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Abstract

On the basis of our previous works (6), one present here a FEM application of a
method that allows one to detect structural zones producing hypersensitive behav-
ior. The concept is quite simple, and is cheaper than Monte Carlo simulations. The
complete resolution of the problem is done only once, using nominal parameters of
the structure, in order to obtain the displacement field. Then, considering another
structure, built using variable parameters, chosen in a random way in the acceptable
manufacturing range, the finite element assembly procedure is performed. These ma-
trices are finally used to define an indicator in which the displacement field of the
nominal solution permits to detect structural zones responsible for hypersensitive
behavior. It is based on the computation of energy of a residual displacement field.
After a presentation of the basis of this tool, numerical results are presented on a
finite element model of a hypersensitive plates network, in which sensitivity prob-
lems are linked to angular coupling, and on a cross member beam, which is made
up of three spot-welded layers.
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1 Introduction

Serial manufacturing of objects is the reason why studies of uncertainties are
becoming more and more important. Classical approaches for uncertainties
considerations have a common aim: according to known structural uncertain-
ties (geometry, materials...), one try to estimate variations of responses. Ex-
perimental works shown that it was not an easy task (10), (12). In the field of
finite element, the most popular approach for uncertainties is the stochastic
finite element method (3), (8). The main purpose of sensitivity analysis is to
be able to reduce dispersions without increasing manufacturing cost, which is
closely related to ranges on which structural parameters can vary.

As far as uncertainties inducing small differences on responses of structures are
concerned, this is acceptable. But when hypersensitivity appears, the designed
structure can be responsible for some problems: if a very small variation of
a given parameter is inducing large differences on responses, two structures
which are supposed to be nominally identical can have very different behav-
iors, in particular when shifting structural eigenfrequencies coincide with cav-
ity ones. This is the reason why a tool that could help one to obtain a low
calculation cost information about structural zones which are responsible for
hypersensitive behavior could help people during design or analysis stage.

The method proposed here is based on techniques used in finite element model
updating (1). The purpose of it is to find zones of FE model that are not in
accordance with measured data, which is relatively close to what we need.
Using these techniques for other purpose that FE updating has already been
done, in particular for damage detection (2), (9). The basic idea is to compare
two structures which are supposed to be similar except in a few zones and to
detect these zones.

The method has been presented in (6), its principle is quite simple and can
be described in two steps:

The first step is to consider the reference structure (named Ω0), which is the
one with nominal parameters. As far as finite element analysis is concerned,
assembly of this model is performed to obtain mass and stiffness matrices M0

and K0. Then, the eigenvalue problem is solved to obtain eigenvalues ωi
0 and

eigenvectors U i
0.

The second step is to consider a slightly different structure Ω1, in which
structural parameters belong to manufacturing ranges. Then, assembly of this
model is performed to obtain mass and stiffness matrices M1 and K1, while
eigen problem is not solved. A local indicator, which is based on M1, K1, ω

i
0

and U i
0 is evaluated on elements of the structure in order to find on which

zones the solution of reference problem does not match to structure Ω1.
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In this paper use of this method with finite element analysis is detailed. It
is limited to modal analysis: the aim is to detect structural zones which are
responsible for large dispersions on eigen characteristics.

2 Indicator choice

The main point in the proposed approach is the indicator definition. The one
which has been chosen here is commonly used in the field of finite element
updating (13), (11). Practically, finite element analyses and formulations have
been done using SDT (14), which is a FE toolbox for Matlab. This choice
has been made because it is an open FE code, in which programming and
modifying algorithms in Matlab language is very easy.

2.1 Expression of used indicator

Two nominally identical structures are considered, which are named Ω0 and
Ω1. Ω0 is the reference structure (the one used for complete resolution), while
Ω1 is a slightly different structure from Ω0. One supposes that assemblies
of mass matrices (M0 and M1) and stiffness matrices (K0 and K1) have been
done, and that finite element models of both structures are compatible: degrees
of freedom are identical, stored in the same way in matrices and correspond
to similar elements. Moreover, stiffness and mass matrices are supposed to
be symmetric, definite and positive. Even if these hypotheses are not always
necessary to apply the proposed method, they lead to an easier formulation,
which is presented here.

The first step is the resolution of the nominal problem, allowing one to ob-
tain n eigenvectors U i

0 and n eigen frequencies ωi
0, i = 1 ton. These modes

are supposed to be mass normalized. The residual that allows one to localize
structural zones in which eigen solution of mode i from reference structure
does not verify equations corresponding to modified structure has the follow-
ing expression:

Ri = K−1
1

(

K1 − ωi2
0 M1

)

U i
0 (1)

It is built from a force residual (K1 − ωi2
0 M1)U

i
0 , whose effect is measured by

static displacement associated to this force, through the medium of flexibility
matrix K−1

1 . This residual is homogeneous to a displacement, which is defined
in each meshing point, and whose value is locally null if both structures are
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identical. On the other hand, it can be either positive or negative, which means
that one can not consider a minimizing approach of the problem, like shown
in section 2.2.1. In order to get rid of this difficulty, one can take into account
kinetic energy of this residual:

I i = RiTM1R
i (2)

Then, one obtain a global value on the whole structure, which is always pos-
itive, and null if and only if (K1 − ωi2

0 M1)U
i
0 = 0. The problem is that this

indicator is not local, that is why it can not be used as a localization tool.
The local aspect is taken into account by considering the energy contribution
I ie of each element to the total energy I i:

I i =
∑

e

I ie (3)

I ie = RiTMe
1R

i (4)

In which Me
1 is the elementary mass matrix associated to element e. I ie is

defined for each mode i on each element e of the structure, it is null if the
finite element model equations are locally verified. This indicator will be used
for the localization concerning mode i, but it can also be used to obtain a
localization concerning a frequency range including n modes, in this case the
mean indicator will be taken into account:

Ie =
1

n

n
∑

i=1

I ie (5)

The local aspect considered here is related to the finite element model: the
problem is supposed to be locally exact when nodal displacements and eigen-
frequencies of structure Ω1 lead to a null value if they are used in indicator 1,
which does not mean that displacements and others fields are correct inside
elements.

2.2 Relationships between chosen indicator and sensitivity of eigen charac-

teristics

The purpose if this subsection is to link chosen indicator to eigen characteris-
tics variations, it is valid for indicators 1 and 2: these are general results which
can be applied in the particular field of finite element analysis.
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2.2.1 Eigen frequencies variation

Eigen values are denoted λi
0 = ωi2

0 and λi
1 = ωi2

1 . One suppose that character-
istic operators of considered structures can be written in the following terms:











K1 = K0 +∆K

M1 = M0 +∆M
(6)

Eigen characteristics are:











U i
1 = U i

0 +∆U i

λi
1 = λi

0 +∆λi
(7)

Modal equation i of structure 1 can be written:

K1U
i
1 = λi

1M1U
i
1 (8)

After 6 and 7:

(K0 +∆K)
(

U i
0 +∆U i

)

=
(

λi
0 +∆λi

)

(M0 +∆M)
(

U i
0 +∆U i

)

(9)

Using modal equation of structure 0, pre-multiplying by U iT
0 and neglecting

high order terms lead to the first-order equation:

U iT
0 K0∆U i + U iT

0 ∆KU i
0 = ∆λiU iT

0 M0U
i
0 + λi

0U
iT
0 ∆MU i

0 + λi
0U

iT
0 M∆U i(10)

This can be simplified using modal equation of structure 1, U iT
0 K0∆U i =

λi
0U

iT
0 M∆U i, and assuming that eigen modes have been estimated using unit

modal mass U iT
0 M0U

i
0 = 1. The resulting equation is:

∆λi = U iT
0

(

∆K − λi
0∆M

)

U i
0 (11)

Which can also be written using equations 6:

∆λi = U iT
0

(

K1 − λi
0M1

)

U i
0 (12)
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Finally, previous equation means that the residual force (K1 − λi
0M1)U

i
0, which

has been used to build residual 1, and more precisely its work in the nominal
displacement U i

0, can be linked to frequency shifts between both structures.
This analysis has been done using first order considerations; nevertheless, when
differences are small, it allows one to link the proposed residual to the sen-
sitivity of eigen frequencies, using only the solution of the nominal problem
associated to a post-processing calculation.

One could think to use equation 12 in order to define a residual to localize,
hoping to find contribution of each element to ∆λi shift, using elementary
matrices in order to define an indicator such as U iT

0 (Ke
1 − λi

0M
e
1 )U

i
0. Unfortu-

nately, this is not possible, since this indicator is globally null if both fields 1
and 0 are coincident, but this is not locally true: compensations between ele-
ments on which values are positive or negative induce a global null value. This
is not the case with the proposed indicator, which is locally positive. However,
equation 12 can be used to obtain informations about frequency shift induced
by small structural modifications, with a very low calculation cost.

2.2.2 Link between residual estimation and eigen characteristics variations

Above calculation have shown that there is a close link between chosen indica-
tor and eigen frequency shifts. However, the proposed relation is not explicit,
where as it is possible to obtain complete expression of indicator 2 versus
eigen modes and frequencies shifts, if one accept to develop eigen mode i of
structure 0 on eigen basis of structure 1:

U i
0 =

∑

j

αi
jU

j
1 (13)

This development is not always possible. In particular, if boundary conditions
differ from one problem to another, the previous equation could be impos-
sible to verify. Nevertheless, if differences between considered structures are
reasonable, one can accept this development.

Eigenvalues shifts are again denoted ∆λi = λi
1 − λi

0. Residual 1 is:

Ri = U i
0 − λi

0K
−1
1 M1U

i
0 = U i

0 −
∑

j

αi
j

λi
0

λj
1

U j
1 (14)
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Or:

Ri =
∑

j

αi
j

(

1−
λi
0

λj
1

)

U j
1 (15)

This allows one to develop expression of indicator 2:

I i = RiTM1R
i =





∑

j

αi
j

(

1−
λi
0

λj
1

)

U j
1





T

M1

(

∑

k

αi
k

(

1−
λi
0

λk
1

)

Uk
1

)

(16)

Which can be simplified using U jT
1 M1U

k
1 = δjk, in which δjk is Kronecker sym-

bol:

I i =
∑

j

(

αi
j

(

1−
λi
0

λj
1

))2

(17)

This leads to expression of indicator 2:

I i =
(

αi
i

)2
(

∆λi

λi
1

)2

+
∑

j 6=i

(

αi
j

)2
(

1−
λi
0

λj
1

)2

(18)

The first part of this equation has two factors: the first one, (αi
i)

2
is a term

which is close to 1 if both vectors U i
0 and U i

1 are comparable, in other words

if ∆U i is small in equation 7. The second term is
(

∆λi

λi
1

)2

, which is associated

to the relative shift of squares frequencies of modes i. Then the first part of
the indicator is closely connected to eigenfrequencies variations.

The second part of equation 18 shows influence of other modes than mode i:
(

αi
j

)2
is a measurement of the distance between eigen modes U i

0 and U j
1 with

respect to U j
1 (it is the projection of U i

0 on U j
1 : its value is weak when ∆U i is

small), whereas the factor
(

1− λi
0/λ

j
1

)2
is a weight whose value depends on

the ratio λi
0/λ

j
1 : for a given mode i, eigen value λi

0 is fixed, and the factor has
a large value if the decomposition needs modes U j

1 whose eigenvalues λj
1 are

lower than λi
0. The value of this factor is close to 1 if λj

1 is greater than λi
0, like

shown on figure 1: contribution of modes with higher eigenfrequencies is weaker
than those with lower ones. This is in accordance with physical meaning: if
low frequency modes are necessary for the modal decomposition, it means that
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Fig. 1. Evolution of weight

(

1−
λi
0

λ
j

1

)2

versus λj
1.

significant differences exist between modes shapes, and this should have a large
influence on indicator, while higher order modes correspond to representation
of small differences, inducing smaller indicator values.

Finally, the first part of indicator 18 is a measurement of eigenfrequency shift,
while the second one correspond to modes shapes variations.

2.3 Indicator choice conclusion

Choice of indicator 4 has been guided by those used in the field of finite
element updating. It has been shown that with a few reasonable assumptions,
it can be related to eigen characteristics variations, which allows one to justify
its use to detect structural zones producing hypersensitive behavior. However,
indicator choice is not sole, other expressions could have been used, but one
will not detail this aspect here.

3 Finite element analysis of a plates network

3.1 Description of the considered structure

The first application of the proposed method in FE context is related to the
structure on which this method has been first described analytically (6), (7). It
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Fig. 2. Plates network: mode 12; coupling angles numbers.

is constituted by a network of plates which are simply supported on uncoupled
edges. A finite element model of this structure has been developed, and 15
eigenfrequencies have been evaluated. One of these modes is represented on
figure 2.

Variable parameters in this study are coupling angles, which are supposed to
vary in a random way, according to a normal Gaussian repartition, centered
on nominal angle value with a 1/6 degree standard deviation. In practice,
corresponding angles belong to a one degree range. Using a Monte Carlo sim-
ulation, one can plot a sensitivity index for each eigenfrequency with respect
to coupling angle. This index, which is the standard deviation of each eigen-
frequency to mean of it ratio is plotted on figure 3. One can observe that
coupling angles numbered 4, 5 and 7 are responsible for the main sensitivities,
while other coupling angles are not sensitive. Physical meanings associated to
this figure are detailed on appendix A.

3.2 Application of localization method

In order to apply the proposed method to the finite element model of the plates
network, one should consider geometric modifications. Two ways can be used
at this point. The first approach is a partial Monte Carlo simulation: a random
choice of structural parameters belonging to manufacturing ranges is done in
order to assembly mass and stiffness matrices, which are used with eigen data
from the reference structure to perform calculation of indicator 4, and this
is repeated as many times as necessary. The second strategy is to consider
a single modified structure, built with parameters chosen at the edge of the
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Fig. 3. Sensitivity of eigenfrequencies with respect to coupling angle, versus mode
order. Monte-Carlo simulation, 50 calculations. -o-: Angle 4; -+-: Angle 5; -x-: An-
gle 7; -v-: Other angles.

range, in order to locally measure effects of variations. This is thinkable only
if structural modifications are spatially independent, which is the case here.
Therefore coupling angles of considered modified structure are nominal angles
with a half degree shift. Then, assembly of matrices allows one to estimate the
value of indicator 4, which is done for each mode. One can be interested by the
most sensitive one, which is the tenth one, according to figure 3: consideration
of figure 4 allows one to localize the zone which is responsible for dispersions.
In this case, angle number 4 is well detected, and in particular the inner part
of the plate, which is also the zone of large energy.

Similar results can be observed for modes 2 (fig. 5) , 4 (fig. 6) or 7 (fig. 7), on
which angles responsible for largest sensitivities are well detected.

A particular case is the one of figure 8, which corresponds to mode 5, the zone
in which the indicator has its largest value is located at the center of plate
2, although angle 4 zone is also detected. The indicator shows here some non
local effects, however, according to figure 3, this mode is not hypersensitive to
angle variation. The indicator is consistent to the fact as its maximum value
is 1.2× 10−6, instead of 4× 10−5 observed for mode 10.

As far as a global information on the frequency range is concerned, this fifth
mode will be masked by other ones with higher sensitivities, like shown on
figure 9, which represents the mean of indicator obtained considering 15 eigen
modes. On this picture, one can observe that the 3 most sensitive coupling
angles are well localized, while other ones do not appear on the structure.
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Fig. 4. Mode 10: indicator value.

Fig. 5. Mode 2: indicator value.

More precise results can be obtained with an evaluation of indicator value
for each coupling line: in the considered case, sensitivity of each line can be
characterized with the sum of indicator values on each element located along
the coupling line. Using this, one obtains figure 10, on which these values are
plotted for each angle, versus mode number. This picture should be linked
to sensitivity indicator (figure 3), and more precisely to figure 11, which have

been obtained considering value
(

σ(f2

i
)

E(f2

i
)

)2

, in which σ is the standard deviation

and E is the mean of squared eigenfrequencies f 2
i , in order to be close to the

term
(

∆λi

λi
1

)2

in equation 18. One should note that both plots can not be
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Fig. 6. Mode 4: indicator value.

Fig. 7. Mode 7: indicator value.

identical, since they do not represent the same thing, in particular as far as
the amplitude is concerned: in order to obtain a picture that would be close to
figure 11, one should have considered independent variation of each coupling
angle, which needs a higher calculation cost. However, one can observe that
trends are comparable, and that the proposed indicator allows one to localize
and to grade zones responsible for sensitive behavior with a low calculation
cost.
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Fig. 8. Mode 5: indicator value.

Fig. 9. Mean indicator, 15 eigen modes.

3.3 Conclusion

A method that allows one to detect structural zones responsible for hyper-
sensitive behavior has been developed, and its implementation within a finite
element code has been developed in order to test it on a FE model of a plates
network, which is a well-known hypersensitive structure. Indicator choice has
been detailed, and its expression has been linked to eigen data shifts. The
plates network analysis has allowed one to find similar results to those ob-
tained considering analytical application of the proposed method: localization
of coupling lines responsible for sensitive behavior has been effective.
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Fig. 10. Indicator value: sum on coupling lines adjacent elements, versus mode
number. -o-: Angle 4; -+-: Angle 5; -x-: Angle 7; -v-: Other angles.
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Fig. 11. Squared sensitivity of eigenvalues, with respect to coupling angle, versus
mode number. Monte-Carlo simulation, 50 calculations. -o-: Angle 4; -+-: Angle 5;
-x-: Angle 7; -v-: Other angles.

4 Finite element analysis of a cross member beam

4.1 Description and vibration behavior

4.1.1 Cross member beam description

Results presented above on an academic structure need to be completed with
an industrial case. The proposed analysis is based on a cross member beam
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Fig. 12. Picture of cross member beam with some other constitutive parts of Peugeot
806 vehicle.

Fig. 13. 3D view of constitutive parts of the cross member beam.

of Peugeot 806 vehicle (picture 12), which is made up of three layers, joined
by welding spots. These layers are presented on figure 13, as well as supports,
which are also spot welded. The structure is supposed to be bolted along the
four holes (2 on each side of the beam). The purpose of this analysis is to study
sensitivity of welding spots positions, using the method described above. 82
plots are used to join the parts of the beam.

15



3

1

8
7 6

5

42

16
15

14

13

12

11

18 17

102

101

Fig. 14. Original mesh of a welding spot.

Mode 1 2 3 4 5 6 7 8 9 10

Eigen frequency (Hz) 110 240 302 380 521 568 591 599 653 673

Table 1
Original mesh eigen frequencies.

4.1.2 Numerical model of the beam

Cross member beam mesh has 17197 degrees of freedom, most of them are
linked to nodes of CQUAD4 and CTRIA3 elements. As far as finite element
model of welding spots used in this analysis is concerned, it is quite simple
and presented on figure 14. The first part to be welded has nodes numbered 1
to 8, while the second one has nodes 11 to 18. Node 101 (resp. 102) does not
belong to any of these parts and is used as a master node for a rigid RBE2
element with slaves nodes 1, 2, 7 and 8 (resp. 11, 12, 17, 18). Finally, six
CELAS springs element are used to take into account rigidity of weld joint,
linking nodes 101 and 102 along 6 degrees of freedom. This model is not the
most accurate for description of behavior of welding spots, it is known to over
estimate stiffness of joint, that is why more complex models using elements like
RBE3 are generally used, nevertheless the proposed model is very simple to
implement and results are convenient enough for the purpose of this analysis.

4.1.3 Vibrating behavior

Ten first eigenfrequencies of nominal structure are given in table 1. This is
considered as the reference for the proposed analysis.
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Fig. 15. Location of modified welding spots.

Mode 1 2 3 4 5 6 7 8 9 10

Eigen frequency (Hz) 109 221 235 296 369 412 480 519 549 564

Frequency shift (%) 1 8 22 22 29 28 19 13 16 16

Table 2
Eigen frequencies of reference model with 10 removed welding spots.

4.2 Analysis of influence of missing welding spots

During assembly process, some of the welding spots, which are done by robots,
may be defective, or even missing. The purpose of this analysis is to find with
a low calculation cost, which are the welding spots that should not be missing,
at the risk of large eigen frequencies shifts.

4.2.1 Shifts due to missing welding spots

Among 82 welding spots, 10 have been arbitrarily chosen, they are linking
intermediate layer to upper or lower one. These ten spots are described on
figure 15.

The modified structure is then the reference one on which these 10 spots have
been removed. As far as the numerical approach is concerned, this can be
done by removing CELAS elements, or by canceling or imposing low values to
associated stiffness coefficients. A numerical modal analysis on this modified
structure allows one to verify that these ten welding spots have strong effects
on vibrating behavior: in table 2, one can observe that frequencies shifts have
large values, in particular as far as modes 5 and 6 are concerned, since cor-
responding shifts are worth up to 30%. These two modes are local ones, but
frequencies shifts can be large also for global modes like numbers 3 and 4
which are both global flexural modes. Table 2 is illustrated on figure 16.

The purpose of the application of the proposed method is to find among ten
removed welding spots which ones are responsible for observed frequencies
shifts.
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Fig. 16. Eigen frequencies shifts (%) versus mode number, original mesh with 10
removed welding spots.

4.2.2 Application of localization method

Thanks to local aspect of proposed residual, one can estimate effect of each
welding spot using only one residual calculation, based on the reference struc-
ture with ten removed spots. This is thinkable while the analysis is limited to
a few spots, since if a similar study would be done considering that all spots
may miss, one should select only a set of them instead of the entirety of them,
and several calculations would be necessary with judicious choice of missing
welding spots. In the proposed analysis, this is not necessary since the number
of modified welding spots is weak compared with the total number of spots,
and moreover they are spatially independent, in other words for each element,
there is at most one welding spot linked to it.

Equations presented on section 2.1 can not be applied directly on this problem
because of rigid elements, inducing relationships between degrees of freedom
of the model, which are responsible for impossibility of inversion of stiffness
matrix K. This problem can be easily solved using projection matrix P of
basis verifying rigid body connections. Matrices used in equations 1 and 4 are
Mc and Kc:

Mc = P TMP ; Kc = P TKP (19)

Matrix Kc is no longer rank deficient, and associated displacement fields are
denoted Uc:
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Fig. 17. Indicator repartition for modes 1, 5, 6 and 9.

Uc = P TU (20)

This operation induces reduction of degrees of freedom number, which is now
14824.

4.2.3 Results

Figure 17 shows indicator spatial repartition for modes 1, 5, 6 and 9. One
can observe that both modes 5 and 6, which are the most sensitive ones, have
similar location of element distribution large values. This zone corresponds to
3 welding spots, which are numbered 4, 5 and 8. As far as the first mode is
considered, which has a very low sensitivity value according to figure 16, it
induces weak element residual values.

A global information on the frequency range is obtained on figure 18, on which
the mean value of element residual on frequency range corresponding to 10
eigen frequencies is drawn: the main differences which have been observed
between reference structure and the one with missing welding spots are due
to spots which are located near the upper left hole of the structure (spots 4,
5 and 8). Of course, second order differences are due to other welding spots,
like the first one, which has been detected on mode 9 estimation (figure 17).

In order to verify that the localized welding spots are actually responsible for
the main sensitivities, a numerical modal analysis can be performed on the
reference structure with 3 missing welding spots which are the 3 ones located
near the left hole (numbers 4, 5 and 8). Corresponding eigen frequencies are
given in table 3.

These results have to be compared with table 2: this is done on figure 19, on
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Fig. 18. Indicator mean value.

Mode 1 2 3 4 5 6 7 8 9 10

Eigen frequency (Hz) 109 222 237 299 373 412 530 590 597 652

Frequency shift (%) 0.4 8 22 21 28 27 10 2 9 3

Table 3
Eigen frequencies of reference model with three removed welding spots (numbers 4,
5 and 8).

1 2 3 4 5 6 7 8 9 10
0
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10

15

20

25

30

Fig. 19. Eigen frequencies shifts (%) versus mode number, original mesh with 10
removed welding spots (light bars) or 3 removed ones (numbers 4, 5, 8: dark bars).

which one can observe that the main differences between the reference struc-
ture and the one with 10 missing welding spots, corresponding to modes 3 to
6, are due to the three spots which have been detected by the indicator. Other
differences, in particular those related to modes 7 to 10, which correspond to
lower sensitivity values, are only partly due to these 3 welding spots.
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Fig. 20. Sensitivity indicator versus welding spot number and mode number.

Mode 1 2 3 4 5 6 7 8 9 10

Eigen frequency (Hz) 110 240 302 379 520 567 590 599 638 661

Frequency shift (%) 0.2 0.3 0.2 0.3 0.2 0.1 0.1 0.0 2.3 1.7

Table 4
Eigen frequencies of reference model with three removed welding spots (numbers 2,
6 and 7)

In order to confirm obtained results, a numerical modal analysis can be per-
formed on the reference structure with 3 missing welding spots which have
been detected as insensitive ones. For such an analysis, figure 18 is not precise
enough, that is why one should use residual 4, and performing the sum of the
indicator on adjacent elements to those described on figure 15. This allows
one to obtain a residual value for each mode and each considered welding
spot. Modes 5 and 6 have largest values on figure 20, which is of course in
accordance with previous results, while the second part of the figure, which
is a zoom of the first one, gives some informations about less sensitive spots,
which are numbered 2, 6 and 7, or about sensitivities of modes 9 and 10, which
are due to spots 1 and 9.

Results of modal analysis of the reference structure with missing spots 2, 6
and 7 are given in table 4.

These differences are compared with the ones obtained when 10 spots are
missing on figure 21: one can observe that these three spots have very low effect
on observed variations. One should note that this does not mean that these
welding spots are useless, since there are other reasons (like static response)
that vibration behavior on the considered frequency range for their existence.
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Fig. 21. Eigen frequencies shifts (%) versus mode number, original mesh with 10
removed welding spots (light bars) or 3 removed ones (numbers 2, 6, 7: dark bars).

4.2.4 Conclusion

With only one indicator evaluation done after resolution of nominal problem,
most sensitive welding spots among the modified ones have been successfully
detected, since a numerical modal analysis has been used to verify these re-
sults. Even if the number of considered welding spots is weak, it has been
shown that the proposed method was able to detect and grade influence of
each spot on a considered frequency range. As far as the location of the three
detected welding spots is concerned, one can wonder why they are located on
the left part of the cross member beam, since the structure seems to be sym-
metric. Two reasons can explain this fact: the first one is related to the shapes
of the beam, which is not really symmetric, since one can observe differences
between both end shapes and also on supports which are welded (figure 13).
On the other hand, the main reason is that chosen ten welding spots are not
symmetric, so spots which are “symmetric” to spots 4, 5 and 8 can not be de-
tected. One can presume that a complete analysis considering that all welding
spots could miss would induce an almost symmetrical repartition of influential
welding spots.

5 Conclusion

Based on FEM updating techniques, a method that is able to detect structural
zones which are responsible for hypersensitive behavior has been presented,
and tested on both an academic case and an industrial structure. Compared to
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classical approaches of the problem, this method requires a very low calculation
cost, since the problem is solved only once, and then considering modified
structures, an indicator is evaluated to localize zones on which differences
can be observed. Expression of this indicator has been detailed, and linked
to eigen characteristics variations. An academic plates network analysis has
been presented, and coupling lines responsible for hypersensitive behavior have
been successfully located on the structure. Application on an industrial cross
member beam in order to study influence of welding spots positions has been
developed, and results obtained using the method are very satisfactory and
have been confirmed by a complementary finite element modal analysis.

A Appendix

On figure 3, one can associate sensitivities with modes shapes. As far as the
frequency band of interest is concerned, in most of cases, angles corresponding
to coupling of plates which are vibrating in phase opposition are less sensitive
than coupling angles between in-phase vibrating plates. This can be observed
on figure A.1, on which shapes of modes 1 and 2 are represented. For these
two modes, the higher sensitivity correspond to mode 2, and is due to angle 4,
which is the only coupling line with in-phase vibrating sides. Of course, sen-
sitivities also exist for mode 1, even if mode shapes are phase opposed. This
sensitivity can be explained using mode shape evolution: one can consider a
simple structure made with two plates coupled with a null angle, in this sit-
uation the first mode is a bending mode with only one anti-node, since the
structure is a single plate. When coupling angle grows up, it increases stiff-
ness of the structure along coupling line, and the mode shape is constituted
by two anti-nodes, which are vibrating in-phase, and also in phase with the
weaker movement of the coupling line. So, the more the coupling angle grows
up, the more the eigenfrequency grows up, while amplitude of displacement
of coupling line grows down. As far as the mode 2 of the simplified structure
is concerned (two plates coupled with a null angle), its mode shape has two
anti-nodes which are vibrating out-of-phase around a nodal line that separates
the structure in two identical parts. Increasing coupling angle will force the
nodal line to coincide with the coupling line, inducing an eigen frequency in-
crease, which is less important than the one induced by movement of coupling
line canceling for mode 1. This is the phenomena that one can observe on fig-
ure A.1, except that the frequency shift of the initial first mode has induced it
to be greater than the frequency of the mode with two anti-nodes. This modes
shapes exchange is generally carried out without intersection of curves char-
acterizing eigenfrequencies versus couple angle: modes shapes are varying in
a continuous way from one shape to another, with no double eigenfrequency:
this phenomena is known as curve veering (5), (4).
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Fig. A.1. Plates network: modes 1 and 2.

Fig. A.2. Plates network (upside view): potential energy repartition (modes 1 and
2).

Another way of understanding this higher sensibility of coupling angle 4 for
mode 2 is to observe the potential energy repartition on the structure: as
far as mode 2 is concerned, the potential energy along this coupling line has
relatively large value, while for mode 1, its value is weaker. This means that a
structural modification in the 4th coupling angle area will result in larger eigen
data variations for mode 2 than for mode 1, although this energy criterion is
not always sufficient to understand sensitivity phenomenon.
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