Vi(M) ∀M ∈ Ω,

T (M, t0) = Ti(M) ∀M ∈ Ω.

(6)
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2.2. Shape Memory Alloys behavior

The behavior considered in this paper is related to phase change of SMAs. At stress free

state and T = Ti, the material is supposed to be fully austenitic (A). During the load,

the phase can change locally for martensite. A macromodel of the behavior considers a

two-phase reference elementary volume containing the volume fraction (1−ξ) of mother

phase (Austenite A) and ξ of product phase (Martensite M).

A typical stress-strain curve is given in figure 2. Let us suppose that, at a given

temperature, one performs an increasing and decreasing strain load. The SMA will

typically describe a loop in the stress-strain plane:

(i) Load increase: while the stress-strain point is below a given limit described by the

line πf = 0 that will be detailed in the next section, the behavior is linear elastic

and the material is fully austenitic (ξ = 0).

(ii) Load increase: when the stress-strain point reaches the πf = 0 line, the phase

transformation begins (ξ increases in [0, 1]). The rigidity of the material is affected

by the phase transformation, which can go theoretically up to the full martensite

state (ξ = 1), in which case the behavior is becoming linear again.

(iii) Load decrease: while the stress-strain point stays above the πf = 0 line, the

behavior is linear elastic and ξ remains constant.

(iv) Load decrease: when the stress-strain point reaches the πf = 0 line, the reverse

phase transformation occurs (ξ decreases in [0, 1]). The rigidity of the material is

affected by the phase transformation, which can go down to the full austenite state

(ξ = 0).

The behavior described on figure 2 corresponds to a ’classical’ and ’simple’

representation of such phenomenon. We underline that such loading/unloading curve

is only one among others possible behavior obtained by coupling thermally induced

and stress-induced transformation as presented in Airoldi and al [21] or by considering

tension/compression asymmetry as in Raniecky [2]. This kind of behavior is not yet

included in the following methodology even if tension/compression asymmetry, for

example, could be easily added to the proposed numerical implementation.

One also knows that material properties of Austenite and Martensite can be very

different for certain SMA. In this work, we only focused our analysis on numerical

implementation of dynamic response of mostly austenitic SMA. The ’Martensitic’ part of

the structural behavior is also considered as residual compared to what happens during

the phase transformation. So, in this paper, no difference between mechanical properties

of each SMA phases neither reorientation between martensitic variants is taken into

consideration. Some specific modifications of the proposed numerical implementation

could allow introduction of such specific phase mechanical behavior.
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Figure 2. Typical SMA behavior: 1D stress-strain evolution including internal
(partial transformation) and external (full transformation) loops

2.3. Material thermo-mechanical constitutive equations: the RL model for shape

memory alloys

Whatever the considered material, its thermodynamic states obey to fundamental

equations of conservation (1), (2), (4). By using the theory of the thermodynamics of

irreversible processes and thermodynamic potential functions, the constitutive behavior

equations can be obtained through the expression of Helmholtz free energy φ such as:

φ = u− Ts. (7)

Thus one has � = ρ
∂φ

∂�
and s = − ∂φ

∂T
. When new internal variables are introduced, the

same kind of relations provide constitutive equation for each pair of dual states.

The SMA description which has been implemented is based on the RL model [1], built by

using this kind of approach. In this paper, isothermal and anisothermal transformations

have been considered in a fully multiphysics approach in order to test the ability of the

model to respond to structural impacts with various thermal conditions.

In this way, the Helmholtz free energy is defined for the two-phase reference volume

element (RVE) containing the volume fraction (1 − ξ) of mother phase (Austenite A)

and ξ of product phase (Martensite M) as:

φ(�, ξ, T ) = u
(A)
0 − Ts(A)

0 − ξπf0 (T ) + 1
2

(
�− �

tr − �
th
)

: L :
(
�− �

tr − �
th
)

+ξ(1− ξ)φit + Cv

(
T − T0 − T · ln T

T0

)
,

(8)

where:

• u(A)
0 (resp. u

(M)
0 ) is the internal energy of austenite (resp. martensite) phase,

• s(A)
0 (resp. s

(M)
0 ) is the internal entropy of austenite (resp. martensite) phase,

• πf0 (T ) is the driving force at free stress state defined as πf0 (T ) = ∆u0−T∆s0, with

∆u0 = u
(A)
0 − u(M)

0 and ∆s0 = s
(A)
0 − s(M)

0 ,
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• �
tr is the phase transformation strain tensor,

• �
th is the thermal expansion strain tensor: �th = (T−T0)αI, where α is the dilatation

coefficient and I is the identity tensor of order 2,

• L is the fourth-order Hooke tensor,

• φit is a coefficient corresponding to internal interaction energy,

• Cv
(
T − T0 − T · ln T

T0

)
is the specific heat energy, with Cv corresponding to the

specific heat coefficient at constant volume.

The Helmholtz free energy given in equation (8) leads to express the mechanical

multiphysics constitutive equation as:

� = L :
(
�− �

tr − (T − T0)αI
)

= L : �e. (9)

The elastic strain tensor �e = �−�
tr− (T −T0)αI is also constituted of three terms:

the mechanical Green strain tensor �, the phase transformation induced strain �
tr and

the thermal strain (T − T0)αI.

The RL model gives the expression of �tr such as:

�
tr = γξK with K =

3

2

dev (�)

σvm
, (10)

in which γ is the pure tension deformation associated to the phase transformation.

This material parameter is indicated in figure 2. σvm represents the Von Mises equivalent

stress and dev (�) the deviator stress tensor:

σvm =
√

3
2
dev (�) : dev (�),

dev (�) = �− tr(�)

3
I,

(11)

where tr is the trace operator.

Incorporating expression (10) into equations (9) and (8), and defining a so-called

driving force of phase transformation under mechanical loading πf , which is linked to

the Helmholtz free energy by the relationship πf (σvm, ξ, T ) = −ρ∂φ
∂ξ

, one obtains:

πf (σvm, ξ, T ) =
γσvm
ρ

+ πf0 (T )− (1− 2ξ)φit(T ). (12)

The last step in the model formulation is to impose constitutive equations insuring

the second thermodynamic principle. The corresponding inequality (4) can be rewritten

using the Helmholtz free energy expression (7)

� : �̇− ρ
(
φ̇+ sṪ

)
− 1

T
q·∇T ≥ 0. (13)

Inequality (13) exhibits two terms, the first one Dint = � : �̇ − ρ
(
φ̇+ sṪ

)
corresponds to intrinsic dissipation while Dth = − 1

T
q·∇T is associated to thermal
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dissipation. It is assumed that each term is positive (i.e Dth ≥ 0 and Dint ≥ 0), which

obviously implies a thermodynamic transformation satisfying the second principle (13).

Thus, one can assume a standard Fourier conduction behavior such as:

q = −λ∇T, (14)

that easily verifies the condition Dth ≥ 0.

By using the specific expression of SMA free energy given in equation (8), the

second inequality constraint Dint ≥ 0 becomes

πf (σvm, ξ, T )· ξ̇ ≥ 0. (15)

The phase transformation kinetics are written using the formal expression

ξ̇ = F(σ̇vm, πf , ξ) with ξ ∈ [0, 1]. (16)

According to the RL model, a state flow algebraic expression of function F
depending on the thermodynamic state of the considered material point can be proposed

by introducing some boolean conditions.

• For Austenite to Martensite transformation (ξ ∈]0, 1[ and σ̇vm > 0 and πf (T ) > 0),

one has:

F(σ̇vm, πf , ξ) =
γσ̇vm

ρ

(
A1

1− ξ
− 2φit

) . (17)

• For Martensite to Austenite transformation (ξ ∈ [0, 1] and σ̇vm ≤ 0 and πf (T ) ≤ 0),

one has:

F(σ̇vm, πf , ξ) =
γσ̇vm

ρ

(
A2

ξ
− 2φit

) . (18)

• In other cases, in particular for the full austenite phase (ξ = 0) and the full

martensite phase (ξ = 1), one has:

F(σ̇vm, πf , ξ) = 0. (19)

These state flow kinetic relationships obviously satisfy the second inequality

constraint Dint ≥ 0. These expressions can be compactly written as:

F(σ̇vm, πf , ξ) =
γσ̇vm
ρ

H(πf )H(σ̇vm)
A1

1− ξ
− 2φit

+
H(−πf )H(−σ̇vm)

A2

ξ
− 2φit

 . (20)

This function includes some no differential Heaviside distributions H which would

introduce numerical difficulties for Jacobian evaluation and for solving the associated

non linear problem.

One can notice that the RL model can be written using explicit expressions of

volume fraction of the martensite ξ like indicated in [22], but these expressions are not

convenient at a numerical point of view in the context of finite element, since in each
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node of the mesh one has to remember the value of ξ just before the last inversion of

phase transformation. This is a difficult point, in particular in the context of structural

dynamics, and using this kind of approach would induce numerical troubles. Using first-

order time derivative equation like (16) helps regularizing the problem. One can also note

that the constraint ξ ∈ [0, 1] is theoretically already included in kinetics equation (20),

since explicit time integration results in bounded expression [22], but numerical time

integration induces loss of [0, 1] bounds for variable ξ. For that reason, the constraint

0 ≤ ξ ≤ 1 is included in the set of equations which is considered here.

2.4. Set of equations describing the behavior of the SMA structure

The equilibrium equations can be rewritten by introducing constitutive equations

allowing to guaranty the second thermodynamic principle. This leads to the following

set of partial derivative equations driving the thermomechanical dynamical equilibrium

of shape memory alloy structure as described in figure 1:

ρÜ−∇· � = fm ∀(M, t) ∈ Ω× T ,
ρCvṪ − λ∇2T − fT =

ρ
(
πf (σvm, ξ, T ) + T∆so − (1− ξ)

)
ξ̇ − αT tr(�̇) ∀(M, t) ∈ Ω× T ,

� = L : (�− γξK− (T − T0)αI) ∀(M, t) ∈ Ω× T ,

K =
3

2

dev(�)

σvm
∀(M, t) ∈ Ω× T ,

ξ̇ = F(σ̇vm, πf , ξ) ∀(M, t) ∈ Ω× T ,
0 ≤ ξ ≤ 1 ∀(M, t) ∈ Ω× T ,
�·n = F0 ∀(M, t) ∈ Γt × T ,
U = U0 ∀(M, t) ∈ Γu × T ,
T = T0 ∀(M, t) ∈ ΓT × T ,
q·n = h0(T − T0) ∀(M, t) ∈ Γq × T ,
U(M, t0) = Ui(M) ∀M ∈ Ω,

U̇(M, t0) = Vi(M) ∀M ∈ Ω,

T (M, t0) = Ti(M) ∀M ∈ Ω.

(21)

2.5. Numerical issues

The mathematical problem (21) is strongly non linear and presents specific numerical

difficulties which need to be solved:

(i) The constraint � given by the third equality of problem (21) exhibits a numerical

algebraic loop because of the direct non linear dependency of K tensor in �

expression. This algebraic loop can not be solved explicitly because the expression

of tensorK given in equation (10) (i.eK =
3

2

dev(�)

σvm
) appears as a strongly irregular

non linear tensorial function. Indeed, this function, looking for x

‖x‖ on tensorial

space, presents a singularity when x = O. As the dynamical simulation aims at
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exhibiting vibrating movements, a regularization should be introduced to efficiently

solve the problem.

(ii) The second difficulty lies in the state flow differential equation giving kinetics

of martensite volume fraction variable ξ in the fifth equation of system (21),

constrained by inequalities 0 ≤ ξ ≤ 1. The state flow differential equation contains

irregular Heaviside distribution functions that can not be directly introduced in

non linear solver using Jacobian matrix evaluation in a Newton-Raphson algorithm,

these distributions being underivable.

One of the key point of this work is to propose a specific mathematical processing

to deal with each particular underlining numerical problems.

2.5.1. Treatment of the numerical algebraic loop The algebraic loop, i.e � = L :(
�− γξK(M,t) − (T − T0)αI

)
, can be regarded as one time step ahead response. From

a physical point of view, this no casual operator should be translated into a step time

casual relationship � = L :
(
�− γξK(M,t−dt) − (T − T0)αI

)
. Thus the stress tensor is

not depending on its value at the considered time but only at the previously evaluated

time. The idea is then to evaluate K as a solution of an ordinary differential equation

in time by introducing a specific time delay using a corresponding parameter tk instead

of the direct relationship given by equation (10) such as:

3

2
dev(�)−

(
K+ tk.K̇

)
(σvm + α) = 0 ∀(M, t) ∈ Ω× T . (22)

2.5.2. Implementation of the state flow equations constrained by inequalities The in-

equality constraints (i.e 0 ≤ ξ ≤ 1) can be transformed by using existence of two new

functions β1 and β2 so that β2
1 + β2

2 = 1 and ξ =
β2

1 − β2
2 + 1

2
. It can be can eas-

ily demonstrated that ξ ≥ 0 is equivalent to the existence of a real variable β1 such as

ξ = β2
1 , while ξ ≤ 1 is equivalent to the existence of a real variable β2 such as 1−ξ = β2

2 .

A change of variable ξ =
β2

1 − β2
2 + 1

2
in equations of system (21) is operated and a new

constraint β2
1 + β2

2 = 1 is added to this set of equations.

The irregular state flow operators (i.e the Heaviside distribution functions) are

regularized by using dedicated function H̃(x, δ) corresponding to smoothed Heaviside

function in the interval −δ < x < δ with a continuous second derivative without

overshoot. It is defined by a sixth-degree polynomial expression (flc2hs function in

Comsol Multiphysics software). The nonlinear function F(σ̇vm, πf , ξ) defined in (20) is

then rewritten:

F̃(σ̇vm, πf , β1, β2) =
γσ̇vm
ρ

H̃(πf − δ1, δ1)· H̃(σ̇vm − δ2, δ2)
A1

1− β2
1−β2

2+1

2

− 2φit
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+
H̃(−πf − δ1, δ1)· H̃(−σ̇vm − δ2, δ2)

A2

β2
1−β2

2+1

2

− 2φit

 . (23)

In the numerical simulations, δ1 = 200 and δ2 = 10 have been used. The phase

transformation kinetic equation (16) is finally rewritten by incorporating the new

variables β1 and β2 and adding time regularization using time delay parameter tm.

This time parameter can be chosen depending on the speed of sound in the alloy. The

new kinetic equation is:

tmβ̈1 − (β1β̇1 − β2β̇2)· F̃(σ̇vm, π
f , β1, β2) = 0. (24)

2.5.3. Regularized set of partial derivative equations modeling the Shape Memory

Alloy thermo-mechanical equilibrium The set of equations (21) can be rewritten by

introducing the proposed changes. The final system of partial derivative equations

modeling the SMA thermo-mechanical equilibrium is:

ρÜ−∇· � = fm ∀(M, t) ∈ Ω× T ,
ρCvṪ − λ∇2T − fT =

ρ
(
πf (σvm, ξ, T ) + T∆so − (1− ξ)

)
ξ̇ − αT tr(�̇) ∀(M, t) ∈ Ω× T ,

� = L : (�− γξK− (T − T0)αI) ∀(M, t) ∈ Ω× T ,
3
2
dev(�)−

(
K+ tk.K̇

)
(σvm + α) = 0 ∀(M, t) ∈ Ω× T ,

tmβ̈1 −
(
β1β̇1 − β2β̇2

)
F̃(σ̇vm, π

f , β1, β2) = 0 ∀(M, t) ∈ Ω× T ,

ξ =
β2

1 − β2
2 + 1

2
∀(M, t) ∈ Ω× T ,

β2
1 + β2

2 = 1 ∀(M, t) ∈ Ω× T ,
�·n = F0 ∀(M, t) ∈ Γt × T ,
U = U0 ∀(M, t) ∈ Γu × T ,
T = T0 ∀(M, t) ∈ ΓT × T ,
q·n = h0(T − T0) ∀(M, t) ∈ Γq × T ,
U(M, t0) = Ui(M) ∀M ∈ Ω,

U̇(M, t0) = Vi(M) ∀M ∈ Ω,

T (M, t0) = Ti(M) ∀M ∈ Ω,

(25)

with F̃(σ̇vm, π
f , β1, β2) given by equation (23). The finally used modeling approach

does not introduce any strain rate dependency of the phase transformation behavior as

commonly considered for SMA. But the numerical implementation requires adding first

order time differential term in equation (22) and second order term in equation (24) to

regularize to numerical scheme. Two parameters tk and tm are also introduced as time

delays in the phase transformation behavior. Physically speaking, these parameters

represent the causality constraint preventing ’immediate’ phase transformation in the

material behavior.
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This final system is the one which has been implemented in FE software COMSOL

Multiphysics for computing the impact response of a Shape Memory Alloy mechanical

system.

3. Finite elements model description and numerical implementation

The composition of the SMA used in the numerical applications is CuAlBe. Its

characteristic phase transformation temperatures measured by electrical resistance

evolution are: M0
F = 191 K, M0

S = 213 K, A0
S = 205 K, A0

F = 221 K. The material

parameters are: E = 7.5 × 1010 Pa, ρ = 8129 kg · m−3, ∆u0 = 2871.6 J · m−3,

∆s0 = 11 J · m−3, φit = 100.3 J · m−3, γ = 0.0295, α = 0.055, Cv = 490 J · kg−1,

α0 = 17 · 10−6 K−1.

F(t)

Point 1

Point 2

Figure 3. 2D-structure: boundary conditions, external forces, observation points 1
and 2

The structure which has been used in the numerical simulations is a 2D plane

stress component, shown in figure 3. Its dimensions are 0.5 cm by 10 cm, and the

beam is clamped on the border located on x = 0 and vertically guided for x = 0.1 m.

Two observation points are shown in figure 3. The mesh has 2432 quadratic TRI6

elements, resulting in a total of 18392 degrees of freedom (including components of

structural displacement u = U·x and v = U·y, β1 and β2 values, components of K and

temperature T ).

Two configurations have been considered in the calculations, the isothermal case

and the anisothermal one. The isothermal configuration is evaluated at T0 = 293 K

and can be interpreted physically as quasistatic in thermal sense. It does not include

any temperature effect and corresponds to a basic approach. In order to point out the

influence of temperature effects, an anisothermal configuration is also considered. For

that case, a constant temperature (T0 = 293K) is imposed on the clamped border, and

a convective heat transfer with the surrounding environment (T0 = 293K), using a heat

transfer coefficient value of 5W ·m−2 ·K−1 is imposed on other borders.

The impact force is applied on the upper part of the beam, as shown in figure 3.

Its time evolution is shown in figure 4.

The time parameters used for the simulations are tm = 1 ms and tk = 5 µs, and a

structural damping effect has been used to avoid resonance singularity effects. A very

simple Rayleigh model has been chosen using αM = 10−4s−1 and βK = 10−4s.
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Figure 4. Time evolution of the impact force

An implicit time-stepping scheme is used for the time-dependent solver algorithm,

based on generalized-α method [23] using a spectral radius of amplification matrix of

0.8. The nonlinear system of equations at each time step is solved using a Newton-

Raphson scheme, and the tangent unsymmetric sparse linear system is finally solved

using Pardiso solver [24].

4. Numerical results

4.1. Evaluation of the effect of phase transformation on the displacement amplitude

As a first observation from the numerical tests, one can note that the phase

transformation has a significant effect on the global behavior of the structure, and

the thermal effects are also of first importance for pertinent prediction. Figure 5 shows

the time evolution of the vertical displacement at point 1 (see figure 3 for the point

location), corresponding to three runs. The first one is related to the SMA calculation

using isothermal configuration, the second one includes heat equation resolution, and

the last one corresponds to a linear equivalent material (linear elastic material with same

material properties, without phase change). The first comment about these curves is

that one can clearly observe a change in the dynamic properties of the response (lower

frequency, higher damping) due to the phase transformations. This point will be detailed

in part 4.2. The second comment is that, for the same input force, the maximum total

displacement of the structure is higher for the SMA than for the linear material. This

is due to the stiffness change of the SMA during phase transformation: as indicated in

figure 2, for a given value of stress, the strain is higher on the SMA than on a linear

material with equivalent elastic properties. The model has a good physical behavior on

this point.
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Figure 5. Vertical displacement of observation point, comparison of the three
calculation configurations

4.2. Evaluation of the effect of phase transformation on dynamic properties

In order to evaluate the effect of phase transformation on dynamic properties, a

very simple 1-dof equivalent model can be used to obtain a qualitative information

by evaluating the modified frequency and the added damping, with a log-decrement

approach. This approach is clearly not efficient enough to characterize the dynamic

behavior of the structure because of the strong non linearity of the material. In this

context, some dedicated approaches like harmonic balance projection should be used.

Nevertheless, the objective of this paper is to present a numerical implementation of

the model rather than showing methodologies to use SMA-based structures for dynamic

analyses. For that reason, the very basic 1-dof approach allows one to exhibit the

physical behavior in a very simple way, using the displacement of point 1 as reference.

For each pseudo-period of the time signal, one can then define a pseudo-frequency

and a pseudo-damping ratio. The pseudo-frequency f̃ is:

f̃ =
1

t̃2 − t̃1
, (26)

where t̃1 and t̃2 are two (consecutive) times corresponding to sign change of the

response. The pseudo-damping ratio ζ̃ is evaluated using the classical log-decrement

formula:

ζ̃ =
1√

1 + 4π
2

δ2

with δ = ln
v(M1, t3)

v(M1, t4)
, (27)

in which t3 and t4 are two (consecutive) times corresponding to local maximum

values of the vertical displacement v at point 1.
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When the material behavior is linear, it is clear that f̃ and ζ̃ are constant (they do

not depend on the pseudo-period chosen for estimation). Moreover, if the damping is

low and only one mode participates to the response, f̃ is equal to the frequency of the

responding mode, while ζ̃ is the damping ratio of the mode.

In the considered situation, both f̃ and ζ̃ depend on the observation pseudo-period.

Figures 6 and 7 compare the linear case to isothermal and anisothermal calculations.

In all cases the first ”mode” is the main component of the response. The non linear

”modes” are changing during time and these curves indicate the trends of their evolution.
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Figure 6. Value of pseudo-frequency for each pseudo-period

Figure 6 clearly shows the frequency change : like already seen, the non linear

system has a lower rigidity than the linear one, and the corresponding pseudo-oscillating

frequency is hence lower. It increases during time evolution because after initial impact,

no force is applied on the structure, and a free response is observed. During that

movement, the material volume subjected to phase transformation decreases, which

induces an increasing apparent frequency. One can note the decrease of pseudo-

frequency at step 5, which is not incompatible with the fact that after a finite number

of periods, the pseudo-frequency should reach the value of the frequency of the linear

model, when no phase transformation still occurs. This depends of course of the material

parameters and of the initial phase state. In this case, the very simple approach used to

evaluate the pseudo-frequency is clearly not sufficient enough to precisely characterize

the non linear behavior. These aspects will be investigated in future dedicated papers.

The pseudo-damping ratio shown in figure 7 illustrates the fact that from an energy

point of view, the phase transformations can be seen globally as an increase of losses in

the material, which is equivalent to an added damping effect. This added effect exists

only when some phase transformations occur: as soon as the thermomechanical system

is such that phase transformations can no longer occur, the pseudo-damping ratio is

equal to the one of the linear system.
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Figure 7. Value of pseudo-damping ratio for each pseudo-period

One can finally notice that including temperature effects in the model has non

negligible effects: isothermal models should be avoided unless being clearly conscious of

the approximation. From a physical point of view, the thermal effects have an inertial

effect on the behavior of the structure.

4.3. Evolution of phase transformation

Figure 8. Martensite rate distribution at t = 1 ms (end of impact) for the isothermal
configuration

On figures 8 and 9, it can clearly be observed that the first mode of the structure

is the main component of the time response on both isothermal and anisothermal

configurations. The pictures show the spatial displacement of the structure, and the

volume fraction of the martensite phase at time corresponding to impact end. The

volume fraction of the martensite phase ξ has a large value on areas in which the stress

is large, even if the maximum value of ξ at this time is obtained on the right part of the
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Figure 9. Martensite rate distribution at t = 1 ms (end of impact) for the anisothermal
configuration

beam, while the maximum Von Mises stress is on the left part, like it will be shown in

the next section. The evolution of ξ is governed by the time derivative of the equivalent

Von Mises stress, and by the sign of the thermodynamic driving force πf . One can

observe this physical behavior in figures 10 and 11: while the thermodynamic force is

negative, the volume fraction of the martensite phase has a constant zero value. As

soon as the driving force becomes positive, ξ increases, until the force becomes negative,

because up to 1 ms, the time derivative of the Von Mises stress is always positive. So

before 1 ms, each sign change of the thermodynamic force induces an inflection in the

curve of the volume fraction of the martensite phase.
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Figure 10. Time evolution of volume fraction of the martensite phase at observation
points for both isothermal and anisothermal configurations

Once again the inertial effects associated to phase transformation can clearly be

seen by comparing isothermal and anisothermal configurations.
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Figure 11. Time evolution of driving force πf for both isothermal and anisothermal
configurations

4.4. Evaluation of the effect of phase transformation on temperature
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Figure 12. Time evolution of temperature for anisothermal configuration

Figure 12 shows the time evolution of temperature for the anisothermal calculation.

One can observe the temperature changes due to phase transformation. In the considered

case, a quasi-instantaneous shift of 30K has been observed at point 1. This particular

consideration will be of first interest in next works associated to experimental validation

of the model: if some variables like ξ cannot be measured, the temperature field T on the

border of the structure can be evaluated using an infrared camera. For that particular

objective of model validation, being able to include thermal effects in the calculation is
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of first importance.

4.5. Evaluation of the effect of phase transformation on the equivalent Von Mises stress

The time evolution of the Von Mises stress is of particular importance in the model, since

its time derivative is governing the volume fraction of the martensite phase evolution.

A good evaluation of this stress is necessary to obtain a coherent volume fraction of

the martensite phase time evolution. In figures 13 and 14, the spatial repartition of

the Von Mises stress is shown at t=1 ms, and one can observe that its distribution is

physical: a maximum value on the upper and lower bounds of the beam, close to the

clamped boundary conditions. In this particular case, the stresses have been correctly

evaluated, even for this particular zone thanks to the small size of elements, but it could

be possible that this displacement formulation for the mechanical problem would not

be sufficient to evaluate the stresses. In this case a mixed formulation could possibly be

more efficient.

Figure 13. Spatial repartition of Von Mises equivalent stress at t=1 ms for isothermal
configuration

Figure 14. Spatial repartition of Von Mises equivalent stress at t=1 ms for
anisothermal configuration

The figure 15 shows the time evolution of Von Mises equivalent stress on observation

points, for the SMA calculation and for the linear model. One can observe that the
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maximum stress level has been obtained for the linear model, while the energy required

for phase transformation of the SMA induces lower values of stress.
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Figure 15. Time evolution of Von Mises equivalent stress at observation points for
linear equivalent model and anisothermal configurations

Figure 16 compares time evolutions of Von Mises equivalent stresses at observation

points for both isothermal and anisothermal configurations. Stresses are of the same

order of magnitude, and the inertial effect of temperature can be observed one more

time.
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Figure 16. Time evolution of Von Mises equivalent stress at observation points for
isothermal and anisothermal configurations
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4.6. Evaluation of the effect of phase transformation on Head Injury Criterion

When people are dealing with impact evaluation, a criterion that is commonly used

it the Head Injury Criterion (HIC). This indicator allows one to compare for example

the efficiency of shock absorber devices. It is used in particular in some international

normative procedures. The expression of the HIC is:

HIC = max
t1,t2

[
(t2 − t1)

(
1

t2 − t1

∫ t2

t1

||Ü||dt
)2.5

]
, (28)

in which t1 and t2 are time steps in the interval of interest. The value of HIC for

the three configurations of interest are respectively:

• 15.2× 10−3 for the linear case,

• 9.3× 10−3 for the isothermal case,

• 1.9× 10−3 for the anisothermal case.

These values can be understood by looking at the value of HIC when time t1
increases: the corresponding time evolutions are given in figure 17.
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Figure 17. HIC evolution with initial time integration t1, comparison of the three
configurations

One can clearly see the positive effect of the SMA device on the criterion. An

interesting thing is that including thermal effects induces a reduction of HIC value.

Demonstrating the effectiveness of SMA for shock absorption is not the aim of this

paper, but one can observe that for the considered structure, with a given impact force,

the SMA allows a large reduction of impact indicator compared to an equivalent linear

system. Nevertheless, the strong non linearities of the material behavior, associated to

the fact that no plasticity effects have been considered should induce people to take
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care about hurried conclusions. Some complementary analyses are necessary to have a

pertinent opinion on the efficiency of SMA devices for shock absorption. Nevertheless,

these first results are clearly encouraging ourselves to investigate this way.

5. Conclusions

In this paper a numerical implementation of a shape memory alloy model in the context

of structural transient response to impact load using the finite elements method has

been proposed. The initial RL model has been adapted in order to take into account the

specific numerical difficulties inherent to this kind of calculation. The model includes

full thermomechanical coupling, and numerical tests have been presented in order to

show the effects of the SMA material (compared with an equivalent linear model), and

also the effects of the heat exchanges in the problem. The numerical behavior of the

model has not exhibited any unphysical phenomenon.

As far as the model itself is concerned, the next improvement will be the inclusion

of the tension/compression asymmetry which has not been considered here. This model

will then be compared with experimental data, in order to fully validate the approach.

After that step, one will be able to describe properly the non linear dynamical SMA-

based structure using dedicated methods, while the final goal will be to include plasticity

effects in the model in order to provide a full model for crash simulation using SMA

devices.
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