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Abstract

We introduce a framework for computer-aided derivation of multi-scale models. It relies on a com-
bination of an asymptotic method used in the field of partial differential equations with term rewriting
techniques coming from computer science. In our approach, a multi-scale model derivation is characterized
by the features taken into account in the asymptotic analysis. Its formulation consists in a derivation of
a reference model associated to an elementary nominal model, and in a set of transformations to apply to
this proof until it takes into account the wanted features. In addition to the reference model proof, the
framework includes first order rewriting principles designed for asymptotic model derivations, and second
order rewriting principles dedicated to transformations of model derivations. We apply the method to
generate a family of homogenized models for second order elliptic equations with periodic coefficients that
could be posed in multi-dimensional domains, with possibly multi-domains and/or thin domains.

1 Introduction

There is a vast literature on multi-scale methods for partial differential equations both in applied mathe-
matics and in many modeling areas. Among all developed methods, asymptotic methods occupy a special
place because they have rigorous mathematical foundations and can lead to error estimates based on the
small parameters involved in the approach. This is a valuable aspect from the model reliability point of
view. They have been applied when a physical problem depends on one or more small parameters which
can be some coefficients or can be related to the geometry. Their principle is to identify the asymptotic
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2007-2013.
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model obtained when the parameters tend to zero. For instance, this method applies in periodic homoge-
nization, i.e. to systems consisting of a large number of periodic cells, the small parameter being the ratio
of the cell size over the size of the complete system, see for instance [BLP78, CD99, JZKO94]. Another
well-developed case is when parts of a system are thin, e.g. thin plates as in [Cia], that is to say that some
of their dimensions are small compared to others. A third kind of use is that of strongly heterogeneous
systems e.g. [BB02], i.e. when equation coefficients are much smaller in some parts of a system than in
others. These three cases can be combined in many ways leading to a broad variety of configurations and
models. In addition, it is possible to take into account several nested scales and the asymptotic charac-
teristics can be different at each scale: thin structures to a scale, periodic structures to another, etc.... It
is also possible to cover cases where the asymptotic phenomena happen only in certain regions or even
are localized to the boundary. Moreover, different physical phenomena can be taken into account: heat
transfer, solid deformations, fluid flow, fluid-structure interaction or electromagnetics. In each model, the
coefficients can be random or deterministic. Finally, different operating regimes can be considered as the
static or the dynamic regimes, or the associated spectral problems. Today, there exists a vast literature
covering an impressive variety of configurations.

Asymptotic methods, considered as model reduction techniques, are very useful for complex system
simulation and are of great interest in the software design community. They enjoy a number of advantages.
The resulting models are generally much faster (often by several order of magnitude – depending on the kind
of model simplification –) to simulate than the original one and are fully parameterized. In addition, they
do not require any long numerical calculation for building them, so they can be inserted into identification
and optimization loops of a design process. Finally, they are of general use and they can be rigorously
applied whenever a model depends on one or several small parameters and the error between their solution
and nominal model solution can be estimated.

Despite these advantages, we observe that the asymptotic modeling techniques have almost not been
transferred in general industrial simulation software while numerical techniques, as for instance the Finite
Element Method, have been perfectly integrated in many design tools. The main limitation factor for their
dissemination is that each new problem requires new long hand-made calculations that may be based on
a relatively large variety of techniques. In the literature, each published paper focus on a special case
regarding geometry or physics, and no work is oriented in an effort to deal with a more general picture.
Moreover, even if a large number of models combining various features have already been derived, the set of
already addressed problems represents only a tiny fraction of those that could be derived from all possible
feature combinations using existing techniques.

Coming to this conclusion, we believe that what prevents the use of asymptotic methods by non-
specialists can be formulated as a scientific problem that deserves to be posed. It is precisely the issue that
we discuss in this paper. We would like to establish a mathematical framework for combining asymptotic
methods of different nature and thus for producing a wide variety of models. This would allow the derivation
of complex asymptotic models are made by computers. In this paper, we present first elements of a solution
by combining some principles of asymptotic model derivations and rewriting methods issued from computer
science.

In computer science equational reasoning is usually described by rewrite rules, see [BN98] for a classical
reference. A rewrite rule t → u states that every occurrence of an instance of t in a term can be replaced
with the corresponding instance of u. Doing so, a proof based on a sequence of equality transformations is
reduced to a series of rewrite rule applications. Rules can have further conditions and can be combined by
specifying strategies which specify where and when to apply them, see for instance [Ter03, CK01, CFK05,
BKKR01, CKLW03]

The method developed in this paper is led by the idea of derivating models by generalization. For this
purpose, it introduces a reference model with its derivation and a way to generate generalizations to cover
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more cases. The level of detail in the representation of mathematical objects should be carefully chosen.
On the one hand it should have enough precision to cover fairly wide range of models and on the other
hand calculations should be reasonably sized. The way the generalizations are made is important so that
they could be formulated in a single framework.

In this paper, we select as reference problem that of the periodic homogenization of a scalar second order
elliptic equation posed in a one-dimension domain and with Dirichlet boundary conditions. Its derivation
is based on the use of the two-scale transform operator introduced in [ADH90], and reused in [BLM96].
We quote that homogenization of various problems using this transformation was performed according
to different techniques in [Len97, Len06, LS07, CD00, CDG02, CDG08]. Here, we follow that of [LS07],
so a number of basic properties coming from this paper are stated and considered as the building blocks
of the proofs. The complete derivation of the model is organized into seven lemmas and whose proof
is performed by a sequence of applications of these properties. Their generalization to another problem
requires generalization of certain properties, which is assumed to be made independently. It may also
require changes in the path of the proof, and even adding new lemmas. The mathematical concepts are
common in the field of partial differential equations: geometric domains, variables defined on these domains,
functions of several variables, operators (e.g. derivatives, integrals, two-scale transform, etc..). Finally, the
proofs of Lemmas are designed to be realizable by rewriting.

Then, we presents a computational framework based on the theory of rewriting to express the above
method. Each property is expressed as a rewrite rule that can be conditional, so that it can be applied or
not according to a given logical formula. A step in a lemma proof is realized by a strategy that expresses
how the rule applies. The complete proof of a lemma is then a sequence of such strategies. Ones we

use have been developed in previous work [BGL] that is implemented in Maple
R©
, here we provide its

formalization. To allow the successful application of rewriting strategies to an expression that contains
associative and/or commutative operations, such as +, ∗,∪,∩, etc, we use the concept of rewriting modulo
an equational theory [BN98, §11]. Without such concept one needs to duplicate the rewriting rules.

In this work, rewriting operates on expressions whose level of abstraction accurately reflects the math-
ematical framework. Concrete descriptions of geometric domains, functions or operators are not provided.
Their description follows a grammar that has been defined in order that they carry enough information al-
lowing for the design of the rewriting rules and the strategies. In some conditions of rewriting rules, the set
of variables on which an expression depends is required. This is for example the case for the linearity prop-
erty of the integral. Rather than introducing a typing system, which would be cumbersome and restrictive,
we introduced a specific functionality in the form of a λ-term (i.e. a program). The language of strategy
allows this use. Put together all these concepts can express a lemma proof as a strategy, i.e. a first order
strategy, and therefore provide a framework of symbolic computation. The concept of generalization of a
proof is introduced as second order rewrite strategies, made with second order rewriting rules, operating on
first order strategies. They can transform first order rewrite rules and strategies and, where appropriate,

remove or add new ones. This framework has been implemented in the software Maple
R©
. We present

its application to the complete proof of the reference problem and also to the generalizations of the first
lemma, by applying second order strategies, to multi-dimensional geometrical domains, multi-dimensional
thin domains and multi-domains.

The paper is organized as follows. Section 2 is devoted to all mathematical aspects. This includes all
definitions and properties, the lemmas and their proof. The principles of rewrite rules and strategies are
formulated in Section 3. Section 4 is devoted to the theoretical framework that allows to derive a model
and its generalizations. Implementation results are described in section 6.
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2 Skeleton of two-scale modeling

We recall the framework of the two-scale convergence as presented in [LS07], and the proof of the reference
model whose implementation and extension under the form of algorithms of symbolic computation are
discussed in Section 6. The presentation is divided into three subsections. The first one is devoted to basic
definitions and properties, stated as Propositions. The latter are admitted without proof because they
are assumed to be prerequisites, or building blocks, in the proofs. They are used as elementary steps in
the two other sections detailing the proof of the convergence of the two-scale transform of a derivative,
and the homogenized model derivation. The main statements of these two subsections are also stated as
Propositions and their proofs are split into numbered blocks called lemmas. Each lemma is decomposed
into steps refering to the definitions and propositions. All components of the reference model derivation,
namely the definitions, the propositions, the lemmas and the proof steps are designed so that to be easily
implemented and also to be generalized for more complex models. We quote that a number of elementary
properties are used in the proof but are not explicitely stated nor cited.

2.1 Notations, Definitions and Propositions

Note that the functional framework used in this section is not as precise as it should be for a usual
mathematical work. The reason is that the functional analysis is not covered by our symbolic computation.
So, precise mathematical statements and justifications are not in the focus of this work.

In the sequel, A ⊂ R
n is a bounded open set, with measure |A|, having a ”sufficiently” regular boundary

∂A and with unit outward normal denoted by n∂A. We shall use the set L1(A) of integrable functions
and the set Lp(A), for any p > 0, of functions f such that fp ∈ L1(A), with norm ||v||Lp(A) = (

∫
A |v|p

dx)1/p. The Sobolev space H1(A) is the set of functions f ∈ L2(A) whose gradient ∇f ∈ L2(A)n. The
set of p times differentiable functions on A is denoted by Cp(A), where p can be any integer or ∞. Its
subset Cp

0(A) is composed of functions whose partial derivatives are vanishing on the boundary ∂A of A
until the order p. For any integers p and q, Cq(A) ⊂ Lp(A). When A = (0, a1) × ... × (0, an) is a cuboid
(or rectangular parallelepiped) we say that a function v defined in R

n is A-periodic if for any ℓ ∈ Z
n,

v(y +
∑n

i=1 ℓiaiei) = v(y) where ei is the ith vector of the canonical basis of Rn. The set of A-periodic
functions which are C∞ is denoted by C∞

♯ (A) and those which are in H1(A) is denoted by H1
♯ (A). The

operator tr (we say trace) can be defined as the restriction operator from functions defined on the closure
of A to functions defined on its boundary ∂A. Finally, we say that a sequence (uε)ε>0 ∈ L2(A) converges
strongly in L2(A) towards u0 ∈ L2(A) when ε tends to zero if limε→0 ||u

ε − u0||L2(A) = 0. The convergence
is said to be weak if limε→0

∫
A(u

ε − u0)v dx = 0 for all v ∈ L2(A). We write uε = u0 +Os(ε) (respectively
Ow(ε)), where Os(ε) (respectively Ow(ε)) represents a sequence tending to zero strongly (respectively
weakly) in L2(A). Moreover, the simple notation O(ε) refers to a sequence of numbers which simply tends
to zero. We do not detail the related usual computation rules.

Proposition 1 [Interpretation of a weak equality] For u ∈ L2(A) and for any v ∈ C∞
0 (A),

if

∫

A
u(x) v(x) dx = 0 then u = 0

in the sense of L2(A) functions.

Proposition 2 [Interpretation of a periodic boundary condition] For u ∈ H1(A) and for any
v ∈ C∞

# (A),

if

∫

∂A
u(x) v(x) n∂A(x) dx = 0 then u ∈ H1

♯ (A) .
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In the remainder of this section, only the dimension n = 1 is considered, the general definitions being used
for the generalizations discussed in Section 6.

Notation 3 [Physical and microscopic Domains] We consider an interval Ω =
N(ε)⋃
c=1

Ω1,ε
c ⊂ R divided

into N(ε) periodic cells (or intervals) Ω1,ε
c , of size ε > 0, indexed by c, and with center xc. The translation

and magnification (Ω1,ε
c − xc)/ε is called the unit cell and is denoted by Ω1. The variables in Ω and in Ω1

are denoted by xε and x1.

The two-scale transform T is an operator mapping functions defined in the physical domain Ω to functions
defined in the two-scale domain Ω♯ × Ω1 where for the reference model Ω♯ = Ω. In the following, we shall
denote by Γ, Γ♯ and Γ1 the boundaries of Ω, Ω♯ and Ω1.

Definition 4 [Two-Scale Transform] The two-scale transform T is the linear operator defined by

(Tu)(xc, x
1) = u(xc + εx1) (1)

and then by extension T (u)(x♯, x1) = u(xc + εx1) for all x♯ ∈ Ω1,ε
c and each c in 1, .., N(ε).

Notation 5 [Measure of Domains] κ0 = 1
|Ω| and κ

1 = 1
|Ω♯×Ω1|

.

The operator T enjoys the following properties.

Proposition 6 [Product Rule] For two functions u, v defined in Ω,

T (uv) = (Tu)(Tv). (2)

Proposition 7 [Derivative Rule] If u and its derivative are defined in Ω then

T

(
du

dx

)
=

1

ε

∂(Tu)

∂x1
. (3)

Proposition 8 [Integral Rule] If a function u ∈ L1(Ω) then Tu ∈ L1(Ω♯ × Ω1) and

κ0
∫

Ω
u dx = κ1

∫

Ω♯×Ω1

(Tu) dx♯dx1. (4)

The next two properties are corollaries of the previous ones.

Proposition 9 [Inner Product Rule] For two functions u, v ∈ L2(Ω),

κ0
∫

Ω
u v dx = κ1

∫

Ω♯×Ω1

(Tu) (Tv) dx♯dx1. (5)

Proposition 10 [Norm Rule] For a function u ∈ L2(Ω),

κ0 ‖u‖2L2(Ω) = κ1 ‖Tu‖2L2(Ω♯×Ω1) . (6)

Definition 11 [Two-Scale Convergence] A sequence uε ∈ L2(Ω) is said to be two-scale strongly (re-
spect. weakly) convergent in L2(Ω♯×Ω1) to a limit u0(x♯, x1) if Tuε is strongly (respect. weakly) convergent
towards u0 in L2(Ω♯ × Ω1).
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Definition 12 [Adjoint or Dual of T] As T is a linear operator from L2(Ω) to L2(Ω♯×Ω1), its adjoint
T ∗ is a linear operator from L2(Ω♯ × Ω1) to L2(Ω) defined by

κ0
∫

Ω
T ∗v u dx = κ1

∫

Ω♯×Ω1

v Tu dx♯dx1. (7)

The expression of T ∗ can be explicited, it maps regular functions in Ω♯×Ω1 to piecewise-constant functions
in Ω. The next definition introduce an operator used as a smooth approximation of T ∗.

Definition 13 [Regularization of T∗] The operator B is the linear continuous operator defined from
L2(Ω♯ × Ω1) to L2(Ω) by

Bv = v(x,
x

ε
). (8)

The nullity condition of a function v(x♯, x1) on the boundary ∂Ω♯ × Ω1 is transferred to the range Bv as
follows.

Proposition 14 [Boundary Conditions of Bv] If v ∈ C∞
0 (Ω♯; C∞(Ω1)) then Bv ∈ C∞

0 (Ω).

Proposition 15 [Derivation Rule for B] If v and its partial derivatives are defined on Ω♯ × Ω1 then

d(Bv)

dx
= B(

∂v

∂x♯
) + ε−1B(

∂v

∂x1
). (9)

The next proposition states that the operator B is actually an approximation of the operator T ∗ for
Ω1-periodic functions.

Proposition 16 [Approximation between T∗ and B] If v(x♯, x1) is continuous, continuously differ-
entiable in x♯ and Ω1-periodic in x1 then

T ∗v = Bv − εB(x1
∂v

∂x♯
) + εOs(ε). (10)

Conversely,

Bv = T ∗(v) + εT ∗(x1
∂v

∂x♯
) + εOs(ε). (11)

Next, the formula of integration by parts is stated in a form compatible with the Green formula used in
some extensions. The boundary Γ is composed of the two end points of the interval Ω, and the unit outward
normal nΓ defined on Γ is equal to −1 and +1 at the left- and right-endpoints respectively.

Proposition 17 [Green Rule] If u, v ∈ H1(Ω) then the traces of u and v on Γ are well defined and
∫

Ω
u
dv

dx
dx =

∫

Γ
tr(u) tr(v) nΓ ds(x)−

∫

Ω
v
du

dx
dx. (12)

The last proposition is stated as a building block of the homogenized model derivation.

Proposition 18 [The linear operator associated to the Microscopic problem] For µ ∈ R, there
exist θµ ∈ H1

♯ (Ω
1) solutions to the linear weak formulation

∫

Ω1

a0
∂θµ

∂x1
∂w

∂x1
dx1 = −µ

∫

Ω1

a0
∂w

∂x1
dx1 for all w ∈ C∞

♯ (Ω1), (13)

and ∂θµ

∂x1 is unique. Since the mapping µ 7→
∂θµ

∂x1
from R to L2(Ω1) is linear then

∂θµ

∂x1
= µ

∂θ1

∂x1
. (14)

Moreover, this relation can be extended to any µ ∈ L2(Ω♯).
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2.2 Two-Scale Approximation of a Derivative

Here we detail the reference computation of the weak two-scale limit η = limε→0 T (
duε

dx ) in L2(Ω♯ × Ω1)
when

‖uε‖L2(Ω) and

∥∥∥∥
duε

dx

∥∥∥∥
L2(Ω)

≤ C, (15)

C being a constant independent of ε. To simplify the proof, we further assume that there exist u0,
u1 ∈ L2(Ω♯ × Ω1) such that

T (uε) = u0 + εu1 + εOw(ε),

i.e. ∫

Ω♯×Ω1

(T (uε)− u0 − εu1)v dx♯dx1 = εO(ε) for all v ∈ L2(Ω♯ × Ω1). (16)

We quote that Assumption (16) is not necessary, it is introduced to simplify the proof since it avoids some
non-equational steps. The statement proved in the remaining of the subsection is the following.

Proposition 19 [Two-scale Limit of a Derivative] If uε is a sequence bounded as in (15) and satis-
fying (16), then u0 is independent of x1,

ũ1 = u1 − x1∂x♯u0 (17)

defined in Ω♯ × Ω1 is Ω1-periodic and

η =
∂u0

∂x♯
+
∂ũ1

∂x1
. (18)

Moreover, if uε = 0 on Γ then u0 = 0 on Γ♯.

The proof is split into four Lemmas corresponding to the first four blocks discussed in Section 6, the other
three being detailed in subsection 2.3.

Lemma 20 [First Block: Constraint on u0] u0 is independent of x1.

Proof. We introduce

Ψ = εκ0
∫

Ω

duε

dx
Bv dx

with v ∈ C∞
0 (Ω♯; C∞

0 (Ω1)). From the Cauchy-Schwartz inequality and (15), limε→0Ψ = 0.

• Step 1. The Green formula (12) and Proposition 14 =⇒

Ψ = −εκ0
∫

Ω
uε
d(Bv)

dx
dx.

• Step 2. Proposition 15 =⇒

Ψ = κ0
∫

Ω
uεB(

∂v

∂x1
) dx+O(ε).

• Step 3. Proposition 16 =⇒

Ψ = κ0
∫

Ω
uεT ∗(

∂v

∂x1
) dx+O(ε).

• Step 4. Definition 12 =⇒

Ψ = κ1
∫

Ω♯×Ω1

T (uε)
∂v

∂x1
dx+O(ε).
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• Step 5. Assumption (16) and passing to the limit when ε→ 0 =⇒

κ1
∫

Ω♯×Ω1

u0
∂v

∂x1
dx = 0.

• Step 6. The Green formula (12) and v = 0 on Ω♯ × Γ1 =⇒

κ1
∫

Ω♯×Ω1

∂u0

∂x1
v dx = 0.

• Step 7. Proposition 1 =⇒
∂u0

∂x1
= 0.

Lemma 21 [Second Block: Two-Scale Limit of the Derivative] η = ∂u1

∂x1 .

Proof. We choose v ∈ C∞
0 (Ω♯; C∞

0 (Ω1)) in

Ψ = κ1
∫

Ω♯×Ω1

T (
duε

dx
)v dx♯dx1. (19)

• Step 1. Definition 12 =⇒

Ψ = κ0
∫

Ω

duε

dx
T ∗v dx.

• Step 2. Proposition 16 (to approximate T ∗ by B), the Green formula (12), the linearity of integrals,
and again Proposition 16 (to approximate B by T ∗) =⇒

Ψ = −κ0
∫

Ω
uεT ∗(

∂v

∂x♯
) dx−

κ0

ε

∫

Ω
uεT ∗(

∂v

∂x1
) dx− κ0

∫

Ω
uεT ∗(

∂2v

∂x1∂x♯
x1) dx+O(ε).

• Step 3. Definition 12 =⇒

Ψ = −κ1
∫

Ω♯×Ω1

T (uε)
∂v

∂x♯
dx♯dx1 −

κ1

ε

∫

Ω♯×Ω1

T (uε)
∂v

∂x1
dx♯dx1

−κ1
∫

Ω♯×Ω1

T (uε)x1
∂2v

∂x1∂x♯
dx♯dx1 +O(ε).

• Step 4. Assumption (16) =⇒

Ψ = −κ1
∫

Ω♯×Ω1

u0
∂v

∂x♯
dx♯dx1 −

κ1

ε

∫

Ω♯×Ω1

u0
∂v

∂x1
dx♯dx1 − κ1

∫

Ω♯×Ω1

u1
∂v

∂x1
dx♯dx1

−κ1
∫

Ω♯×Ω1

u0
∂2v

∂x1∂x♯
x1 +O(ε).

• Step 5. The Green formula (12), Lemma 20, and passing to the limit when ε→ 0 =⇒

κ1
∫

Ω♯×Ω1

η v dx♯dx1 = κ1
∫

Ω♯×Ω1

∂u1

∂x1
v dx♯dx1.

• Step 6. Proposition 1 =⇒

η =
∂u1

∂x1
.
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Lemma 22 [Third Block: Microscopic Boundary Condition] ũ1 is Ω1-periodic.

Proof. In (19), we choose v ∈ C∞
0 (Ω♯; C∞

♯ (Ω1)).

• Step 1. The steps 1-5 of the second block =⇒

κ1
∫

Ω♯×Ω1

ηv dx♯dx1 − κ1
∫

Ω♯×Γ1

(u1 − x1
∂u0

∂x♯
)v nΓ1 dx♯dx1 − κ1

∫

Ω♯×Ω1

∂u1

∂x1
v dx♯dx1 = 0.

• Step 2. Lemma 21 =⇒ ∫

Ω♯×Γ1

(u1 − x1
∂u0

∂x♯
)v nΓ1 dx♯ds(x1) = 0. (20)

• Step 3. Definition (17) of ũ1 and Proposition 2 =⇒

ũ1 is Ω1-periodic. (21)

Lemma 23 [Fourth Block: Macroscopic Boundary Condition] u0 vanishes on Γ♯.

Proof. We choose v ∈ C∞
0 (Ω♯),

• Step 1. The steps 1-5 of the second block and uε = 0 on Γ =⇒

∫

Γ♯×Ω1

u0v nΓ♯ ds(x♯)dx1 = 0.

• Step 2. Proposition 1 =⇒
u0 = 0 on Γ♯.

2.3 Homogenized Model Derivation

Here we provide the reference proof of the homogenized model derivation. It uses Proposition 19 as an
intermediary result. Let uε, the solution of a linear boundary value problem posed in Ω,





−
d

dx
(aε(x)

duε(x)

dx
) = f in Ω

uε = 0 on Γ,
(22)

where the right-hand side f ∈ L2(Ω), the coefficient aε ∈ C∞(Ω) is εΩ1-periodic, and there exist two
positive constants α and β independent ε such that

0 < α ≤ aε(x) ≤ β. (23)

The weak formulation is obtained by multiplication of the differential equation by a test function v ∈ C∞
0 (Ω)

and application of the Green formula,

κ0
∫

Ω
aε(x)

duε

dx

dv

dx
dx = κ0

∫

Ω
f(x)v(x) dx. (24)

9



It is known that its unique solution uε is bounded as in (15). Moreover, we assume that for some functions
a0(x1) and f0(x♯),

T (aε) = a0 and T (f) = f0(x♯) +Ow(ε). (25)

The next proposition states the homogenized model and is the main result of the reference proof. For θ1 a
solution to the microscopic problem (13) with µ = 1, the homogenized coefficient and right-hand side are
defined by

aH =

∫

Ω1

a0
(
1 +

∂θ1

∂x1

)2

dx1 and fH =

∫

Ω1

f0 dx1. (26)

Proposition 24 [Homogenized Model] The limit u0 is solution to the weak formulation

∫

Ω♯

aH
du0

dx♯
dv0

dx♯
dx♯ =

∫

Ω♯

fHv0 dx♯ (27)

for all v0 ∈ C∞
0 (Ω♯).

The proof is split into three lemmas.

Lemma 25 [Fifth Block: Two-Scale Model] The couple (u0, ũ1) is solution to the two-scale weak
formulation ∫

Ω♯×Ω1

a0
(
∂u0

∂x♯
+
∂ũ1

∂x1

)(
∂v0

∂x♯
+
∂v1

∂x1

)
dx♯dx1 =

∫

Ω♯×Ω1

f0v0 dx♯dx1 (28)

for any v0 ∈ C∞
0 (Ω♯) and v1 ∈ C∞

0 (Ω♯, C∞
♯ (Ω1)).

Proof. We choose the test functions v0 ∈ C∞
0 (Ω♯), v1 ∈ C∞

0 (Ω♯, C∞
♯ (Ω1)).

• Step 1 Posing v = B(v0 + εv1) in (24) and Proposition 14 =⇒

Bv ∈ C∞
0 (Ω) and κ0

∫

Ω
aε
duε

dx

dB(v0 + εv1)

dx
dx = κ0

∫

Ω
f B(v0 + εv1) dx.

• Step 2 Propositions 15 and 16 =⇒

κ0
∫

Ω
aε
duε

dx
T ∗

(
∂v0

∂x♯
+
∂v1

∂x1

)
dx = κ0

∫

Ω
f T ∗(v0)dx+O(ε).

• Step 3 Definition 12 and Proposition 6 =⇒

κ1
∫

Ω♯×Ω1

T (aε)T (
duε

dx
)

(
∂v0

∂x♯
+
∂v1

∂x1

)
dx♯dx1 = κ1

∫

Ω♯×Ω1

T (f) v0 dx♯dx1 +O(ε). (29)

• Step 4 Definitions (25), Lemma 19, and passing to the limit when ε→ 0 =⇒

∫

Ω♯×Ω1

a0
(
∂u0

∂x♯
+
∂ũ1

∂x1

)(
∂v0

∂x♯
+
∂v1

∂x1

)
dx♯dx1 =

∫

Ω♯×Ω1

f0v0 dx♯dx1

which is the expected result.

Lemma 26 [Sixth Block: Microscopic Problem] ũ1 is solution to (13) with µ =
∂u0

∂x♯
and

∂ũ1

∂x1
=
∂u0

∂x♯
∂θ1

∂x1
.
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Proof. We choose v0 = 0 and v1(x♯, x1) = w(x1)ϕ(x♯) in (28) with ϕ ∈ C∞(Ω♯) and w1 ∈ C∞
♯ (Ω1).

• Step 1 Proposition 1, Lemma 20, and the linearity of the integral =⇒

∫

Ω1

a0
∂ũ1

∂x1
∂w1

∂x1
dx1 = −

∂u0

∂x♯

∫

Ω1

a0
∂w1

∂x1
dx1. (30)

• Step 2 Proposition 18 with µ =
∂u0

∂x♯
=⇒

∂ũ1

∂x1
=
∂u0

∂x♯
∂θ1

∂x1

as announced.

Lemma 27 [Seventh Block: Macroscopic Problem] u0 is solution to (27).

Proof. We choose v0 ∈ C∞
0 (Ω♯) and v1 =

∂v0

∂x♯
∂θ1

∂x1
∈ C∞

0 (Ω♯, C∞
♯ (Ω1)) in (28).

• Step 1 Lemma 26 =⇒

∫

Ω♯×Ω1

a0
(
∂u0

∂x♯
+
∂θ1

∂x1
∂u0

∂x♯

)(
∂v0

∂x♯
+
∂θ1

∂x1
∂v0

∂x♯

)
dx♯dx1 =

∫

Ω♯×Ω1

f0v0 dx♯dx1. (31)

• Step 2 Factorizing and definitions (26) =⇒

∫

Ω♯

aH
∂u0

∂x♯
∂v0

∂x♯
dx♯ =

∫

Ω♯

fHv0 dx♯.

3 Rewriting strategies

In this section we recall the rudiments of rewriting, namely, the definitions of terms over a signature, of
substitution and of rewriting rules. We introduce a strategy language: its syntax and semantics in terms
of partial functions. This language will allow us to express most of the useful rewriting strategies.

3.1 Term, substitution and rewriting rule.

We start with an example of rewriting rule. We define a set of rewriting variables X = {x, y} and a set
of function symbols Σ = {f, g, a, b, c}. A term is a combination of elements of X ∪ Σ, for instance f(x)
or f(a). The rewriting rule f(x)  g(x) applied to a term f(a) is a two-step operation. First, it consists
in matching the left term f(x) with the input term f(a) by matching the two occurences of the function
symbol f, and by matching the rewriting variable x with the function symbol a. Then, the result g(a) of
the rewriting operation is obtained by replacing the rewriting variable x occuring in the right hand side
g(x) by the subterm a that have been associated to x. In case where a substitution is possible, as in the
application of f(b) → g(x) to f(a), we say that the rewriting rule fails.

Definition 28 Let Σ be a countable set of function symbols, each symbol f ∈ Σ is associated with a non-
negative integer n, its arity ar(f) i.e. the number of arguments of f . Let X be a countable set of variables
such that Σ ∩ X = ∅. The set of terms, denoted by T (Σ,X ), is inductively defined by
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• X ⊆ T (Σ,X ) (i.e. every rewriting variable is a term),

• for all f ∈ Σ of arity n, and all t1, . . . , tn ∈ T (Σ,X ), the expression f(t1, . . . , tn) ∈ T (Σ,X ) (i.e. the
application of function symbols to terms gives rise to terms).

We denote by Σn the subset of Σ of the function symbols of arity n. For instance in the example f and
g belong to Σ1 while a and b belong to Σ0. Two other common examples of terms are the expressions

Integral(Ω, f(x), x) and diff (f(x), x) which represent the expressions
∫
Ω f(x) dx and

df(x)

dx
. Notice that

Integral ∈ Σ3, diff ∈ Σ2, f ∈ Σ1 and x,Ω ∈ Σ0. For the sake of simplicity we often keep the symbolic
mathematical notation to express the rewriting rules. In the following we see a term as an oriented, ranked
and rooted tree as it is usual in symbolic computation. We recall that in a ranked tree the child order is
important. For instance the tree associated to the term Integral(Ω, f(x), x) has Integral as its root which
has three children in the order Ω, f, x and f has one child x.

Definition 29 A substitution is a function σ : X → T (Σ,X ) such that σ(x) 6= x for x ∈ X . The set of
variables that σ does not map to themselves is called the domain of σ, i.e. Dom(σ) = {x ∈ X | σ(x) 6= x}. If
Dom(σ) = {x1, · · · , xn} then we might write σ as σ = {x1 7→ t1, . . . , xn 7→ tn} for some terms t1, .., tn. Any
substitution σ can be extended to a mapping T (Σ,X ) → T (Σ,X ) as follows: for x ∈ X , σ̂(x) = σ(x), and
for any non-variable term s = f(s1, · · · , sn), we define σ̂(s) = f(σ̂(s1), · · · , σ̂(sn)). To simplify the notation
we do not distinguish between a substitution σ : X → T (Σ,X ) and its extension σ̂ : T (Σ,X ) → T (Σ,X ).

The application of a substitution σ to a term t, denoted by σ(t), simultaneously replaces all occurrences
of variables in t by their σ-images.

For instance, the maping σ defined by σ(x) = a is a substitution and its extension σ̂ maps f(x) and g(x)
into f(a) and g(a).

A rewriting rule, is a pair (l, r) where l and r are terms in T (Σ,X ); it will also be denoted by l  r.
We observe that for any two terms s, t, there exists at most one substitution σ such that σ(s) = t. We
mention that a rewriting rule stands for the rule application at the top position. It is more useful to be
able to apply a rule at arbitrary position, and more generally to specify the way rules are applied. For this
purpose we next present a strategy language that allows to built strategies out of basic constructors. To
this end, we introduce strategy constructor symbols ; , ,⊕, µ, etc that do not belong to Σ∪X . Informally,
the constructor ”; ” stands for the composition, ” ⊕ ” for the left choice, Some for the application of a
strategy to the immediate subterms of the input term, η(x) for the fail as identity constructor, Child(j, s)
applies the strategy s to the jth immediate subterm, X is a fixed-point variable, and µ is the fixed-point or
the iterator constructor, its purpose is to define recursive strategies. For example, the strategy µX.(s;X)
stands for s; s; . . ., that is, it is the iteration of the application of s until a fixed-point is reached. The
precise semantics of these constructors is given in Definition 31.

Definition 30 (Strategy) Let F be a finite set of fixed-point variables. A strategy is inductively defined
by the following grammar:

s ::= l r | s; s | s⊕ s | η(s) | Some(s) | Child(j, s) | X | µX.s (32)

where j ∈ N and X ∈ F . The set of strategies defined from a set of rewriting rules in T (Σ,X ) × T (Σ,X )
is denoted by ST .

We denote by F the failing result of a strategy and T ∗(Σ,X ) = T (Σ,X ) ∪ F.

Definition 31 (Semantics of a strategy) The semantics of a strategy is a function [[.]] : ST (Σ,X ) →
(T ∗(Σ,X ) → T ∗(Σ,X )) defined by its application to each grammar component:

[[s]](F) = F

12



[[l r]](t) =

{
σ(r) if σ(l) = t

F otherwise

[[s1; s2]](t) = [[s2]]([[s1]](t))

[[s1 ⊕ s2]](t) =

{
[[s1]](t) if [[s1]](t) 6= F

[[s2]](t) otherwise

[[η(s)]](t) =

{
t if [[s]](t) = F

[[s]](t) otherwise

[[Some(s)]](t) =





F if ar(t) = 0

f(η(s)(t1), . . . , η(s)(tn)) if t = f(t1, . . . , tn) and ∃i ∈ [1..n] s.t. [[s]](ti) 6= F

F otherwise

[[Child(j, s)]](t) =

{
F if ar(t) = 0, or t = f(t1, . . . , tn) and j > n

f(t1, . . . , tj−1, [[s]](tj), tj+1, . . . , tn) if t = f(t1, . . . , tn) and j ≤ n.

The semantics of the fixed-point constructor is more subtle. One would write:

[[µX.s]] = [[s[X/µX.s]]] (33)

but this equation cannot be directly used to define [[µX.s]], since the right-hand side contains as a subphrase
the phrase whose denotation we are trying to define. Notice that the equation (33) amounts to saying that
[[µX.s]] should be the least fixed-point of the operator F :

F (X) = λX(T ∗(Σ,X )→T ∗(Σ,X )) [[s]](T
∗(Σ,X )→T ∗(Σ,X )).

Let D = T ∗(Σ,X ) → T ∗(Σ,X ) and define ⊑ a partial order on D as follows:

w ⊑ w′ iff graph(w) ⊆ graph(w′).

Let ⊥ be the function of empty graph, and let

F0 = ⊥

Fn = F (Fn−1).

One can show, using Knaster-Tarsky fixed-point theorem [Tar55], that F∞ is the least fixed-point of the
operator F , that is

F (w) = w =⇒ F∞ ⊑ w.

Such fixed point equations arises very often in giving denotational semantics to languages with recursive
features, for instance the semantics of the loop “while” of the programming languages [SK95, §9, §10].

Example 32 Out of the basic constructors of strategies given in Definition 30, we built up some useful
strategies. The strategy TopDown(s) applies the strategy s to an input term t in a top down way starting
from the root, it stops when it succeeds. That is, if the strategy s succeeds on some subterm t′ of t, then it
is not applied to the proper subterms of t′. The strategy OuterMost(s) behaves exactly like TopDown(s)
apart that if the strategy s succeeds on some subterm t′ of t, then it is also applied to the proper subterms
of t′. The strategy BottomUp(s) (resp. InnerMost(s)) behaves like BottomUp(s) (resp. InnerMost(s))
but in the opposite direction, i.e. it traverses a term t starting from the leafs. The strategy Normalizer(s)
iterates the application of s until a fixed-point is reached. The formal definition of these strategies follows:

TopDown(s) := µX.(s ⊕ Some(X)),

OuterMost(s) := µX.(s;Some(X)),

BottomUp(s) := µX.(Some(X) ⊕ s),

InnerMost(s) := µX.(Some(X); s),

Normalizer(s) := µX.(s;X).
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Example 33 Let the variable set X = {y, z, t, w} and the partition Σ = Σ0∪Σ1∪Σ2 of the set of function
symbols with respect to their arity with Σ0 = {x, x1, x2, ∂Ω,Ω, ε}, Σ1 = {u, v, n,O,B}, Σ2 = {derivative},
Σ3 = {Integral} with obvious definitions. We present the strategy that rewrites the expression

Ψ =

∫

∂Ω
u(x) n(x) B(v(x1, x2)) dx−

∫

Ω
u(x)

d

dx
(B(v(x1, x2))) dx+O(ε),

taking into account that B(v) vanishes on the boundary ∂Ω. This term is written under mathematical form
for simplicity, but in practice it is written from the above defined symbol of functions. Remark that the
expression B(v(x1, x2)) is a function of the variable x but this does not appear explicitly in this formulation.
Such a case cannot appear when the grammar for terms introduced in the next section is used. We need
the two rewriting rules

r1 :=

∫

∂Ω
w dt 

∫

∂Ω
w dt,

r2 := B(v(z, y)) 0,

and the strategy TopDown already defined. Notice that the rule r1 has not effect but to detect the presence
of the integral over the boundary. Finally, the desired strategy is:

F := TopDown(r1;TopDown(r2)),

and the result is

[[F ]](Ψ) =

∫

∂Ω
u(x) n(x) B(0) dx−

∫

Ω
u(x)

d

dx
(B(v(x1, x2))) dx+O(ε).

3.2 Rewriting modulo equational theories

So far the semantics of strategies does not take into account the properties of some function symbols, e.g.
associativity and commutativity equalities of ”+”. In particular the application of the rule a+ b f(a, b)
to the term (a + c) + b fails. More generally we next consider the rewriting modulo an equational theory,
i.e. a theory that is axiomatized by a set of equalities.
For the sake of illustration, we consider the commutativity and associativity theory of +, E = {x + y =
y+ x, (x+ y) + z = x+ (y + z)} and the rewrite rule f(x+ y) f(x) + f(y) applying the linearity rule of
a function f . Its application to the term f((a+ b) + c) modulo E yields the set of terms {f(a+ b) + f(c),
f(a) + f(b+ c), f(b) + f(a+ c)}. In the following, we define part of the semantics of a strategy modulo a
theory, we use the notation P(T (Σ,X )) to denote the set of subsets of T (Σ,X ).

Definition 34 (Semantics of a strategy modulo) Let be E be a finitary equational theory, the seman-
tics of a strategy modulo E is a function [[.]]E : ST (Σ,X ) → (P(T ∗(Σ,X )) → P(T ∗(Σ,X ))) that is partly
defined by

[[s]]E({t1, . . . , tn}) = ∪n
i=1[[s]]

E(ti)

[[l  r]]E(t1) = ∪j{σj(r)} if E =⇒ σj(l) = t,

[[s1; s2]]
E(t) = [[s2]]

E([[s1]]
E(t))

[[s1 ⊕ s2]]
E(t) =

{
[[s1]]

E(t) if [[s1]](t) 6= {F}

[[s2]]
E(t) otherwise

[[η(s)]]E(t) =

{
{t} if [[s]]E(t) = {F}

[[s]]E(t) otherwise.

The semantics of Some and Child is more complex and we do not detail it here. The semantics of the
fixed-point operator is similar to the one given in the rewriting modulo an empty theory.
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3.3 Conditional rewriting

Rewriting with conditional rules, also known as conditional rewriting, extends the basic rewriting with the
notion of condition. A conditional rewrite rule is a triplet:

(l, r, c)

where c is a constraint expressed in some logic. The semantics of the rule application is given by

[[(l, r, c)]]E(t) =

{
∪j{σj(r)} if the formula σj(c) can be derived from E,

F otherwise.

The set of strategies defined over rewriting rules (l, r, c) ∈ T × T × Tc is denoted by ST ,Tc .

3.4 Rewriting with memory

Some definitions or computations require storing the history of the transformations of some terms. To carry
on, we introduce a particular function symbol M ∈ Σ2 of arity two to represent the memory. Intuitively
the term M(t1, t2) represents the term t1, besides the additional information that t2 was transformed to t1
at an early stage. From this consideration if follows that any strategy applied to M(t1, t2) should only be
applied to t1. Formally, we define the semantics of strategy application taking into account the memory as
a partial function: [[.]]

M
: ST (Σ,X ) → (T ∗(Σ,X ) → T ∗(Σ,X )) so that:

[[s]]M(t) = M([[s]]M(t1), t2) if t = M(t1, t2), and behaves like [[.]], otherwise. That is,
[[s]]M(F) = F

[[l r]]M(t) =

{
σ(r) if σ(l) = t

F otherwise

[[s1; s2]]M(t) = [[s2]]M([[s1]]M(t))

[[s1 ⊕ s2]]M(t) =

{
[[s1]]M(t) if [[s1]]M(t) 6= F

[[s2]]M(t) otherwise
etc.

4 A Symbolic Computation Framework for Model Deriva-

tion

In this section we propose a framework for the two-scale model proofs. As in Example 33, the latter
are formulated as rewriting strategies. We notice that the following framework differs from that used in
Example 33 in that it allows for the complete representation of the data. It does not rely on external
structures such as hash tables. To this end, we define the syntax of the mathematical expressions by means
of a grammar G.

4.1 A Grammar for Mathematical Expressions

The grammar includes four rules to built terms for mathematical functions F, regions R, mathematical
variables V, and boundary conditions C. It involves ΣReg, ΣV ar, ΣFun, ΣOper, and ΣCons which are sets
of names of regions, variables, functions, operators, and constants so subsets of Σ0. Empty expressions in
ΣReg and ΣFun are denoted by ⊥R and ⊥F. The set of usual algebraic operations ΣOp = {+,−,×, /, ˆ} is a
subset of Σ2. The elements of ΣType = {Unknown, Test , Known, ⊥Type} ⊂ Σ0, ⊥Type denoting the empty
expression, are to specify the nature of a function, namely an unknown function (as uε, u0, u1 in the proof),
a test function (as v, v0, v1) in a weak formulation or another known function (as aε, f ε, a0, f0 or nΓ1). The
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boundary conditions satisfied by a function are specified by the elements of ΣBC = {d, n, pd, apd, t} ⊂ Σ0

to express that it satisfies Dirichlet, Neuman, periodic, anti-periodic or transmission conditions. The
grammar also involve the symbols of functions Reg, Fun, IndexedFun, IndexedReg, IndexedVar, Oper, Var,
and BC that define regions, mathematical functions, indexed functions or regions or variables, operators,
mathematical variables and boundary conditions. The grammar reads as

F ::= ⊛ (F,F) | d | V |

Fun(f, [V, . . . ,V], [C, . . . ,C],K) |

IndexedFun(F,V) |

Oper(A, [F, . . . ,F], [V, . . . ,V], [V, . . . ,V], [d, . . . , d]) |

⊥F | M(F,F),

R ::= Reg(Ω, [d, . . . , d], {R, . . . ,R},R,F) |

IndexedReg(F,V) |

⊥R | M(R,R),

V ::= Var(x,R) | IndexedVar(V,V) | M(V,V),

C ::= BC(c,R,F) | M(C,C),

where the symbols Ω, d, ⊛, f, K, A, x and c hold for any function symbols in ΣReg, ΣCons, ΣOp, ΣFun,
ΣType, ΣOper, ΣV ar, and ΣBC . The arguments of a region term are its region name, the list of its space
directions (e.g. [1,3] for a plane in the variables (x1, x3)), the (possibly empty) set of subregions, the
boundary and the outward unit normal. Those of a function term are its function name, the list of the
mathematical variables that range over its domain, its list of boundary conditions, and its nature. Those for
an indexed region or variable or function term are its function or variable term and its index (which should
be discrete). For an operator term these are its name, the list of its arguments, the list of mathematical
variable terms that it depends, the list of mathematical variable terms of its co-domain (useful e.g. for T
when the image cannot be deduced from the initial set), and a list of parameters. Finally, the arguments of
a boundary condition term are its type, the boundary where it applies and an imposed function if there is
one. For example, the imposed function is set to 0 for an homogeneous Dirichlet condition and there is no
imposed function in a periodicity condition. We shall denote by TR(Σ, ∅), TF(Σ, ∅), TV(Σ, ∅), and TC(Σ, ∅)
the set of terms generated by the grammar starting from the non-terminal R, F, V, and C. The set of all
terms generated by the grammar (i.e. starting from R, F, V, or C) is denoted by TG(Σ, ∅). Finally, we also
define the set of terms TG(Σ,X ) where each non-terminal R, F, V, and C can be replaced by a rewriting
variable in X . Equivalently, it can be generated by the extension of G obtained by adding ” | x” with x ∈ X
in the definition of each non-terminal term. Or, by adding N ::= x, with x ∈ X for each non-terminal N .

Example 35 Throughout this paper, an underlined symbol represents a shortcut whose name corresponds
to the term name. For instance,

Ω = Reg(Ω, [2], ∅,Γ, n), where Γ = Reg(Γ, [], ∅,⊥R,⊥F),

n = Fun(n, [x′], [],Known), x′ = Var(x,Ω′) and Ω′ = Reg(Ω, [2], ∅,Γ,⊥F)

represents a region-term a one-dimensional domain named Ω, oriented in the direction x2, with boundary
Γ and with outward unit normal n. The shortcut Γ is also for a region term representing the boundary
named Γ. As it can be understood from this example, except names all other fields can be void terms or
empty lists.

Example 36 An unknown function u(x) defined on Ω satisfying homogeneous Dirichlet boundary condition
u(x) = 0 on Γ is represented by the function-term,

u(x) = Fun(u, [x], Cond(d,Γ, 0), Unknown) where x = Var(x,Ω).
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4.2 Short-cut Terms

For the sake of conciseness, we introduce shortcut terms that are constantly used in the end of the paper:
Ω ∈ TR(Σ,X ), x ∈ TV(Σ,X ) defined in Ω, I ∈ TR(Σ,X ) used for (discrete) indices, i ∈ TV(Σ,X ) used as an
index defined in I, u ∈ TF(Σ,X ) or u(x) ∈ TF(Σ,X ) to express that it depends on the variable x and ui the
indexed-term of the function u indexed by i. Similar definitions can be given for the other notations used
in the proof as Ω♯, x♯, Ω1, x1, Ω′, x′, v(x♯, x1) etc. The operators necessary for the proof are the integral,
the derivative, the two-scale transform T , its adjoint T ∗, and B. In addition, for some extensions of the
reference proof we shall use the discrete sum.
Instead of writing operator-terms as defined in the grammar, we prefer to use the usual mathematical
expressions. The table below establishes the correspondance between the two formulations.

∫
u dx ≡ Oper(Integral, u, [x], [], []),

∂u

∂x
≡ Oper(Partial, u, [x], [x], []),

tr(u, x)(x′) ≡ Oper(Restriction, u, [x], [x′], []),

T (u, x)(x♯, x1) ≡ Oper(T, u, [x], [x♯, x1], [ε]),

T ∗(v, [x♯, x1])(x) ≡ Oper(T ∗, v, [x♯, x1], [x], [ε]),

B(v, [x♯, x1])(x) ≡ Oper(B, v, [x♯, x1], [x], [ε]),
∑

i

ui ≡ Oper(Sum, ui, [i], [], []).

The multiplication and exponentiation involving two terms f and g are written fg and f g as usual in
mathematics. All these conventions have been introduced for terms in T (Σ, ∅). For terms in T (Σ,X) as
those encoutered in rewriting rules, the rewriting variables can replace any of the above short cut terms.

Example 37 The rewriting rule associated to the Green rule (12) reads

∫
∂u

∂x
v dx −

∫
u
∂v

∂x
dx+

∫
tr(u) tr(v) n dx′.

with the short-cuts Γ = Reg(Γ, d1, ∅,⊥R,⊥F), Ω = Reg(Ω, d2, ∅,Γ, n), x = Var(x,Ω) and x′ = Var(x,Γ).
The other symbols u, v, x, Ω, Γ, d1, d2, n are rewriting variables, and for instance

∂u

∂x
≡ Oper(Partial, u, x, [], []).

Applying this rule according to an appropriate strategy, say the top down strategy, to a term in T (Σ, ∅) like

Ψ =

∫
∂f(z)

∂z
g(z) dz,

for a given variable term z and function terms f, g. As expected, the result is

−

∫
f
∂g

∂z
dz +

∫
f g n dz′

with evident notations for n and z′.
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4.3 A Variable Dependency Analyzer

The variable dependency analyzer Θ is related to effect systems in computer science [MM09]. It is a
function from TF(Σ, ∅) to the set P(TV(Σ, ∅)) of the parts of TV(Σ, ∅). When applied to a term t ∈ TF(Σ, ∅),
it returns the set of mathematical variables on which t depends. The analyzer Θ is used in the condition
part of some rewriting rules and is inductively defined by

Θ(d) = ∅ for d ∈ ΣCons,

Θ(x) = {x} for x ∈ TV(Σ, ∅),

Θ(⊛(u, v)) = Θ(u) ∪Θ(v) for u, v ∈ TF(Σ, ∅) and ⊛ ∈ ΣOp,

Θ(⊥F) = ∅,

Θ(u(x1, .., xn)) = {x1, .., xn} for u ∈ TF(Σ, ∅) and x
1, .., xn ∈ TV(Σ, ∅),

Θ(ui) = Θ(u) for u ∈ TV(Σ, ∅) and i ∈ TV(Σ, ∅),

Θ([u1, . . . , un]) = Θ(u1) ∪ · · · ∪Θ(un) for u1, . . . , un ∈ TF(Σ, ∅).

The definition of Θ on the operator-terms is done case by case,

Θ(

∫
u dx) = Θ(u) \Θ(x),

Θ(
∂u

∂x
) =

{
Θ(u) if Θ(x) ⊆ Θ(u),
∅ otherwise,

Θ(tr(u, x)(x′)) = Θ(x′),

Θ(T (u, x)(x♯, x1)) = (Θ(u) \Θ(x)) ∪Θ([x♯, x1]) if Θ(x) ∩Θ(u) 6= ∅,

Θ(T ∗(v, [x♯, x1])(x)) = (Θ(v) \Θ([x♯, x1])) ∪Θ(x) if Θ([x♯, x1]) ∩Θ(v) 6= ∅,

Θ(B(v, [x♯, x1])(x))) = (Θ(v) \Θ([x♯, x1])) ∪Θ(x) if Θ([x♯, x1]) ∩Θ(v) 6= ∅,

Θ(
∑

i

ui) =
⋃

i

Θ(ui).

We observe that these definitions are not very general, but they are sufficient for the applications of this
paper. To complete the definition of Θ, it remains to define it on memory terms,

Θ(M(u, v)) = Θ(u).

Example 38 For

Ψ =

∫

Ω♯
[

∫

Ω1

T (u(x), x)(x♯, x1)
∂v(x♯, x1)

∂x1
dx1]dx♯ ∈ TF(Σ, ∅),

the set Θ(Ψ) of mathematical variables on which Ψ depends is hence inductively computed as follows:

Θ(u(x)) = {x}, Θ(T (u(x), x)(x♯, x1)) = {x♯, x1}, Θ(v(x♯, x1)) = {x♯, x1}, Θ(∂v(x
♯,x1)

∂x1 ) = {x♯, x1}, Θ(T (u(x), x)

(x♯, x1) ∂v(x♯,x1)
∂x1 ) = {x♯, x1}, Θ(

∫
Ω1 T (u(x), x)(x♯, x1)

∂v(x♯,x1)
∂x1 dx1) = {x♯}, and Θ(Ψ) = ∅, that is, Ψ is a

constant function.

4.4 Formulation of the Symbolic Framework for Model Derivation

Now we are ready to define the framework for two-scale model derivation by rewriting. To do so, the
rewriting rules are restricted to left and right terms (l, r) ∈ TG(Σ,X ) × TG(Σ,X ). Their conditions c are
formulas generated by a grammar, not explicited here, combining terms in TG(Σ,X ) with the usual logical
operators in Λ = {∨,∧, ⌉,∈}. It also involves operations with the dependency analyzer Θ. The set of terms
generated by this grammar is denoted by TL(Σ,X ,G,Θ,Λ).
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It remains to argue that, given a strategy s in STG(Σ,X ),TL(Σ,X ,G,Θ,Λ), the set of terms TG(Σ, ∅) is closed
under the application of s. It is sufficient to show that for each rewriting r rule in s, the application of r
to any term t ∈ TG(Σ, ∅) at any position yields a term in TG(Σ, ∅). As an example, TG(Σ, ∅) is not closed
under the application of the rule x  Ω, where x is a variable. But it is closed under the application of
the linearity rule

∫
z f + g dx  

∫
z f dx +

∫
z g dx at any position, where f, g, x, z are rewriting variables.

The argument is, since
∫
z f + g dx ∈ TF(Σ, ∅), then f + g ∈ TF(Σ, ∅), and hence f, g ∈ TF(Σ, ∅). Thus,∫

z f dx+
∫
z g dx ∈ TF(Σ, ∅). That is, a term in TF(Σ, ∅) is replaced by a another term in TF(Σ, ∅). A more

general setting that deals with the closure of regular languages under specific rewriting strategies can be
found in [GGJ09].
A model derivation is divided into several intermediary lemmas. Each of them is intended to produce a new
property that can be expressed as one or few rewriting rules to be applied in another part of the derivation.
Since dynamical creation of rules is not allowed, a strategy is covering one lemma only and is operating
with a fixed set of rewriting rules. The conversion of a result of a strategy to a new set of rewriting rules
is done by an elementary external operation that is not a limitation for generalizations of proofs. The
following definition summarizes the framework of symbolic computation developed in this paper.

Definition 39 The components of the quintuplet Ξ = 〈Σ,X , E,G,Θ〉 provide a framework for symbolic
computation to derive multi-scale models. A two-scale model derivation is expressed as a strategy π ∈
STG(Σ,X ),TL(Σ,X ,G,Θ,Λ) for which the semantics [[π]]E is applicable to an initial expression Ψ ∈ T (Σ, ∅).

In the end of this section we argue that this framework is in the same time relatively simple, it covers the
reference model derivation and it allows for the extensions presented in the next section.

The grammar of terms is designed to cover all mathematical expressions occuring in the proof of the
reference model as well as of their generalizations. A term produced by the grammar includes locally
all useful information. This avoids the use of external tables and facilitates design of rewriting rules,
in particular to take into account the context of subterms to be transformed. It allows also for local
definitions, for instance a same name of variable x can be used in different parts of a same term with
different meaning, which is useful for instance in integrals. A limitation regarding generalizations presented
in the next section, is that the grammar must cover by anticipation all needed features. This drawback
should be fixed in another work by supporting generalization of grammars in the same time as generalization
of proofs.

Each step in the proof consists in replacing parts of an expression according to a known mathematical
property. This is well done, possibly recursively, using rewriting rules together with strategies allowing
for precise localization. Some steps need simplifications and often use the second linearity rule of a linear
operator, A(λu) = λAu when λ is a scalar (or is independent of the variables in the initial set of A).
So variable dependency of each subterm should be determined, this is precisely what Θ, the variable
dependency analyzer, is producing. The other simplifications do not require the use of Θ. In addition to
the grammar G, the analyzer Θ must be upgraded in view of each new extension.

In all symbolic computation based on the grammar G, it is implicitely assumed that the derivatives, the
integrals and the traces (i.e. restriction of a function to the boundary) are well defined since the regularity
of functions is not encoded.

Due to the algebraic nature of the mathematical proofs, this framework has been formulated by considering
these proofs as a calculus rather than formal proofs that can be formalized and checked with a proof assistant
[BC04, Won96]. Indeed, this is far simpler and allows, from a very small set of tools, for building significant
mathematical derivation. To cover broader proofs, the framework must be changed by extending the
grammar and the variable dependency analyzer only. Yet, the language Tom [BBK+07] does not provide a
complete environment for the implementation of our framework since it does not support the transformation
of rewriting rules, despite it provides a rich strategy language and a module for the specification of the
grammar.
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5 Transformation of Strategies as Second Order Strategies

For a given rewriting strategy representing a model proof, one would like to transform it to obtain a
derivation of more complex models. Transforming a strategy π ∈ ST (Σ,X ) is achieved by applying strategies
to the strategy π itself. For this purpose, we consider two levels of strategies: the first order ones ST (Σ,X )

as defined in Definition 30, and the strategies of second order in such a way that second order strategies can
be applied to first order ones. That is, the second order strategies are considered as terms in a set T (Σ,X )
of terms where Σ and X remain to be defined. Given a set of strategies ST (Σ,X ) that comes with a set of

fixed-point variables F , we pose Σ ⊃ Σ ∪ { , ; ,⊕, Some,Child, η, µ} ∪ F . Let X be a set of second order
rewriting variables such that X ∩ (X ∪ Σ) = ∅. Notice that first order rewriting variables and fixed-point
variables are considered as constants in T (Σ,X ), i.e. function symbols in Σ0. Notice also that the arity of
the function symbols  , ; ,⊕, Child, µ is two, and the arity of Some and η is one. In particular, the rule
l r can be viewed as the term  (l, r) with the symbol  at the root, and the strategy µX.s viewed as
the term µ(X, s). This allows us to define second order strategies ST (Σ,X ) by the grammar

s̄ ::= l ̄r | s̄̄;s̄ | s̄⊕̄s̄ | η̄(s̄) | Some(s̄) | Child(j, s̄) | X | µ̄X.s̄ (34)

Again we assume that the symbols  ̄, ;,⊕, . . . of the second order strategies do no belong to Σ. The
semantics of the strategies in ST (Σ,X ) are similar to the semantics of first order strategies. In addition, we
assume that second order strategies transform first order strategies, to which they are applied, into first
order strategies. Composing several second order strategies and applying such composition to a given first
order strategy s provide successive transformations of s.

s1

s2 s3

s23

Π2

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

Π3

��
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄

Π3

��
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄

Π2

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

Figure 1: An example of the composition of transformations of strategies.

In the following example we illustrate the extension of an elementary strategy which is a rewriting rule.

Example 40 For the set X = {i, j, x, x♯, x1, u, ε} we define s1, s2, s3, and s23 four rewriting rules,

s1 := T (
∂u

∂x
, x)(x♯, x1) 

1

ε

∂T (u, x)(x♯, x1)

∂x1
for x ∈ Ω and (x♯, x1) ∈ Ω♯ × Ω1,

s2 := T (
∂u

∂xi
, x)(x♯, x1) 

1

ε

∂T (u, x)(x♯, x1)

∂x1i
for x ∈ Ω and (x♯, x1) ∈ Ω♯ × Ω1,

s3 := T (
∂u

∂x
, x)(x♯, x1) 

1

ε

∂T (u, x)(x♯, x1)

∂x1
for x ∈ Ωj and (x♯, x1) ∈ Ω♯

j ×Ω1
j ,

s23 := T (
∂u

∂xi
, x)(x♯, x1) 

1

ε

∂T (u, x)(x♯, x1)

∂x1i
for x ∈ Ωj and (x♯, x1) ∈ Ω♯

j × Ω1
j .
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The rule s1 is encountered in the reference proof, s2 is a (trivial) generalization of s1 in the sense that it
applies to multi-dimensional regions Ω1 referenced by a set of variables (x1i )i, and s3 is a second (trivial)

generalization of s1 on the number of sub-regions (Ωj)j , (Ω
♯
j)j and (Ω1

j )j in Ω, Ω♯ and Ω1. The rule s23 is
a generalization combining the two previous generalizations. First, we aim at transforming the strategy s1
into the strategy s2 or the strategy s3. To this end, we introduce two second order strategies with X = {v, z}
and Σ ⊃ {i, j, Ω, Ω♯, Ω1, Partial, IndexedFun, IndexedV ar, IndexedReg},

Π̄1 := OuterMost(
∂v

∂z
 ̄
∂v

∂zi
)

Π̄2 := OuterMost(Ω ̄Ωj);OuterMost(Ω♯
 ̄Ω♯

j);OuterMost(Ω1
 ̄Ω1

j )

Notice that Π̄1 (resp. Π̄2) applies the rule
∂v

∂z
 ̄
∂v

∂zi
(resp. Ω ̄Ωj, Ω

♯
 ̄Ω♯

j, and Ω1
 ̄Ω1

j) at all of the

positions 1 of the input first order strategy so that

Π̄1(s1) = s2 and Π̄2(s1) = s3.

Once Π̄1 and Π̄2 have been defined, they can be composed to produce s23 :

Π̄2Π̄1(s1) = s23 or Π̄1Π̄2(s1) = s23.

The diagram of Figure 1 illustrates the application of Π̄1, Π̄2 and of their compositions.

The next example shows how an extension can not only change rewriting rules but also to add new
ones.

Example 41 To operate simplifications in the reference model, we use the strategy

s1 := TopDown(
∂x

∂x
 1).

In the generalization to multi-dimensional regions, it is replaced by two strategies involving the Kronecker
symbol δ, usually defined as δ(i, j) = 1 if i = j and δ(i, j) = 0 otherwise,

s2 : = TopDown

(
∂xi
∂yj
 δ(i, j), x = y

)
,

s3 : = TopDown (δ(i, j) 1, i = j) ,

s4 : = TopDown (δ(i, j) 0, i 6= j) .

The second order strategy that transforms s1 into the strategy Normalizer(s2 ⊕ s3 ⊕ s4) is

Π̄ := TopDown(s1 ̄s2 ⊕ s3 ⊕ s4).

1Notice the difference with TopDown which could not apply these rules at any position.
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6 Implementation and Experiments

The framework presented in Section 4.4 has been implemented in Maple
R©
. The implementation includes,

the language Symbtrans of strategies already presented in [BGL]. The derivation of the reference model
presented in Section 2 has been fully implemented. It starts from an input term which is the weak
formulation (24) of the physical problem,

∫
a
∂u

∂x

∂v

∂x
dx =

∫
f v dx, (35)

where a = Fun(a, [Ω], [ ],Known), u = Fun(u, [Ω], [Dirichlet], Unknown), v = Fun(u, [Ω], [Dirichlet], T est),
Ω = Reg(Ω, [1], ∅,Γ, nΩ), Γ = Reg(Γ, [ ], ∅, ⊥R, ⊥F), Dirichlet = BC(Dirichlet,Γ, 0) and where the short-
cuts of the operators are those of Section 4.2. The information regarding the two-scale transformation is
provided through the test functions. For instance, in the first block the proof starts with the expression

Ψ =

∫
∂u

∂x
B(v(x♯, x1)(x) dx,

where the test function B(v(x♯, x1)(x) is also an input, with v = Fun(a, [x♯, x1], [Dirichlet♯], T est), x♯ =

Var(x♯,Ω♯), x1 = Var(x1,Ω1), Ω♯ = Reg(Ω♯, [1], ∅,Γ♯, nΩ♯), Γ♯ = Reg(Γ♯, [ ], ∅,⊥R,⊥F), Ω
1 = Reg(Ω1, [1], ∅,

Γ1, nΩ1), Γ1 = Reg(Γ1, [ ], ∅,⊥R,⊥F), and Dirichlet♯ = BC(Dirichlet♯,Γ♯, 0).

The proof is divided into five strategies corresponding to the five blocks of the proof, each ending by
some results transformed into rewriting rules used in the following blocks. The rewriting rules used in the
strategies are FO-rules and can be classified into the three categories.

• Usual mathematical rules: that represents the properties of the derivation and integration operators,
such as the linearity, the chain rule, the Green rule, etc,

• Specialized rules: for the properties of the two-scale calculus, as those of the two-scale transform, the
approximation of B by the adjoint T ∗ etc,

• Auxiliary tools: for transformations of expressions format that are not related to operator properties
such as the rule which transforms ψ1 = ψ2 into ψ1 − ψ2 = 0.

Usual Rules Specialized Rules Aux. Tools

Skeleton 53 14 28

Table 1: The number of first order rules used in the reference model.

The Table 1 summarizes the number of first order (FO) rules, used in the reference model, by categories.

The reference model has been extended to cover three different kinds of configurations. To proceed to an
extension, the new model derivation is established in a form that is as close as possible of the reference proof.
The grammar and the dependency analyzer should be completed. Then, the initial data is determined, and
second order (SO) strategies yielding the generalized model derivation are found and optimized. As it has
been already mentioned, G and Θ have already been designed to cover the three extensions.

The first generalization is to cover multi-dimensional regions, i.e. Ω ⊂ R
n with n ≥ 1. When n = 2, the

initial term is
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n∑

i=1

n∑

j=1

∫
aij

∂u

∂xi

∂v

∂xj
dx =

∫
f v dx,

where Ω = Reg(Ω, [1, 2], ∅,Γ, nΩ), aij = Indexed(Indexed(a, j), i), i = Var(i, I), I = Reg(I, [1, 2], ∅,⊥R ,⊥F)

and the choice of the test function is trivially deduced. Then, the model derivation is very similar to this
of the reference model, see [LS07], so much so it is obtained simply by applying the SO strategy Π̄1defined
in Example 40. This extension has been tested on the four first blocks.

The second generalization transforms the reference model into a model with several adjacent one-dimensional
regions (or intervals) (Ωk)k=1,..,m so that Ω is still an interval i.e. Ω ⊂ R. For m = 2, the initial term is the
same as (35) but with Ω = Reg(Ω, [1], {Ω1,Ω2}, Γ, nΩ), Ω1 = Reg(Ω1, [1], ∅, Γ1, nΩ1

), and Ω2 = Reg(Ω2, [1],
∅, Γ2, nΩ2

). The two-scale geometries, all variables, all kind of functions and also the operators B and T
are defined subregion by subregion. All definitions and properties apply for each subregion, and the proof
steps are the same after spliting the integrals over the complete region Ω into integrals over the subregions.
The only major change is in the fourth step where the equality u01 = u02 at the interface between Ω1 and
Ω2 which is encoded as transmission conditions in the boundary conditions of u01 and u02.

The third extension transforms the multi-dimensional model obtained from the first generalization to a
model related to thin cylindrical regions, in the sense that the dimension of Ω is in the order of ε in some
directions i ∈ I♮ and of the order 1 in the others i ∈ I♯ e.g. Ω = (0, 1)× (0, ε) where I♮ = {2} and I♯ = {1}.
The boundary Γ is split in two parts, the lateral part Γlat and the other parts Γother where the Dirichlet
boundary conditions are replaced by homogeneous Neuman boundary conditions i.e. duε

dx = 0. In this
special case the integrals of the initial term are over a region which size is of the order of ε so it is required
to multiply each side of the equality by the factor 1/ε to work with expressions of the order of 1. Moreover,
the macroscopic region differs from Ω, it is equal to Ω♯ = (0, 1) when the microscopic region remains

unchanged. In general, the definition of the adjoint T ∗ is unchanged but (Bv)(x) = v((xi)i∈I♯ , (x− x♯c)/ε)

where x♯c is the center of the cth cell in Ω♯. It follows that the approximations (10, 11) are between T ∗ and
εB with

∑
i∈I♯ x

1
i
∂v

∂x♯
i

instead of
∑n

i=1 x
1
i
∂v

∂x♯
i

. With these main changes in the definitions and the preliminary

properties, the proof steps may be kept unchanged.

Usual Rules Specialized Rules Aux. Tools

Multi-Dimension 6 0 4

Thin-Region 2 0 0

Multi-Region 3 0 0

Table 2: The number of first order rules used in the three extensions.

The mathematical formulation of the second and third extensions has been derived. This allows for the
determination of the necessary SO-strategies, but they have not been implemented nor tested. To summa-
rize the results about the principle of extension of strategies, we show its benefit through some statistics.
In particular the main concerned is the reusability and the extensibility of existing strategies. The Table
2 shows an estimate of the number of new FO-rules for the three extensions in each category and for the
first four blocks.
The Table 3 shows the number of SO-strategies used in each extension. Finally, the Table 4 shows, the
ratio of the modified FO-rules and the ratio of the modified FO-strategies. The reusability ratio is high
since most of the FO-strategies defined in the skeleton model are reused. Besides very little number of
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Usual Rules Specialized Rules Aux. Tools

Multi-Dimension 9 2 3

Thin-Region 0 0 0

Multi-Region 1 0 0

Table 3: The number of second order strategies used in the extension of proofs.

Input model Resulting model % Modi. FO-rules % Modi. FO-strategies

Reference Multi-Dim. 16.6% 5%

Multi-Dim. Thin 0 0

Thin Multi-Reg. 0 2.5%

Table 4: The ratio of modified FO-rules and FO-strategies.

SO-strategies is used in the extensions. This systematic way of the generation of proofs is a promising path
that will be further validated within more complex configurations for which the proofs can not obtained
by hand. In the future, we plan to introduce dedicated tools to aid in the design of composition of several
extensions.
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